
Name:

Enrolment No:

UPES
End Semester Examination, May 2025

Course: GPU Programming Semester : VI
Program: B. Tech (CSE), Graphics & Gaming Time : 03 hrs.
Course Code: CSGG3018 Max. Marks : 100

Instructions: Please attempt according to the provided time and given weightage.

SECTION A
(5Qx4M=20Marks)

S. No. Marks CO
Q 1 Define the term GPGPUs. List two tools used for GPGPU development. 3+1 CO1
Q 2 Discuss the key difference between task parallelism and data parallelism,

providing relevant examples to illustrate each concept.
4 CO1

Q 3 Describe the function of the Thread Execution Manager in GPU
architecture and list its primary responsibilities (name each responsibility
only, no explanation required).

2+2 CO2

Q 4 Differentiate deadlocks from race conditions, providing effective
prevention/detection methods.

4 CO1

Q 5 Differentiate between Concurrency and Parallelism by explaining at least
two key differences

4 CO1

SECTION B
(4Qx10M= 40 Marks)

Q 6 List two factors that limit a CUDA kernel from achieving a million times
speedup even when the compute-to-global memory access (CGMA) ratio is
one. Suggest mitigations for each of these issues.

10 CO3

Q 7 (i) Explain how tiled matrix multiplication improves performance in GPU
computing.

(ii) Using a 4×4 matrices A and B, illustrate the two-phase computation
steps involved in the process of tiled matrix multiplication. Showing
 (a) how a 2x2 tile of A and B is loaded into shared memory (Phase 1)
 (b) the step-by-step computation of one output tile in C (Phase 2) using
the loaded titles.

2+8 CO3

Q 8 (i) Given below is a CUDA kernel
 __global__ void kernel(int *a) {

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 if (i % 3 == 0) {
 a[i] = blockIdx.x * 10 + threadIdx.x;
 }
}
The launch configuration is kernel<<<2, 6>>>(a);

If the initial state of a = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
Determine the final state of array a after kernel execution.

(ii) For the below CUDA kernel
__global__ void kernel(int *a) {
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = threadIdx.x % 2;
}
The launch configuration is kernel<<<1, 6>>>(a);
What is the output array a?

(iii) For the below CUDA kernel
__global__ void kernel(int *a) {
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = i + 1;
}
The launch configuration is kernel<<<2, 4>>>(a);
What is the output array a?

5 + 2.5
+2.5

CO2,
CO3

Q 9 (i) For each CUDA memory types-- registers, shared, global, local, and
constant, compare two defining traits such as: scope, performance, lifetime
or access constraints.

OR
(ii) Given two matrices, A and B, each of dimension m × m:
 (a) Write a simple CUDA kernel to compute the product C = A × B.
Assume matrices are stored in row-major order.
 (b) Specify the kernel launch configuration when the matrix dimension is
100 × 100. Justify your choices.

10

7+3

CO2,
CO3

SECTION-C
(2Qx20M=40 Marks)

Q 10 (i) Discuss at least two key advantages of OpenACC.

(ii) Give two code examples:
1. A loop without data dependencies.
2. A loop with data dependencies.

Describe in detail how OpenACC handles each case when #pragma acc
parallel loop is applied. Clearly state how the compiler reacts in each case.

OR
(iii) Compare OpenACC’s kernels construct ("#pragma acc kernels")

5+15
CO4

with parallel construct paired with the loop directive ("#pragma acc
parallel loop"), providing suitable code examples to illustrate differences
in parallelization approach and compiler behavior. 20

Q 11 (i) Explain the concepts of global dimensions, local work-groups and
work-items in OpenCL. Compare these compute model concepts to its
CUDA programming equivalents.

(ii) Illustrate OpenCL's memory model with a labeled diagram showing:
processing elements, compute units, register/global memory, and their
access relationships.

12+8 CO3

	UPES
	End Semester Examination, May 2025
	Course: GPU Programming Semester : VI

