Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Operating Systems

Program: BCA_BSC All Program

Semester: IV

Time: 03 hrs.

Course Code: CSEG 2060 Max. Marks: 100

Instructions:

1. Attempt all the questions wisely.

2. All questions in section A, B and C are compulsory.

3. However, an internal choice to attempt any one question has given in question 9 of section B and

question 11 of section C.

SECTION A
(50x4M=20Marks)

S. No.		Marks	CO
Q 1	Explain the difference between cooperating process and independent process. Also list how different inter process communication methods.	4	CO2
Q 2	Discuss file, file attributes and file system in OS.	4	CO4
Q 3	Enlighten the term internal and external fragmentation.	4	CO4
Q 4	Describe the resource allocation graph and its usage in OS.	4	CO3
Q 5	Discuss multithreading and its advantages over process.	4	CO1
	SECTION B		
	(4Qx10M=40 Marks)		
Q 6	Discuss the conditions to be followed for achieving process synchronization. Also explain the critical term section.	10	CO2
Q 7	Explain the following concepts. A) Real-time operating system B) Embedded operating system.	10(5+5)	CO1
Q 8	Consider a system that has N process and 6 tape drivers. Each process requires 3 tape drivers to complete their execution. Then what is the maximum value of N which ensure deadlock free operation.	10	CO3
Q 9	Suppose a disk drive has 400 cylinders, numbered 0 to 399. The driver is currently serving a request at cylinder 143 and previous request was at cylinder 125. The queue of pending requests in FIFO order is: 86,147,312,91,177,48,309,222,175,130. Starting from the current head position what is the total distance in cylinders that the disk to satisfy all the pending request for each of the following disk scheduling algorithms? A] SSTS B] SCAN	10(5+5)	CO4

	OR Evaloin vietual mamory and mage fault with reference to mamory									OR 10	
	Explain virtual memory and page fault with reference to memory management										
	management				SEC	TION-	$\overline{\mathbf{C}}$				
				(2	Qx20N						
Q 10	Consider a paged memory system with 32-bit logical address, 64 MB physical address space and 4KB size page. Furthermore, each page table entry contains an additional 1 bit for valid/invalid bit and 1 bit for memory protection besides frame number. Then calculate the following. A) Bits in page offset B) Number of pages in process C) Bits for page number D) Number of frames in physical memory E) Bits for frame F) Page table size. Further explain why there is need of paging in memory management technique. Also explain how and which type of fragmentation occurs in paging.								20	CO4	
Q 11	Consider the total of 3 instances. In current resoure represent the complete. A PO 0 P1 1 P2 1 P3 0 P4 0 P4 C P4 C P4 C P4 C P4 P4 C P4	B 0 0 3 6 0 ollowing contents em in a semore that	C 1 0 5 3 1 1 cafe state an one specess p.	below, to each ource results of the policy o	A 0 1 2 0 ng bank need mass, provi	as 12 in entry in ss and by a p B 0 7 3 6 6 cer's algentrix? ide the ss possi	C 1 5 5 5 corithm differentials.	es and D to 5 denot t four co of each D 2 0 6 2 6 : tt safe se	has 12 otes the olumns type to	20(10+5 +5) OR 20(5+5+ 5+5)	CO1, CO2, CO3