Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Modelling & Simulation

Program: M.Tech (CSE)

Course Code: CSEG8003

Semester: II Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions

SECTION A
50x4M=20Marks)

(5Qx4M=20Marks)					
S. No.		Marks	со		
Q 1	Define confidence intervals and explain their role in validating simulation outputs.	4	CO1		
Q 2	Compare and contrast partitioning data and partitioning algorithms in parallel simulations.	4	CO2		
Q 3	Evaluate the different communication patterns observed in partitioned systems, providing examples.	4	CO3		
Q 4	Illustrate how tools like Python or MATLAB facilitate multidimensional visualization.	4	CO3		
Q 5	Explain why model validation is essential in analyzing simulation results.	4	CO4		
	SECTION B				
(4Qx10M=40 Marks)					
Q 6	Outline the steps involved in performing sensitivity analysis for evaluating simulation outputs.	10	CO3		
Q 7	Differentiate between stepped-time and event-driven simulations, providing use-case scenarios for each.	10	CO1		
Q 8	Describe the concept of stochastic modeling and explain how randomness is incorporated in simulations. OR Discuss how cross-validation and calibration are used in the process of validating simulation models.	10	CO2		
Q 9	Demonstrate the structure and significance of simulation viewing tools, such as tables, graphs, and multidimensional interfaces.	10	CO4		
SECTION-C (2Qx20M=40 Marks)					
Q 10	Explain the techniques and tools used for random variate generation in queueing system simulations and analyze their impact on system accuracy and performance. OR	20	CO4		

	Design a simulation model for a distributed logistics system using parallel simulation concepts and evaluate how partitioning and interpartition communication will be managed.		
Q 11	Compare and contrast different simulation output platforms (Terminal, MS Windows, X Windows, Web Interface) in terms of usability, flexibility, and performance.	20	CO2, CO4