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ABSTRACT

The Cloud-Fog environment is excellent for providing clients with optimized ser-
vices in their everyday regular tasks. The growth of IoT devices generates an ex-
ponential amount of data. To complete tasks on time, multiple service providers
arrange the restricted resources available in the Fog computing environment em-
ploying optimization scheduling approaches. This study proposes an efficient
hybrid optimization algorithms named Improved Grey Wolf Optimization al-
gorithm(IGWOA),and Whale-Earthworm-optimization-algorithm (WEOA) for
optimal resource management in a Cloud-Fog environment.It is difficult for inde-
pendent algorithms to achieve a balance between exploration- and-exploitation.
Too much exploration in the algorithm can lead to inefficiency and additional
overhead, whereas much exploitation in the algorithms can lead to lost opportu-
nities for improvement or inferior solutions. This work introduces an effective
task allocation mechanism. This work improves the algorithm’s exploration and
exploitation stages to more effectively handle optimization problems in the Fog
environment. It improves the exploitation phase to more effectively utilize found
solutions and refines the exploration phase to more effectively probe the solu-
tion space. Together, these modifications strengthen the algorithm’s capacity
to operate in Fog-computing environments during both the exploration and ex-
ploitation phases.Simulations of the experiment are performed using the iFogSim
toolkit, with appropriate environment parameters cost, makespan,response time,
and throughput.Based on the selected parameters cost, makespan,response-time
and throughput , the suggested strategy is compared to traditional optimiza-
tion strategies.Extensive simulation demonstrates that the suggested technique
outperforms the traditional scheme in terms of cost, time complexity, response
time, and throughput.As a result, the suggested IGWOA,and WEOA approach is
appropriate for IoT-Fog-Cloud environments.
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Chapter 1

Introduction

1.1 IoT-Fog-Cloud Infrastructure

Fog computing, a distributed computing paradigm (Solutions, 2015), allows
for actual-time data processing and Computation by extending cloud comput-
ing capabilities to the network’s edge. By decentralizing processing resources,
it tries to alleviate the latency, bandwidth, and scalability restrictions of cloud
computing(Varshney & Singh, 2018; Aburukba, AliKarrar, Landolsi, & El Fakih,
2020; M. Bansal & Malik, 2020). For processing and storage, data is often trans-
mitted to a distant data centre in traditional cloud computing. When dealing with
real-time applications or massive amounts of data, in particular, this strategy may
cause delays and require a significant amount of bandwidth. On the contrary,
Fog computing entails the displacement of computational and storage assets in
adjacent to the periphery of the system. (Naas, Lemarchand, Boukhobza, &
Raipin, 2018), usually at edge devices or nearby data centres(Aslanpour, Gill,
& Toosi, 2020; Hong & Varghese, 2018; Grover & Garimella, 2019). In Fog
environment, the term "Fog" represents a metaphorical cloud that is positioned
closer to the ground and represents the edge of the system, as illustrated in the
Figure 1.1. Fog environment enhances speed of data processing, and reduces la-
tency by strategically locating Fog nodes adjacent to the machines and detectors
that generate the data(Ramzanpoor, Hosseini Shirvani, & Golsorkhtabaramiri,
2022a; Chhabra, Singh, & Kahlon, 2021; S. P. Singh, Sharma, & Kumar, 2020).
The advantages of Fog computing are numerous. One primary benefit is the
reduction in data volume that require to be broadcast to the cloud, resulting in
less network crowd and diminished reliance on centralized data centers. Further-
more, it facilitates instantaneous and minimal delay data processing, rendering it
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suitable for applications that require prompt responses or edge analysis.Thirdly,
by keeping sensitive data near to its source, Fog computing improves data pri-
vacy and security.Fog computing can provide advantages to numerous industries,
inclusive but not restricted to the industrial Internet of Things (IoT), healthcare,
smart communities, and transportation. In these cases, local decision-making,
edge analytics, and real-time control are made possible by Fog computing, which
results in quicker response times, increased productivity, and improved user ex-
periences.Broadly speaking, At the system periphery, Fog environment extends
capabilities of cloud-computing (Mohammadzadeh, Chhabra, Mirjalili, & Faraji,
2024). Fog computing allows effective data processing, decreased latency, in-
creased scalability, and increased reliability in a variety of applications by using
scattered computer resources.
Fog environments consist of numerous Fog nodes situated in an environment
with constrained storage and computation capabilities. These Fog nodes can
be a Fog server, Fog device, and Fog gateway. Fog devices help store the data
and Fog servers are helpful during computation. Fog gateways may help in
transferring information or data between servers and devices. In networking
routers, switches, and embedded servers may act as the Fog nodes. At present
Fog computing is used by many application-like smart cities(T. Wang et al.,
2019; Naranjo, Pooranian, Shojafar, Conti, & Buyya, 2019), smart industries,
traffic management, smart cars, healthcare(Bharathi et al., 2020; Abdelmoneem,
Benslimane, & Shaaban, 2020), etc. All these applications are real-time sensi-
tive applications. Real-time data/information is required in these applications
for the processing of tasks. For example, in the case of traffic management
where automatic cars are plying, cars require all the real scenarios of traffic
jams, humps, signals, etc. delay in the information may result in late applying
of brakes and may lead to any serious accidents.
instead cloud infrastructure is located far away from IoT devices, which added
bandwidth cost, energy consumption, and latency issues(Hameed, Jamil, & Ijaz,
2024; Naha, Garg, Chan, & Battula, 2020; Sing et al., 2022). on order to
mitigate these problems, the Fog infrastructure is implemented on the inter-
mediary surface that sits in the middle of the IoT and the Cloud layer. The
IoT-Fog-Cloud infrastructure consists of three levels.The lowermost layer is the
Internet-of-Things (IoT) layer, houses the devices and generates diverse forms of
data from them. The uppermost layer functions as a cloud layer, housing high-
capacity servers that offer storage and memory services. A layer of Fog is the
intermediate level of infrastructure, comprising of Fog devices, Fog gateways,
and servers with restricted capacity (Li, Liu, Wu, Lin, & Zhao, 2019; Goel &
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Tiwari, 2023). It helps the fastest computation of tasks and helps in reducing
latency, bandwidth, and energy consumption(N. Kaur et al., 2024; Gao et al.,
2020; Abd Elaziz, Abualigah, & Attiya, 2021).

Figure 1.1: Traditional IoT-Fog-Cloud Architecture

A concept known as "cloud computing" mentions the providing of different
computer services(Jeong, Baek, Park, Jeon, & Jeong, 2023; A. K. Singh, Swain,
Saxena, & Lee, 2023; Agbaje, Ohwo, Ayanwola, Olufunmilola, et al., 2022)
online. Cloud computing permit customers to remotely approach and utilize
computing-resources via the internet, eliminating the requirement for a local
server or personal computer to execute programs, store data, or perform other
computing operations. These resources—which include storage, processing
power, and a variety of services—are provided by independent companies re-
ferred to as cloud service providers (CSPs)(Saraswat & Tripathi, 2020; T. Alam,
2020; Anang, 2020). Cloud computing has emerged as a vital technology in
today’s digital landscape, allowing individuals and organizations to get access to
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strong computer capabilities without incurring significant upfront hardware and
infrastructure costs.

Here are a few crucial cloud computing features:(Ghosh & Grolinger, 2020;
Krishnaveni, Sivamohan, Sridhar, & Prabakaran, 2021; Bai, Su, & Zhu, 2021)

I. On-demand self-service: Without contacting service providers directly,
users can allocate computer resources as needed.

II. Wide-ranging network access:Standard devices including computers,
tablets, mobile phones, and workstations can access network-based ser-
vices.

III. Resource pooling: Cost savings and increased efficiency are possible
when computing resources are combined to serve several users.

IV. Quick elasticity:it refers to the flexibility and agility that come from
being able to quickly down or scale up computing resources in response
to shifting needs.

V. Measured service: To enable cost optimization and resource manage-
ment, cloud computing resources are measured, and customers are in-
voiced according to their utilization.

Because of its flexibility, affordability, and scalability, cloud computing has
grown in popularity(Mohammed & Zeebaree, 2021; Waqar et al., 2023; Albar-
racín, Venkatesan, Torres, Yánez-Moretta, & Vargas, 2023). It has completely
changed the way companies’ function, allowing them to concentrate on their core
skills, scale effectively, and innovate more quickly. Among the leading suppliers
of cloud computing are GCP, Microsoft Azure, and AWS.
Generally, cloud computing services fall into one of three primary cate-
gories:(W. Wang, Du, Shan, Qin, & Wang, 2020; Hasan et al., 2024)

I. Infrastructure-as-a-service (IaaS): It issues virtual computing resources.
Users can pay-per-use for networking infrastructure, storage, and virtual
machines.

II. Platform-as-a-Service (PaaS): Giving a policy so users may design, ex-
ecute, and organize applications without concerning about the problems
inherent with architecture management. Development instruments, middle
ware, and other services required for creating and deploying applications
are usually included in PaaS packages.
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III. Software-as-a-Service (SaaS): Offers web-based software applications in
return for a subscription fee. Users can access programs via a web browser
instead of installing or managing software locally.

An Internet of Things (IoT) device is any physical device with an internet connec-
tion that can send, receive, and collect data. Embedded sensors, software, and
other technological components enable these devices to establish communication
and interaction channels with other systems and devices via the internet(Jeong
et al., 2023; Bell, 2024; Mahmudova, 2024). They can be anything from basic
sensors to sophisticated machinery.
Smart homes, healthcare, manufacturing, transportation, and other sectors are
just a few of the industries and uses for IoT devices. IoT device examples
include:(Sabireen & Neelanarayanan, 2021; Safa’a et al., 2023; L. Xiao, Xu,
Chen, & Chen, 2019)

I. Smart thermostats:With the help of a web interface or smartphone app,
users can remotely monitor and manage a building’s temperature with
these devices.

II. Wearable fitness trackers:Health-related data acquisition devices include
fitness bands and smartwatches, which monitor and record physical activ-
ity, sleep patterns, and pulse rate. Analyses of this information are possible
via a computer or mobile device.

III. Industrial sensors: Industrial facilities have the potential to implement
IoT sensors for the purpose of monitoring apparatus operations, detecting
anomalies or issues, and optimizing workflows to enhance output and
efficiency.

IV. Smart appliances:Appliances with internet of things capabilities, like
washing machines, ovens, and refrigerators, can be operated from a dis-
tance and offer real-time information about their energy and status.

V. Connected cars:Contemporary automobiles are equipped with Internet of
Things (IoT) technology, which enables features such as GPS navigation,
instantaneous traffic notifications, remote diagnostics, and inter-vehicle
communication.

VI. Environmental monitoring devices: IoT sensors can be used to track
many environmental characteristics in metropolitan areas, industrial loca-
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tions, and natural ecosystems, such as noise levels, air quality, and water
quality.

Fog computing and Quality of Service (QoS)(Murtaza, Akhunzada, ul Islam,
Boudjadar, & Buyya, 2020; Das & Inuwa, 2023; Ghobaei-Arani & Shahidine-
jad, 2022) are closely related. QoS techniques make sure that edge computing
environments provide dependable, low-latency services while prioritizing vital
applications and optimizing resource utilization. Fog computing QoS tech-
niques improve user experience and allow new edge computing applications by
efficiently managing resources, reducing latency, and boosting dependability and
security.

1.2 Quality-of-Service in Fog Computing

In Fog computing, Quality of Service (QoS) describes the Fog infrastructure’s
capacity to satisfy performance standards and demands established by users
or applications(Peng, Sun, Zhou, & Wang, 2023; Harnal, Sharma, Seth, &
Mishra, 2022; Mani & Meenakshisundaram, 2020; Qu, Wang, Sun, Peng, & Li,
2020).In Fog environments, quality-of-service (QoS) is critical for the successful
deployment of numerous applications, especially those that require real-time or
low-latency processing.
Here are a few crucial QoS elements for Fog computing:(Vatanparvar &
Al Faruque, 2018; Tuli et al., 2023; Hazra, Adhikari, Amgoth, & Srirama, 2021)

I. Latency:Fog computing processes data closer to the source, which lowers
latency. To achieve their performance criteria, QoS mechanisms should
make sure that applications that are sensitive to latency receive priority
processing.

II. Reliability:To guarantee uninterrupted service availability, Fog nodes
must be reliable. Reliability is preserved using efficient load balancing
strategies, redundancy, and fault tolerance systems.

III. Bandwidth: The distribution of bandwidth across various services and
apps operating on Fog nodes is managed via QoS methods. For critical
applications to function properly, larger bandwidth guarantees could be
necessary.

IV. Scalability: Environments for Fog computing should be scalable to meet
changing needs for resources and workloads. To maintain performance
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levels, QoS methods dynamically assign resources depending on changes
in workload.

V. Security:Quality-of-service (QoS) considerations in Fog environment en-
compass safeguarding confidentiality, integrity, and security of data. Se-
curing sensitive data and maintaining service quality require the imple-
mentation of critical security measures such as encryption, access control,
and authentication.

VI. Resource Management:Effective resource management is necessary to
maintain Quality-of-Service (QoS) in Fog environment. This involves
the management of work allotment among Fog nodes, the maximiz-
ing of resource allotment, and the monitoring of resource utilization.
(Songhorabadi, Rahimi, MoghadamFarid, & Kashani, 2023; Sabireen &
Neelanarayanan, 2021; Ghobaei-Arani, Souri, Safara, & Norouzi, 2020)

VII. Service Level Agreements (SLAs):The expected QoS characteristics that
service providers and users have agreed upon are defined by SLAs. To
make sure that the level of service matches the required standards, QoS
systems ought to enforce and monitor SLAs.(Zhao et al., 2021; Chang,
Sidhu, Singh, & Sandhu, 2023)

VIII. Orchestration and Scheduling: Algorithms for orchestration and schedul-
ing that take QoS into account are essential for maximizing resource
use and achieving performance goals. These algorithms make intelli-
gent placement and scheduling decisions by considering variables includ-
ing workload characteristics, resource availability, and QoS needs.(Costa,
Bachiega Jr, de Carvalho, & Araujo, 2022; Baranwal & Vidyarthi, 2021;
Nazeri, Soltanaghaei, & Khorsand, 2024)

IX. Adaptability:Requirements for applications, resource availability, and
network circumstances should all be considered by QoS methods. In
dynamic Fog computing systems, QoS must be maintained by dynamic
reconfiguration and optimization.

For the purpose of cater the diverse necessity of edge computing services and
applications, fog computing necessitates the implementation of robust security
measures, efficient resource management, judicious scheduling, and strict ad-
herence to service level agreements (SLAs).
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1.3 QoS Management Approaches in Fog Environ-
ment

Effective administration of quality-of-service(QoS) in Fog environment is a mul-
tifaceted undertaking that requires careful consideration of various aspects in-
cluding user experience, performance, and dependability. Resource Scheduling,
which allows Fog nodes to effectively share network, storage, and processing
resources in response to changing application and service needs, is a crucial
component of QoS management. Even in extremely dynamic and unexpected
circumstances, this dynamic allocation guarantees optimal resource use and aids
in satisfying quality of service (QoS) requirements(Malleswaran & Kasireddi,
2019; Moh & Moh, 2018; Li et al., 2019; Ayoubi, Ramezanpour, & Khor-
sand, 2021). Moreover, in Fog computing, QoS-aware task offloading(Hussein
& Mousa, 2020; Aazam, Zeadally, & Harras, 2018) is essential for improving
application performance and cutting latency. QoS-aware offloading systems op-
timize resource use and decrease response time, hence enhancing overall user
experience. They do this by intelligently choosing whether to accomplish duties
locally on edge devices, offload them to nearby Fog nodes, or process them in the
cloud. In Fog computing, several QoS management techniques are used to ac-
complish this as shown in Figure 1.2 Now days, Resources Scheduling(Hameed

Figure 1.2: QoS Management Approaches In Fog Environment

et al., 2024; Varshney & Singh, 2018; Sun, Lin, & Xu, 2018) is a headache in the
Fog environment due to the enlarge in the number of IoT devices. Most of the
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population in the world is using smartphones, living in smart cities, and running
smart cars. Due to these lifestyles’ the resources of the Cloud-Fog environment
are falling short.Due to the reality that these machines generate a substantial
volume of data that requires storage and computation. There is a requirement
of managing these data efficiently in the Fog environment. So that real-time
data could be available. By offloading the task to the cloud someone can get
the benefit of storage and memory, but the problem of delay, cost, and energy
consumption is to be faced.Resource scheduling in Fog environment, conversely,
has been subject of numerous studies. Nonetheless, in Fog environment, some
continue to encounter challenges such as latency, bandwidth, and energy con-
sumption.
Resource Scheduling(P. Wang et al., 2019; Al Ahmad, Patra, & Barik, 2020) may
be managed through Task Scheduling(Goel, Tiwari, Anand, & Kumar, 2022),
Resource Allocation(Goel & Tiwari, 2023), Task offloading(Kishor & Chakar-
barty, 2021), and Application management(Ghobaei-Arani, Souri, Safara, &
Norouzi, 2020; S. P. Singh, Kumar, & Sharma, 2020) techniques.To efficiently
orchestrate resources across distributed edge environments and satisfy perfor-
mance, scalability, and quality of service (QoS) needs, each of these strategies
is essential. Let’s examine each of methods in more detail as these are part of
this research topic:

1.3.1 Task Scheduling

In Fog computing settings, where tasks must be efficiently completed across
distributed edge devices and Fog nodes, task scheduling(Alizadeh, Khajehvand,
Rahmani, & Akbari, 2020; Alsaidy, Abbood, & Sahib, 2022; Ghobaei-Arani,
Souri, & Rahmanian, 2020) is an essential component. Task scheduling seeks
to maximize system performance by strategically controlling the sequence and
timing of task completion. Schedulers consider a number of things in order to
accomplish this optimization:(Qu et al., 2020)

I. Task Dependencies: To make sure that dependent tasks are completed in
the right order, task scheduling algorithms examine the dependencies be-
tween activities. In order to prevent inconsistencies or deadlock situations,
tasks with inter dependencies may need to be scheduled either sequentially
or concurrently depending on their relationships.

II. Deadlines: In order to meet application requirements or user expectations,
tasks frequently have associated deadlines that must be met. Prioritizing
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tasks according to their due dates helps task schedulers make sure that
important tasks are completed on time to avoid delays or service interrup-
tions.

III. Resource Requirements: Every task requires a unique set of resources,
including but not limited to Central processor, memory, and access band-
width. As per requirements of individual tasks and the available resources,
task schedulers allocate resources among periphery devices and fog nodes.
Optimizing the distribution of resources guarantees effective resource use
and avoids resource conflict.

IV. Reducing Idle Time: By continually allocating jobs to available re-
sources, task schedulers seek to reduce the amount of idle time on Fog
nodes and edge devices. When there are no jobs that need to be completed
or when scheduling is done inefficiently, resources sit idle. Schedulers
enhance throughput and resource use by adding jobs to idle gaps.

V. Optimizing Throughput: By effectively employing the resources at hand,
task scheduling algorithms aim to optimize the Fog computing system’s
total throughput. In order to do this, tasks must be scheduled to minimize
processing bottlenecks, shorten task wait times, and maximize the use of
computer resources.

VI. Reducing Latency and Response Times: Fog computing settings pri-
oritize low-latency task execution to meet the real-time processing needs
of Internet of Things applications, autonomous systems, and augmented
reality. By allocating jobs to adjacent edge devices or Fog nodes with low
network latency, task schedulers seek to reduce task execution times and
communication latencies.

Moth-Flame(Ghobaei-Arani, Souri, Safara, & Norouzi, 2020), Cuckoo(Nazir et
al., 2018), Bees-Swarm(Bitam, Zeadally, & Mellouk, 2018), Whale optimiza-
tion (Ghobaei-Arani & Shahidinejad, 2022), Grey Wolf(Salimian, Ghobaei-
Arani, & Shahidinejad, 2021), Cat-swarm(X. Xiao & Zhao, 2022),and Fire-
fly Crow(Malleswaran & Kasireddi, 2019)etc.are traditional algorithms in Fog
computing environments that maximize system performance, improve resource
consumption, and guarantee timely task execution to satisfy application needs
and user expectations by taking these elements into account. To fully benefit
from Fog computing, including low-latency processing, scalability, and respon-
siveness in distributed edge contexts, effective task scheduling is necessary.
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1.3.2 Resource allocation

A key component of efficiently managing resources(L. Yin, Luo, & Luo, 2018;
Ni, Zhang, Jiang, Yan, & Yu, 2017) in Fog computing settings is resource alloca-
tion. It entails the purposeful distribution of networking, storage, and processing
resources among jobs and applications according to their unique needs and prior-
ities. A closer examination at resource distribution in Fog situations is provided
here:

I. Dynamic Provisioning: Fog computing resource allocation is adaptable
and dynamic, adapting in real time to shifting workload requirements
and external circumstances. Resources are supplied or deprovisioned as
needed to maintain maximum performance and scalability as workload
varies.

II. Optimizing Resource Utilization:Algorithms for allocating resources are
designed to optimize the use of networking, storage, and processing re-
sources that are available in a Fog environment. These algorithms ensure
that resources are utilized properly, reducing waste and increasing overall
system efficiency by efficiently assigning resources to tasks and applica-
tions.

III. Achieving Application-Specific Goals: The objectives and specifications
of the apps that operate in the Fog environment are what determine how
resources are allocated. Applications with strict latency requirements, for
instance, might use resources more carefully in order to reduce processing
delays, whereas applications with high computational demands might need
more resources in order to reach performance goals.

IV. Balancing Objectives: Allocation algorithms have to balance competing
objectives, such as performance, energy efficiency, and cost-effectiveness.
To guarantee the Fog environment operates sustainably and economically,
for example, resource allocation strategies must take into account energy
consumption and operational expenses in addition to performance maxi-
mization.

V. Integration with Task Scheduling: To guarantee that jobs are allocated
to resources efficiently, resource allocation and task scheduling are tightly
correlated. Decisions about task scheduling have an impact on resource
allocation since different activities with varying demands and priorities
may need different amounts of resources to be completed in order to
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achieve their goals.

All things considered, resource allocation in Fog computing environments is es-
sential for maximizing resource utilization, accomplishing application-specific
objectives, and guaranteeing the Fog environment runs smoothly. Fog environ-
ments are able to satisfy performance, energy efficiency, and cost-effectiveness
requirements by efficiently allocating resources to tasks and applications through
the use of optimization algorithms, adaptive resource management approaches,
and dynamic provisioning.Resource Ranking, Min-Min(S. Rehman et al., 2018),
NSGA-2(Sun et al., 2018), Fuzzy Clustering(Li et al., 2019),and Earthworm
(Kumar & Karri, 2023) etc. are some traditional techniques are provided by
researchers for resource allocation.

1.3.3 Task offloading

In the Fog environment settings, task offloading is a key tactic that allows
computationally demanding or latency-sensitive jobs to be transferred from edge
machines to more powerful nodes on Fogs or servers on cloud (Aazam et al.,
2018; Dzung, Tien, Tuyen, & Lee, 2015). This is an in-depth look into task
offloading and why it matters in Fog environments:

I. Offloading Criteria: A number of criteria, including as the task’s process-
ing demands, the capabilities of the resources at hand, network conditions,
and the criticality of latency, affect the choice to offload a task. jobs with
strict latency requirements, jobs that require centralized processing, or
tasks that require access to cloud-based resources are usually the ones for
which offloading is taken into consideration.

II. Latency Reduction: Task offloading is a critical component for latency-
sensitive applications as it significantly reduces processing latency and
enhances responsiveness. By redistributing duties to resources that are
in adjacent to the data origin or possess greater processing power, fog
environments have the capability to minimize processing delays and deliver
responses to users in real-time.

III. Energy Conservation: On edge machines with restricted resources, shift-
ing workloads to Fog nodes or cloud servers can help save energy. In par-
ticular in mobile and IoT contexts, edge devices can run more efficiently
and extend battery life by offloading tasks that demand considerable pro-
cessing resources or high energy consumption.
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IV. Improved User Experience: By lowering response times, guaranteeing
constant service delivery, and boosting application performance, task of-
floading helps to improve the user experience overall. Fog environments
can provide customers with high-quality services across a range of devices
and network conditions by utilizing the extra processing power and storage
capacity found in Fog nodes or the cloud.

V. Dynamic Offloading Strategies:Task offloading techniques can change
depending on a number of dynamic variables, including resource avail-
ability, network congestion, and shifting workload patterns. Dynamic
offloading algorithms are designed to continuously evaluate the state of
system and create actual-time adjustments to offloading decisions in order
to maximize energy efficiency, resource usage, and performance.

In Summary, in Fog computing environments, task offloading is an essential
optimization strategy that facilitates effective resource usage, reduced latency,
energy conservation, and improved user experiences. Fog environments can
successfully exploit distributed resources to convince the request of a variety of
applications and users by selectively offloading activities based on compute re-
quirements, network conditions, and application priorities. Ant-colony(Hussein
& Mousa, 2020), En-LoB(K. Kaur, Garg, Kaddoum, Gagnon, & Jayakody, 2019)
etc. are traditional task offloading techniques are provided by authors.

1.3.4 Application management

In order to ensure that applications deployed across distributed edge devices and
Fog nodes operate smoothly and perform at their best, application management
(T. Wang et al., 2019; Mahmud, Srirama, Ramamohanarao, & Buyya, 2019; Das
& Inuwa, 2023) is a crucial component of Fog computing environments. An
extensive examination of application management and its essential elements is
provided below:

I. Automation of Deployment: In Fog environments, application man-
agement entails automating the deployment of applications. Applications
must be packaged, dependencies must be set up, and they must be smoothly
deployed among edge devices and Fog nodes. Time-to-market for new ser-
vices and updates is accelerated, human error reduction is achieved, and
deployment procedures are streamlined through automation.

II. Monitoring and Health Management:Application management strate-
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gies are employed to consistently monitor the health and performance
parameters of applications. Monitoring tools collect data on response
times, error rates, resource utilization, and other critical metrics with the
purpose of assessing the functionality of an application and identifying
any anomalies or snags in performance. Administrators may guarantee
dependable service delivery, identify problems early, and troubleshoot
difficulties effectively by proactively monitoring applications.

III. Dynamic Scaling: Workloads in Fog environments may vary as a result
of shifting user demand, external factors, or application needs. Resource
scaling for application management is done dynamically to account for
workload variances. In order to achieve performance goals while maxi-
mizing resource utilization and cost-efficiency, scaling approaches include
vertical scaling, which involves raising the resources allotted to an applica-
tion, and horizontal scaling, which involves adding or removing instances
of an application.

IV. Fault Tolerance and Resilience: Application management involves the
implementation of fault tolerance and resilience techniques to guarantee
continuous operation in the case of faults or disruptions. Fog applications
are highly available and reliable because of techniques like replication, re-
dundancy, and fail over procedures that assist lessen the effects of hardware
failures, network outages, or software faults.

FOCAN(Naranjo et al., 2019), DVFS(Toor et al., 2019), etc. are some tradi-
tional techniques are used by researchers in their work. Fog computing envi-
ronments may efficiently install, scale, monitor, and optimize applications to
satisfy performance, reliability, and security needs by implementing compre-
hensive application management methods. By using application management
strategies, administrators can keep Fog applications healthy and productive,
guaranteeing smooth operation and providing users with high-quality services
across distributed edge settings.

Concerning fog computing resource scheduling, this work addresses the subject.
The purpose of this learning is to determine how effectively Fog computing
allocates resources such as Central Processors, memory, and repository in order
to achieve quality-of-service (QoS) metrics including response-time,makespan,
and cost.
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1.4 Resource Scheduling in Fog Environment

Resource scheduling in the Fog environments as depicted in Figure 1.3 is a chal-
lenging undertaking that necessitates innovative approaches to direct the distinct
challenges present by dispersed computing at the system edge.Fog computing,
in disparity to traditional cloud-centric paradigms, functions in a dynamic envi-
ronment where a variety of devices with a range of capabilities interact in real
time, requiring flexible resource management(Alizadeh et al., 2020; Alsaidy et
al., 2022; Luo et al., 2019; Ogundoyin & Kamil, 2021) techniques. The focus
on edge intelligence and autonomy in resource scheduling in Fog situations is
one noteworthy feature. As Internet of Things (IoT) devices and sensor networks
proliferate, Fog nodes frequently possess the ability to make decisions in order
to evaluate local conditions and dynamically distribute resources accordingly.
In addition to lowering need on central orchestrators, this decentralized strategy
improves responsiveness and resilience to network outages.
Furthermore, data management and processing considerations are closely re-
lated to resource scheduling in Fog situations. The quantity of data created at
the edge is lengthen exponentially, so effective data placement and processing
solutions are critical. Resource schedulers have to use judgment when decid-
ing whether to process data locally on edge machines, in adjacent Fog-nodes,
or in the cloud layer in order to maximize bandwidth usage, data privacy, and
latency while upholding application-specific specifications. Moreover, edge en-
vironments are dynamic, which means that algorithms for scheduling must be
adjustable sufficient to modify to changes in network conditions, tasks, and de-
vice availability. These algorithms use machine learning, predictive analytics,
and real-time telemetry data to proactively improve resource use, reduce perfor-
mance bottlenecks, and forecast demand surges.
Resource scheduling(Mohammadi, Bahrani-Pour, Ebrahimi-Mood, & Farshi,
2024; C. Yin et al., 2024) in Fog environments frequently takes security, pri-
vacy, and regulatory compliance into account in addition to performance goals.
The protection of sensitive data handled at the edge from tampering or illegal
access makes it necessary to incorporate access control measures, encryption,
and compliance checks into scheduling decisions.

Efficient distribution of compute, storage, and networking resources among
dispersed Fog nodes is a crucial task in resource scheduling for computing envi-
ronments. We aim to optimize resource utilization and reduce downtime while
simultaneously satisfying Quality-of-Service (QoS) requirements for various ap-
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Figure 1.3: Resource Scheduling in Fog Environment

plications and utilities with this allocation.
Task offloading is a decision-making process that is fundamental to resource
scheduling. Fog nodes must decide whether to handle a task in the cloud, of-
fload it to a nearby Fog node, or execute it locally on edge devices. Numerous
factors, including as task characteristics, resource availability(N. Kaur et al.,
2024; Premalatha & Prakasam, 2024), network circumstances, and the unique
QoS requirements of individual tasks, all have an impact on these selections.
After jobs are transferred to Fog nodes, load balancing strategies are employed
to disperse the workload among the available resources in an equitable manner.
Load balancing algorithms dynamically balance the load and maintain accept-
able performance levels for all applications and services by considering node
capacity, workload characteristics, and QoS requirements.
Furthermore, Fog nodes dynamically distribute network, storage, and processing
resources in response to shifting workload requirements and resource availabil-
ity. Even in extremely dynamic contexts, dynamic resource allotment helps to
satisfy quality-of-service (QoS)(K. D. Singh & Singh, 2024; Lv, Chen, Cheng,
Qiu, & Li, 2024) objectives by optimizing resource utilization and reallocat-
ing resources when workload conditions change. It does this by ensuring that
resources are allocated on-demand. Utilizing QoS-aware scheduling methods,
resource scheduling also entails allocating computer resources optimally to var-
ious tasks according to their unique QoS requirements and priorities. These
algorithms minimize reaction times and guarantee that vital jobs are processed
first by taking into consideration variables including task deadlines, resource
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availability, communication delays, and overall QoS objectives.
Furthermore, proactive resource allocation adjustments are made by using pre-
dictive resource management approaches, which foresee future workload de-
mands. Fog environments are able to anticipate resource requirements and
optimize resource scheduling decisions in advance to prevent performance de-
terioration and maintain constant service quality. This is achieved by utilizing
machine learning models, predictive analytics, and historical workload data.
All things considered, resource scheduling in Fog environments is a difficult
but necessary procedure that is critical to maximizing resource usage, reducing
latency, and assuring that the quality-of-service (QoS) requirements of diverse
applications and services are satisfied. Due to the efficacy of their scheduling
of resources algorithms, Fog computing environments are capable of delivering
dependable, responsive, and high-performing services to their users.

1.5 Fog Load Balancer

Due to inherent obstacles, cloud technologies have reached a level of maturity
where they can give rise to the next generation of networks. The complexity
of LAN and WAN technologies, particularly about payload and maintenance,
was a driving force behind the conception of the cloud. It goes without saying
that greater creativity was needed with traditional LAN and WAN technologies
because of the proliferation of internet-related services(Baburao, Pavankumar,
& Prabhu, 2023; Mutlag et al., 2023). The cloud technologies then made up
for these improvisations. Initially, these cloud technologies assisted companies
in lessening the burden associated with total cost of ownership (TCO). By di-
viding and specializing different types of company services, it has enhanced
the services. Because of the rapid expansion of internet-related economics, en-
terprises are no longer needed to keep their own hardware inventory or worry
about scaling up. These days, businesses may rent storage, bandwidth, memory,
and networks, so they don’t have to worry as much about growing when their
company expands more quickly than the technology they purchased. As time
went on, a huge number of cloud service providers appeared, and the industry
shifted to focus more on services and subscriptions. Businesses could now pro-
vide a range of plans based on the payload and quality of service characteristics
that were agreed upon with the clients. It has been felt recently that there are
problems with the capabilities of cloud technology. This has to do with respon-
siveness and last-mile incorporation with cloud-services. It is also necessary
for the sensors and last-stretch devices to have a continuous connection to the
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cloud servers around-the-clock. Managing resources at the machine of cloud
architecture is crucial for retaining cloud connectivity, particularly for remote
weather stations located on mountains or wireless sensor networks positioned in
the depths of the ocean. Synchronization with Fog devices and cloud servers
is an imperative requirement for sensors or machines that cause time-sensitive
information (Mattia, Pietrabissa, & Beraldi, 2023; M. Kaur & Aron, 2021).
Data aggregators may be required in the final mile, connecting cloud servers and
devices, as a result of their capacity to gather less sensitive data.Thus, the data
payload needs to be handled based on the circumstances. Additionally, some
sensors have separate timeframes and generate data asynchronously. Certain
sensors contain biophysical data that is never acceptable to be tainted. Sensors
continuously and intermittently produce data.

Figure 1.4: Load Balancer

The deployment position and application are the only discernible differences
between a cloud device and a virtualized Fog device. A device is categorized
as a Fog device if it is used to customize last-mile services or to sense data;
otherwise, it is categorized as a cloud device(Talaat, Saraya, Saleh, Ali, & Ali,
2020; A. U. Rehman et al., 2020) as illustrated in Figure 1.4. The materials it
is composed of could also be considered when classifying anything. The gadget
may alternatively be classified as a Fog device if it has minimal computational
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power and sensor capabilities. Algorithms that control the power and payload
budgets as well as self-serving interfaces can be used to govern these Fog de-
vices. These algorithms could be controlled from another device, or they might
be stored on the virtual Fog device.
Power budgets in datacenters are calculated to either meet green requirements
or lower operating costs. The job load directly affects the power budgets, and
the limit of each is dynamically determined by the services’ current demand.
Above all, it needs to follow the guidelines for green technology. At the net-
work’s boundaries, the same ideas and guidelines are in effect. This serves as
the fundamental basis for the IoT, a technological advancement that sanction the
remote control of millions of processes. Remote access to these can be achieved
by ensuring the presence of the necessary network infrastructure, which includes
periphery, access, core, and processing center networking framework. Industry
response indicates that software defined modules, mesh works, and smart algo-
rithms will now drive scalability in terms of compute and resource management,
instead of hardware expenditure. Thus, soft components will be used to assist in
tasks like load balancing. Edge computing is required to deliver services without
any transmission jitter, buffering, or latency. Evolution in innovation have led
to the development of software-defined devices equipped with algorithms that
generate a feedback loop. These devices aim to solve issues related to content
retrieval time. Computation and data storage are distributed among peripheral
machines and the cloud in the Fog computing scenario; therefore, load balancing
is evaluative for maximizing resource fulfillment and ensuring efficient task ac-
complishment. The employment of virtual machine generators by load balancers
is one of the creative tactics used in this situation.
In accordance with the workload and resource availability at any given time,
these virtual machine generators are responsible for managing and dynamically
providing virtual machines throughout the Fog network. The load balancer eval-
uates the status of the network, including the processing capability and proximity
of available edge devices and cloud servers, when a new task or request reaches
the Fog environment.
The load balancer makes an informed decision about where to instantiate addi-
tional virtual machines to manage the incoming workload based on this informa-
tion. By placing virtual machine assembly on edge devices, which are in closer
proximity to the data source or end consumers, it is possible to decrease latency
and bandwidth consumption(Mutlag et al., 2023; Talaat, Ali, Saraya, & Saleh,
2022; Kashyap & Kumar, 2022). Alternatively, during periods of high demand
or when there are limited resources available at the edge, the load balancer may
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opt to route tasks to the cloud for faster processing.
This approach enhances the overall scalability and dependability of Fog com-
puting environments, optimizes resource use, and enhances responsiveness by
dynamically generating and controlling virtual machines based on fluctuating
workload requirements. Moreover, it enables the Fog network to allocate re-
sources in a flexible and adaptable manner, allowing it to promptly respond to
dynamic workloads and emerging application needs.

1.6 Problem Statement

As per the literature review and gaps analysis done, there is a requirement of
proposing an optimized resource scheduling algorithm for efficient resource
management for applications in Fog environment, which should improve QoS.
In most of the existing technique resource wastage occur due to the inability
of dynamically removing and adding machine. It triggers the demand for an
efficient optimization technique that dynamically removing idle machines, and
adding machines whenever load on the system occurs. A mechanism is required
that will avoid resource wastage and achieve QoS parameters such as through-
put,Cost, makespan, and response time.

The proposed research work will formulate an efficient resource-scheduling
scheme that can optimize QoS parameters such as throughput,Cost, makespan,
and response time etc.

1.7 Gaps Analysis

After reviewing the literature,some gaps are identified in traditional techniques
as follows:

1. Communication Overhead Isn’t Given Enough Attention: In cloud-
Fog systems, efficient task scheduling must account for communication
overhead both between Fog nodes, and cloud server also between Fog
nodes. However, some publications may not adequately address this is-
sue or may employ overly simplistic assumptions that fail to take into
account actual communication restrictions(Yadav, Tripathi, & Sharma,
2022),(Jamil et al., 2020),(Vijayalakshmi, Vasudevan, Kadry, & Laksh-
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mana Kumar, 2020).

2. Inadequate resource management: Effective task scheduling should
also include efficient resource management strategies like load balanc-
ing, fault tolerance, and scalability. In (Abu-Amssimir & Al-Haj, 2023),
(Vijayalakshmi et al., 2020),(Abdel-Basset, Mohamed, Chakrabortty, &
Ryan, 2021),(Abd Elaziz et al., 2021),(Tadakamalla & Menascé, 2021)
works, resource management strategies are not fully utilized as per their
scope. so a need of efficient load balancing, fault tolerant strategies is felt
for effective resource management.

3. Cost and energy efficiency trade-offs:In job scheduling, finding the op-
timal equality allying cost and energy efficacy is challenging. so finding
a stabilize allying cost and energy efficacy can be another optimization
during task scheduling (Kumar & Karri, 2023), (Alzaqebah, Al-Sayyed,
& Masadeh, 2019), (Ghobaei-Arani & Shahidinejad, 2022).

4. Lack of variety in the workload:A range of workloads and application
types should be employed to assess the effectiveness and adaptability of
task scheduling algorithms .However, some studies could focus on spe-
cific workload characteristics or fail to consider a range of application
needs(Kumar & Karri, 2023),(Abu-Amssimir & Al-Haj, 2023),(Alzaqebah
et al., 2019),(Dubey, Kumar, & Sharma, 2018).

1.8 Objective of Research

The objective of the current research problem is to design and implement a re-
source scheduling algorithm for a Fog environment to improve QoS parameters.

Sub-Objectives:

1. To implement peer competing scheduling and optimization techniques for
Fog environment for enhancing QoS.

2. Design and implement novel and effective resource scheduling optimiza-
tion techniques.

3. Verify and validate algorithms with peer competing techniques using some
simulator tools like iFogSim, etc.
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1.9 Contributions

1. A novel optimization algoriths are proposed to implement resource man-
agement efficiently in the Fog-Cloud environment.

2. Improved exploration and exploitation result in the best possible resource
distribution.

3. Proposed and designed an autonomous “Load-balancer based task Alloca-
tion Frame-work” as per the three-layer architecture of Fog environment.

4. Validated proposed work with many experiments on performance metrics
like cost, makespan, response-time, and throughput.

1.10 Thesis Layout

This thesis thoroughly examines the utilization of Fog network management
algorithms for social causes, the plan of load balancing for Fog networks, and
resource scheduling at the network’s periphery. The Five chapters that make up
the thesis are as follows:

• Chapter1:Introduction: The problem concept and research idea are cov-
ered in this chapter. The ideas, terminology, definitions, concepts,taxonomy,
and procedures necessary to comprehend the specifics of this study are
also covered in this chapter. This chapter also includes a discussion of
the evolution of the many communication models needed to operate such
arrangements.

• Chapter2:Literature Review: In this chapter description on a compre-
hensive summary of the research and related endeavors concerning re-
source scheduling in a fog environment is done. Here are Five segment
in this division. The first segment inspects the traditional architecture
and techniques related to Fog and cloud job scheduling. The chapter’s
second portion is devoted to strategies to handle latency in IoT-Fog-Cloud
environment. The Third section describes the Virtual machine generation
process in Fog environment. The forth chapter is discussion about smart
cities applications.The previous chapter provides an explanation of how
load balancing techniques can help with resource-management in a fog
environment.

22



• Chapter3:Framework and Methodology IGWOA for resource schedul-
ing:The elements pertaining to the Fog environment design are the main
emphasis of this chapter. The chapter discusses the traditional Grey Wolf
Optimization, Heterogeneous earliest finish time aspects. The chapter also
describes proposed framework and methodology of IGWOA with Experi-
mental evaluation and validation of technique.

• Chapter4:Framework and Methodology WEOA for resource schedul-
ing:This chapter primarily emphasizes the elements associated with the
design of the IoT-Fog-Cloud load balancer.The chapter covers how load
balancer techniques is helpful for managing overload in the Fog envi-
ronment. The segment talk about the traditional Whale-Optimization-
algorithm,Earthworm optimization concepts.
proposed structure and methodology of WEOA, along with the experimen-
tal assessment and technique validation, are also described in this chapter.

• Chapter5:Conclusion and Future Direction:This division gives an over-
-view and a conclusion for each step taken to accomplish the above spec-
ified goals. This chapter also emphasizes the groundbreaking advance-
ments in the field of Fog environment.chapter also includes a segment that
discusses societal consequences of the present investigation. final segment
of chapter discusses methods and approaches that can be used to broaden
the scope of this research and make valuable contributions to society.
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Chapter 2

Literature Review

This segment outlines the investigation and related efforts pertaining to resource
scheduling within the Fog environment. This segment comprises an examination
and evaluation of related literature.

2.1 Job Scheduling in Fog System

An optimization approach based on Bees Life is proposed by Salim Bitam et
al.(Bitam et al., 2018) to schedule jobs in the Fog environment. A exchange
between allotted memory and Central processing unit execution time has been
accomplished by researchers. Part of the Fog node computing methodology is
the establishment of an administrative node. Five, ten, fifteen, and twenty Fog
nodes make up each of the four types of Fog infrastructure that have been set
up for simulation. Researchers have thought that one job can have several tasks,
assuming that Jtaski= Jtask1, Jtask2, Jtask3....Jtaskn, for the optimization
of the Bees Life method. Then Jtask5

i1 tells, Fog node 5 implements task i1.
C++ simulation was used to determine the Central processing unit implemen-
tation time and memory allocation parameters, and the cost function was then
calculated using the results. Simulation findings indicate that BLA performs
better than GA and PSO. Researchers have carried out a suggested method for
static work scheduling. In the future, researchers intend to optimize bandwidth
parameters in addition to putting the suggested strategy for movable Fog nodes
into practice.
In their study, Shudong et al. (S. Wang, Zhao, & Pang, 2020) introduced a task
scheduling perspective for a Fog environment that utilized an better firework
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algorithm. By enhancing the firework algorithm, the researcher has presented a
novel method to safeguard optimal solutions for task scheduling issues (I-FA).
An improvised method (I-FASC) is provided for task scheduling. This tech-
nique divides jobs into three categories: bandwidth needed, computation-based
storage requirements, and storage requirements. Task clustering and resource
integration have been carried out based on task classification, and task allocation
has been carried out in accordance with resource integration. A task controller
is a mechanism that is set up in a system to assign tasks to resources based on
categories. Researchers ran a simulation on the Alibaba cloud server to test load
balancing and job processing time parameters. Algorithms rank-ACO, FSFC,
and DFGA were compared in order to verify the outcome. Collate to the other
techniques, the enhanced Firework algorithmic has demonstrated a faster pro-
cessing time. The parameter for energy consumption has not been taken into
consideration for evaluation.
Bushra et al.(Jamil et al., 2020) gives a job arrangement method for adjusting
the Fog system’s performance. In order to demonstrate how well Fog systems
perform, researchers have worked with healthcare applications and implemented
the SJF (shortest job first) scheduler technique. This class, which keeps track
of completed and pending jobs in a queue, is derived from Cloudlet Scheduler.
The foundation of the SJF scheduler technique is the ascending order of job
sorting based on MIPS. Researchers have focused on decreasing application de-
lays, optimizing the use of resources (CPU, RAM, and energy), and optimizing
network utilization. They have also produced an algorithm for job scheduling.
Researchers used the iFogSim toolbox for simulation. Comparing the simulation
results to the FCFS technique, it is shown that delays are reduced by 32% and
network utilization is reduced by 16%. Researchers have calculated the average
CPU time used by each tuple to determine loop delay, and their findings demon-
strate that the SJF technique improves delay by assigning greater priority to the
most crucial loop. The idea of distributing loads to intermediary nodes has been
applied to enhance Fog system network usage. The author of this study does
not demonstrate an improvement in energy parameters when compared using the
FCFS technique. In order to plan the capacity of devices with limited resources,
researchers intend to apply analytical models, hyper- and meta-heuristics, and
other strategies in the future.
A perspective for multi-objective task arrangement matters combining hybrid
antlion-optimization and elite-based differential assessment was presented by
Laith Abualigah et al.(Abualigah & Diabat, 2021). Scholars have employed
authentic and artificial datasets to address issues related to job scheduling that
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arise in the cloud environments. A multi-objective maximization perspective
has been suggested to improve resource consumption while reducing reaction
time, makespan, and imbalance (system load balance). The proposed MALO
approach was collated to the particle swarm optimization,Genetic algorithm,
and antlion-optimization-algorithm etc. so that assess and confirm the outcome,
the Cloud Sim toolkit was utilized for this purpose. Scholars have established
that the MALO method exhibits superior performance in phrase of parameter
response-time, makespan, resource utilization, and degree-of-imbalance when
collated to aforementioned algorithms. Furthermore, a statistical t-test has been
conducted to verify the outcomes of the suggested methodology. Based on a
comparison with the given algorithms, no significant improvement in makespan
value was observed for a reduced number of tasks. Researchers intend to compare
temporal complexity in the future by comparing it to the newest optimization
techniques. They also intend to compare memory usage, peak demands, and
overloads.
A method for thinking about the job scheduling issue in a cloud setting was
put forth by Abdullah Alzaqebah et al.(Alzaqebah et al., 2019). A modified
Grey Wolf Optimization (MGWO) method has been developed by researchers to
resolve the work scheduling issue. so that the scheduler to effectively plan tasks
for virtual machines (VMs), a resource information server (RIS) is essential.
It gathers the most recent data on the resources that are available at VMs and
provides it to the scheduler. Researchers have worked on the CloudSim toolkit’s
makespan, cost, and imbalance degree characteristics. The suggested algorithm
is evaluated by comparing it to the GWO and Whale optimization algorithms.
However, the results on one virtual machine show no improvement.
The subject of job/task scheduling in a cloud context has been inscribe by Seema
A. Alsaidy et al.(Alsaidy et al., 2022). Using the heuristic algorithms LJFP and
MCT, the authors have created a technique for randomly filling the search space in
PSO. The hybrid algorithms MCT-PSO (Minimum-Completion-time-PSO) and
LJFP-PSO (Longest-job-fastest-Processor-PSO) were proposed by researchers.
TET(total-execution-time), makespan, TEC(total-energy-consumption) were the
parameters used in a MATLAB algorithm evaluation. Two scenarios were com-
pared with the aim of verify the results: the first involved changing the number
of tasks while maintaining constant values for the variables makespan, TET, and
degree of imbalance; the second scenario involved maintaining constant values
for the parameters makespan, TET, and degree of imbalance while changing
the number of VM. While MCT-PSO performs better than the other algorithms
discussed, LJFP-PSO was unable to demonstrate performance in each situation.
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In the future, researchers intend to load the search space using possibly another
meta-heuristic algorithm in addition to any other heuristic methods.
An approach called moth flame optimization of job scheduling was presented by
Mostafa Ghobaei-Arani et al.(Ghobaei-Arani, Souri, Safara, & Norouzi, 2020)
for a cyberspace physical system in a Fog computing environment. Swarm
tactics are also the foundation of the moth-Flame optimization methodology.
Researchers have employed the idea of keeping a queue of tasks as they come
in from devices, and then using the moth flame optimization algorithm to opti-
mally distribute each task to Fog nodes. In order to demonstrate QoS in a Fog
environment, researchers have taken task execution time and transfer time into
consideration. To assess the outcome, NSGA-2, PSO, and BLA comparisons
were made using the iFogSim toolkit simulation. The authors’ comparison re-
sults demonstrate improvements over PSO, NSGA-2, and BLA in connection
of job execution time,transfer time, and makespan. An inspection of a smart
surveillance case study was conducted in order to validate the outcome. The
outcome evaluation lacked certain important elements, such as cost, delay, and
latency. In the future, researchers intend to integrate load balancing techniques
with Moth Flame and to arrange tasks in the Fog environment using Grey-Wolf,
and Whale-optimization techniques.
Dadmehr Rahbari et al. (Rahbari & Nickray, 2019)have demonstrated how to use
scheduling algorithms based on the greedy knapsack problem to improve energy
usage, execution cost, and sensor lifetime. Each object in a knapsack problem
needs to have a weight and a profit. Thus, CPU usage and bandwidth have been
regarded as two weights of the knapsack issue in the suggested approach. Simi-
larly, the total amount of CPU time and bandwidth that the application module
uses has been determined to be profit. In order to assess the outcome, simulation
was carried out using the iFogSim toolkit in the DCNS and VRGame appli-
cations on energy and cost parameters. FCFS, delay priority, and concurrent
algorithm comparisons were made. The suggested method performs better on
parameters of cost energy and application loop latency than FCFS, delay priority,
and concurrent algorithm. Future work on fault-tolerant and security in other
applications is planned by researchers.
A unique method of work scheduling was put forth by R. Vijayalakshmi et
al. (Vijayalakshmi et al., 2020) to maximize makespan and resource usage in
Fog systems. In order to allocate resources to jobs efficiently, researchers have
worked on the suffrage value (second minimum completion time-first minimum
completion time) of each activity. The system receives a task execution time
matrix as input for 30 tasks and 4 Fog nodes. Researchers utilize Java to compute
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the results. In order to assess the outcome, the execution times of all four Fog
nodes have been calculated, and the resource consumption and job assignment
before and after scenarios have been compared and contrasted. work scheduling
methods perform better than the conventional work scheduling scenario, accord-
ing to result evaluation. Results for a very tiny platform with 30 tasks and 4
Fog nodes have been obtained by researchers. Researchers intend to work on
grid and cloud systems in the future, as well as any application such as traffic
congestion, healthcare, sanitation, and municipal services.
A hybrid technique combining the firefly and crow algorithms has been described
by Senthil Kumar Avinashi Malleswaran et al. (Malleswaran & Kasireddi, 2019)
for effective work scheduling in cloud environments. By employing the crow al-
gorithm, researchers have improved the global optimization of the firefly method.
In the suggested architecture, entities such as task handler, resource handler, and
resource manager are useful for effectively distributing resources to tasks. The
resource manager maintained track of all cloud-based resources that were ac-
cessible, the task handler handled tasks received from devices, and the resource
handler handled resources to allocate resources to tasks effectively. Using the
CloudSim toolkit, 30 virtual machines were set up, and the number of cloudlets
was adjusted from 100 to 500. Researchers have compared the metrics of re-
sponse time, completion time, and makespan between FF and CSA. The authors
have demonstrated improvements over the previously mentioned methodologies
in parameter completion time, makespan, and reaction time. However, the time
it took to complete the tasks was nearly identical to the strategies described when
there were 500 tasks.
in a Fog-cloud environment for IoT apps, Masoumeh Etemadi et al. (Etemadi,
Ghobaei-Arani, & Shahidinejad, 2020) recommended a resource purveying
method establish on an autonomous calculating model. A time sequence
forecast model and a Bayesian instruction approach have been offered by re-
searchers as a solution for the resource provisioning loop control technique
known as MAPE-k (Monitor, Analyze, Plan, and Evaluate-knowledge based).
Researchers employed the following methodology: the resource provisioning
agent uses the MAPE-k loop control technique, the Fog community is encom-
pass Fog nodes,Fog controllers, and admission control helps to pass requests
on Fog or cloud based on deadline parameter. In order to appraise the results
with respect to cost, CPU utilization, average number of Fog nodes allocated,
latency violation, and authentic, smooth, and burst workloads, real and synthetic
data sets were simulated using the iFogSim toolkit. The suggested method has
been compared with DBN-GA (Deep Belief Network-Genetic Algorithm), QM
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(Queuing model), FRAS, and E2DF for validate the outcome. When compar-
ing the suggested method to the previously indicated procedures, a favorable
comparison result was seen. The demonstrate method might have a significant
temporal complexity. In the future, researchers intend to compare the suggested
method of offloading the task with the methodology of offloading the task and to
update the MAPE model’s planning and analysis phase using a neural network
prediction model.
Mohamed et al. (Abdel-Basset et al., 2021) enhanced Elitism-based Genetic Al-
gorithm (IEGA), developed by researchers, is a method for resolving issues with
scheduling of job/task in Fog environment. Algorithm includes two iterative
improvement rounds. To provide more optimal solutions, the mutation rate and
crossover are improved in the initial stage. To keep the technique from acquire
persist in specific optima, more mutations are added to the optimal solutions that
already exist in the second stage.
Mohamed Abd et al. (Abd Elaziz et al., 2021) Artificial Ecosystem-based-
Optimization with Operator Salp Swarm Algorithm (AEOSSA), a revolutionary
technology, has been introduced. To improve the explore for the best optimal
solution within the search spaces, the algorithm integrates Operator Salp-Swarm-
Algorithm(SSA) and Artificial Ecosystem Optimization (AEO). Utilizing MAT-
LAB, experimental assessments were conducted with an emphasis on metrics of
quality-of-service (QoS) including makespan and throughput.
Uma Tadakamalla et al. (Tadakamalla & Menascé, 2021)It was thoroughly ex-
plored the idea of offloading processing and transmission in IoT machines and
the Fog-Cloud infrastructure. The analysis of response times and resource use
when actions are carried out either on-premises or in the cloud was the main
topic of discussion. A multi-class closed-form systematic line-up network model
dubbed FogQN was developed to address this. An autonomic controller can use
this model as a starting point to dynamically switch between analyzing Fog and
cloud information.
Fatma M. Talaat et al. (Talaat, 2022) For allocation of resource in IoT devices,
the authors devised a method known as EPRAM (Effective-Prediction-and-
Resource-Allocation-Methodology). Allocation of resources,Data pre-processing,
and an efficient prediction module were the three key areas of study for EPRAM.
The authors specifically suggested a plan for the healthcare system that intended
to foretell instances of heart attacks. To achieve this, a Probabilistic Neural
Network (PNN) for heart attack detection was trained using a training dataset.
The suggested technique also included a deep reinforcement learning algorithm
for allocation of resources.
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Table 2.1: Comparison Table of significant literature techniques for Job Schedul-
ing

Author
name
and Ref-
erence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Salim
Bitam
(Bitam et
al., 2018)

Meta
Heuristic

Bees Life C++
• CPU exe-

cution time
• Allocated

memory
• Cost

Cost re-
duced.

Static job
scheduling
performed.

Shudong
Wang
(S. Wang
et al.,
2020)

Meta
Heuristic

Extended
Firework

Alibaba
cloud
server

• Processing
time of
tasks

• Load bal-
ancing

Cluster-
based
classifi-
cation of
tasks and
resources.

Cost and
Energy
consump-
tion param-
eters are
missing.

Bushra
Jamil
(Jamil et
al., 2020)

Heuristic Shortest
Job first

iFogSim
• Delay
• Network

usage

Reduced
Delay.

Mature
Heuristic
technique
is used for
scheduling.

Laith
Abuali-
gah
(Abualigah
& Di-
abat,
2021)

Meta
Heuristic

Modified
Antlion

CloudSim
• Response

time
• Makespan
• Degree of

imbalance.

Effective
Response
Time.

Time Com-
plexity is
high.
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Table 2.1: Comparison Table of significant literature techniques for Job Schedul-
ing

Author
name
and Ref-
erence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Seema
A. Al-
saidy
(Alsaidy
et al.,
2022)

Hybrid Longest
job fastest
Processor-
PSO,
Minimum
Com-
pletion
time-PSO.

MATLAB
• Total exe-

cution time
• Makespan
• Total

energy
consump-
tion

• Degree of
imbalance

Improvement
in
makespan.

Longest
job fastest
Processor-
PSO unable
to show
perfor-
mance.

Mostafa
Ghobaei-
Arani
(Ghobaei-
Arani,
Souri,
Safara, &
Norouzi,
2020)

Meta
Heuristic

Moth
flame op-
timization

iFogSim
• Task execu-

tion time
• Makespan

An efficient
algorithm
for reduc-
ing task
execution
time.

Load Bal-
ancing is
missing.

Dadmehr
(Rahbari
& Nick-
ray,
2019)

Scheduling
Algorithm

Greedy
knapsack

iFogSim
• Delay
• Cost
• Energy

Cost reduc-
tion.

Fault-
tolerant
needs to be
considered.
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Table 2.1: Comparison Table of significant literature techniques for Job Schedul-
ing

Author
name
and Ref-
erence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

R. Vijay-
alakshmi
(Vijayalakshmi
et al.,
2020)

Scheduling
Algorithm

suffrage
value

Java
• Makespan
• Resource

utilization

Resource
utilization
and task
assignment
are con-
sidered
effective.

Worked on
a very small
platform.

Senthil
Kumar
Avinashi
Malleswaran
(Malleswaran
&
Kasireddi,
2019)

Hybrid Firefly and
crow algo-
rithm

CloudSim
• Response

time
• Makespan
• completion

time

Efficiently
handles
resource
scheduling.

Makespan
has not im-
proved as
compared.

Masoumeh
Etemadi
(Etemadi
et al.,
2020)

Resource
provi-
sioning
technique

Time
series
prediction
model and
Bayesian-
learning
technique.

iFogSim
• Cost
• Delay

Resource
provision-
ing is done
with the
MAPE-k
control
loop con-
structively.

Time com-
plexity is
high.
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Table 2.1: Comparison Table of significant literature techniques for Job Schedul-
ing

Author
name
and Ref-
erence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Mohamed
Abdel-
Basset
(Abdel-
Basset et
al., 2021)

Meta
Heuristic.

Improved
elitism-
based
genetic
algorithm

Java
• Makespan
• Flow time
• Energy

consump-
tion

Helps to
deal with
the problem
of misplac-
ing good
solutions.

The tech-
nique is not
performed
for depen-
dent task
scheduling.
Require-
ment of
more
makespan
improve-
ment.

Mohamed
Abd
Elaziz
(Abd Elaziz
et al.,
2021)

Meta
Heuristic.

Artificial
ecosystem-
based op-
timization
with oper-
ator salp
swarm
algorithm

MATLAB
R2018b

• Makespan
•

Throughput

Successfully
outper-
forms
AEO, PSO,
HHA, SSA,
and FA.

Techniques
may be
tested on
more ob-
jectives like
cost, and
energy con-
sumption.
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Table 2.1: Comparison Table of significant literature techniques for Job Schedul-
ing

Author
name
and Ref-
erence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Uma
Tadaka-
malla
(Tadakamalla
&
Menascé,
2021)

NA Multi-
class
closed-
form
systematic
line-up
network
model
FogQN

JMT tool
• Response

time
• Cost uti-

lization.

This model
is utilized
by an au-
tonomic
controller
to change
the pro-
cessing
between
Fog and
cloud dy-
namically.

Still, im-
provement
is required
in this
work on
designated
parameters.

F. M.
Talaat
(Talaat,
2022)

Meta
Heuristic

EPRAM iFogSim
• Data pre-

processing
• Resource

allocation
• effective

prediction

Successfully
outperform
other tra-
ditional
algorithms
for QoS
parameters.

Distributed
behavior of
technique
is required
for more
efficiency.

2.2 Delay Sensitive applications

In order to decrease latency, Raafat O. et al. (Aburukba et al., 2020) give the idea
for scheduling the requests made by IoT devices in Fog environment. A genetic
algorithmic has been used by researchers to work on the suggested strategy. First,
Lingo software was used to simulate the results for the occupant area and max-
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imum number of repetitions for GA parameters in relation to the total runtime
latency. The demands that were made and the resources that were available vary
in these comparisons. Next, Branch and Bounding of Lingo technique is used
to test the genetic algorithmic efficacy. When comparing the contrast between
problem size and latency, the Lingo algorithm and GA have produced identical
results. In the end, a round robin was used for the parameters of latency time
and completion time, and a comparison and contrast between GA and priority
tight queuing was waited for for fair queuing. The latency has improved with
the suggested method by 21.9% to 46.6%. Similarly, the suggested method has
seen a 31% improvement in request deadlines. Later, researchers expect to use
a different heuristic algorithm to work on multi-objective functions.
The method of scheduling of resource in a Fog environment environment using
NSGA-2 (a non-dominated-sorting-based genetic-algorithm) has been described
by Yan Sun et al. (Sun et al., 2018). Fog node clusters have been employed for
this objective. Migration of tasks can be carried out both within and between
Fog nodes within a cluster. Researchers have proposed NSGA-2 to optimize
QoS in Fog nodes within the same cluster. The entities responsible for assigning
Fog nodes for task computation and monitoring resources for allocation reasons
were the Fog resource supplier and manager nodes. Researchers have designed
the fitness function, generated a non-dominant set, improvised crowding dis-
tance computation, and encoded and initialized chromosomes and population
for the NSGA-2 algorithm. A suggested method for MATLAB parameters that
lowers service latency and boosts the stability of full job execution has been put
into practice by researchers. The suggested method (RSS-IN) has demonstrated
superior outcomes when compared to FIRMM and Random on the specified
parameters by altering the quantity of tasks and resources. This was done in
order to verify the outcome. The cost parameter was absent from the suggested
method for demonstrating algorithm optimization.
In the Fog environment, Hina Rafique et al.(Rafique et al., 2019) give out the
effective resource management strategy NBIHA. Scholars have employed the
Modified PSO technique for resource management, as well as the Modified
Cat Swarm optimization and Task Management techniques. The on-demand
methodology has been applied by researchers to task and resource management.
Resources will be assigned to jobs in accordance with demand, and for any
resources that remain, the two best values (bestfitres1 and bestfitres2) must be
determined. Resources will be assigned to jobs if another work requires them
and the demand for those resources fits bestfitres1. If not, bestfitres2 will be
used to verify demand. In order to find a memory pool larger than bestfitres1
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and bestfitres2, MCSO was utilized. The average response time, resource uti-
lization, energy consumption, execution time, and cost were all simulated using
the iFogSim toolbox. The comparison was carried out using the MPSO, SJF,
and FCFS optimization algorithms in order to confirm the outcome. In terms of
execution time, and cost etc. NBIHA implement superior than all algorithmic
listed. The energy usage of the lesser number of Fog devices, such as 5 and
10, did not improve in this way. Researchers intend to apply a reinforcement-
learning method for resource management in the future.
Santhosh Kumar et al. (Kumar & Karri, 2023), In an attempt to enhance
Quality of Service (QoS), the researchers put out a hybrid electric-earthworm-
optimization-algorithm to handle the issue of effectively slate the jobs in a Fog
environment. The method combines the interest of the earthworm and electric-
fish-optimization algorithms, both of which help to beneath system delay and
energy consumption. The suggested method makes use of both active and passive
electrolocation to update positions, increasing the effectiveness of the scheduling
technique.
Yadav et al.(Yadav et al., 2022), To improve the makespan and cost in optimiza-
tion tasks, the authors presented a amend class of the fireworks algorithm. To
boost the firework algorithm’s performance, they used opposition-based learn-
ing and differential assessment methods. Taking into account both phases of
the algorithm ensured that it would not become mired in local optima, thereby
accelerating its convergence.
Abu-Amssimir et al. (Abu-Amssimir & Al-Haj, 2023), For latency-sensitive IoT
applications, the researchers introduced a greedy-edge-placement technique that
focuses on minimizing delay. The suggested method seeks to reduce latency and
increase throughput effectively.The placement stage and the application selec-
tion stage with the greedy delay minimization algorithm are the two phases of
the proposed methodology.
Ogundoyin et al.(Ogundoyin & Kamil, 2023), The authors presented a mixed
optimization technique that coalesce the Firefly technique with PSO. The study’s
main objectives were to address problems with sojourn rate and trust, energy use,
and node capacity in a particular system. The researchers used a method known
as liner-sum-weight to handle the combination of distinct objective functions.
Hussain et al. (Hussain et al., 2023),For the purpose of precisely address the
problems of latency and energy-sympathetic automotive applications, the article
described a novel technique for vehicular Fog computing. The focus was on data
offloading from automobile gadgets to base stations and roadside units (RSUs).
To optimize the system, the authors suggested solving a multi-impartial ob-
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stacle problem known as a Swarm-Optimized-Non-dominated-sorting-Genetic-
algorithm (SONG).
Amit Kishor et al. (Kishor & Chakarbarty, 2021) An IoT-Fog-Cloud system’s
latency problem was addressed using the Smart Ant colony optimization (SACO)
technique. In order to achieve the lowest possible latency, the authors carefully
evaluated the distribution and computing of tasks within the Fog environment.
Yaser et al. (Ramzanpoor et al., 2022a) A many-objective cuckoo- search-
optimization approach was given by the authors in order to address the effective
application deployment in the Fog infrastructure. The resolution of problems
with resource usage, bandwidth utilization, increased power consumption, and
subpar Quality of Service (QoS) levels was the main focus of the article.
Mostafa et al. (Ghobaei-Arani & Shahidinejad, 2022) At Fog environment, the
researchers have suggested a framework for autonomous resource management
that makes use towards MAPE (Monitor, Analyse, Plan, Execute) method. uti-
lization about whale-optimization-algorithmic for the effective arrangement of
IoT services for cloud, Fog, and server nodes has also been covered. Throughput
and energy usage are taken into account by the framework as objective functions
for resource allocation in IoT services.
Heena Wadhwa et al. (Wadhwa & Aron, 2022) The IoT-Fog-Cloud system’s re-
source allocation difficulty was discussed in the study. The authors explored the
intricacy of the process and emphasised the challenges that come with resource
allocation in the present cloud environment. The researchers implemented a
zero-hour approach to address this problem, in which higher priority jobs are
given a priority level of zero during resource allocation. The objectives of this
policy were to enhance task performance and optimize allocation of resources.
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Table 2.2: Comparison Table of significant literature techniques for Delay Sen-
sitive applications

Author
name and
Reference

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Raafat O.
Aburukba
(Aburukba
et al.,
2020)

Meta
Heuristic

Genetic Lingo
• Latency
•

Completion
time

Reduced
Latency.

Works on
a single
objective
function.

Yan Sun
(Sun et al.,
2018)

Hybrid Non-
dominated
sorting-
based
genetic
algorithm
(NSGA-2)

MATLAB
• Latency

Improvement
in latency
is seen.

The cost pa-
rameter is
not consid-
ered.

Hina
Rafique
(Rafique et
al., 2019)

Meta
Heuristic

Modified
Cat
Swarm

iFogSim
• Average re-

sponse time
• Energy

consump-
tion

• Execution
time

• Cost

Acceptable
improve-
ment is
seen in
Average
response
time and
energy con-
sumption.

Performance
degrades
for a
smaller
number
of Fog
devices.

38



Table 2.2: Comparison Table of significant literature techniques for Delay Sen-
sitive applications

Author
name and
Reference

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Santhosh
Kumar et
al. (Kumar
& Karri,
2023)

Meta-
heuristic

A hybrid
electric
earth-
worm
opti-
mization
algorithm

CloudSim
• Cost
• Makespan
• Energy

Consump-
tion

• Execution-
Time

successfully
outperform
traditional
techniques
on used per-
formance
metrics.

offloading
mecha-
nism and
workload
manage-
ment task is
missing in
this work.

Yadav et al.
(Yadav et
al., 2022)

Meta-
heuristic

Modified
Fireworks
algorithm

iFogSim
• Cost
• Makespan

significance
of the pro-
posed
approach is
verified on
used per-
formance
metrics.

There is
still a
need for
improve-
ment in the
makespan
metric.

Abu-
Amssimir
et al.
(Abu-
Amssimir
& Al-Haj,
2023)

Meta-
heuristic

Greedy-
edge-
placement
technique

iFogSim
• Delay
•

Throughput

Successfully
provides
high-
quality
services by
reducing
the network
bandwidth,
latency,
and con-
sumption
of energy.

Response
time needs
to be cal-
culated for
showing
efficiency
in the net-
work.
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Table 2.2: Comparison Table of significant literature techniques for Delay Sen-
sitive applications

Author
name and
Reference

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Ogundoyin
et al.
(Ogundoyin
& Kamil,
2023)

Meta-
heuristic

Hybrid
Parti-
cle swarm
and Firefly
algorithm

MobFogSim
• Energy-

Consumption

The pro-
posed
technique
is suc-
cessfully
outper-
forming
traditional
techniques.

Cost and
makespan
may be
part of per-
formance
metrics.

Hussain
et al.
(Hussain et
al., 2023)

Heuristic vehicular
based Fog
comput-
ing

PYOMO,
VANET

• Delay
• Energy-

Consumption

Proposed
approach
provides
improved
quality over
NSGA-
2 and
SMPSO.

Some more
improve-
ment is
required
in this
work for
considered
metrics

Amit
Kishor
(Kishor &
Chakar-
barty,
2021)

Meta
Heuristic

Smart Ant
colony op-
timization
algorithm

MATLAB
• Latency

SACO
outper-
forms all
mentioned
traditional
techniques
RR, MPSO,
and Bees
life.

Power con-
sumption,
makespan,
and throuh-
put also
should be
considered
in this
work.
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Table 2.2: Comparison Table of significant literature techniques for Delay Sen-
sitive applications

Author
name and
Reference

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Yaser
Ramzan-
poor
(Ramzanpoor
et al.,
2022a)

Meta
Heuristic

cuckoo
search op-
timization
algorithm

iFogSim
• Bandwidth

usage
• Higher

power con-
sumption.

proposed
technique
outper-
forms all
the men-
tioned
traditional
techniques.

Resource
requests
should be
known in
advance.

Mostafa
Ghobaei-
Arani
(Ghobaei-
Arani &
Shahidine-
jad, 2022)

Meta
Heuris-
tic.

MAPE
technique
and whale
opti-
mization
technique.

iFog Sim •
Throughput

• Energy
consump-
tion

Lessen the
service de-
lay and con-
sumption of
energy.

A small im-
provement
is noticed
in energy
consump-
tion when
compared
with the
PSO tech-
nique.

Heena
Wadhwa
(Wadhwa
& Aron,
2022)

Meta
Heuristic

Zero-hour
policy

iFogSim
• Cost
• Bandwidth

proposed
approach
success-
fully
outper-
forms the
CLC policy
technique.

More QoS
parame-
ters like
makespan
and
throughput
also can be
a part of the
research.
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2.3 Virtual Machine Generation in Fog System

In this paper, Samson Busuyi Akintoye et al. (Akintoye & Bagula, 2019) sug-
gested a job allocation and virtual machine placement technique. In order to
optimally utilize virtual machine and real machine resources, researchers con-
centrated on task allocation policy. Task assignment has been carried out using
a binding strategy based on the Hungarian algorithm. In this study, the task
assignment policy between cloudlet and VM is one-to-one. The Fog/Cloud
environment has employed the GABVMP to enhance Quality of Service. The
introduction of a self-developed GUI-based interface made it easier to define
the parameters for cloudlets, virtual machines, and the method for allocating
cloudlets to virtual machines during simulation. Using the CloudSim Simulator,
researchers apply the suggested technique to measure latency, energy, process-
ing time, and parameter allocation costs. A comparison was made between
the simplex method and the suggested Hungarian algorithm for binding pol-
icy (HABBP) using default assignment strategy. HABBP has demonstrated a
54.73% reduction in overall processing time when compared to the default as-
signment technique. When comparing HABBP to a simplex method, calculation
time has showed a good improvement. First-Fit placement and random place-
ment were contrasted with the suggested method GABVMP. When it comes to
parameter delay and the total cost of placing a virtual machine on a physical
machine, GABVMP performs better than both First-Fit placement and Random
placement. This work misses many tasks to a single machine allocation policy.
When compared to the default assignment approach, HABBP does not demon-
strate a faster computation time. Researchers intend to apply a suggested method
in real-world traffic control or healthcare in Africa in the future.
The idea of enhancing QoS in a Fog environment by allocating resources effec-
tively was presented by Sathish Kumar Mani et al. (Mani & Meenakshisundaram,
2020). In the Fog-Cloud system, researchers have worked on VM placement and
workload distribution. A Fog Server Manager (FSM) is developed in the pro-
posed system to allocate available resources to jobs. However, each Fog server
has a single FSM and several VMs to handle user requests. Resources will be
allocated if they are available at the end of the Fog server. If not, consumers
will have to wait for state or deallocate requests to the cloud. When tasks are
finished, the Fog server and cloud server will send an ACK to the FSM. Param-
eter computation time and processing time are simulated using the CloudSim
tool. The suggested technique outperforms the default strategy on parameter
processing time, according on the comparison between the default strategy and
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the simplex algorithm. For some jobs, researchers are unable to outperform the
default technique on parameter computation time.
In terms of range The busy-checking 2-way-balanced approach was developed
by Sudip Roy et al. (Al-Tarawneh, 2022) as a method to allocate virtual machine
resources to cloudlets in an efficient manner. Scholars have utilized three-phase
methodologies to execute this approach: a cloudlet still not allocating phase,
a VM classification phase, and a 2-round active checking phase. To ensure
efficient allocation of virtual machines to cloudlets via a two-way approach,
scholars have implemented equilibrium conditions for cloudlet distribution that
strike a balance between the threshold and the local queue length limitation.In
the CloudSim toolkit simulation configuration, scientists have conducted com-
parisons between conductance, Max-Min, Min-Min, RASA, and average VM
utilization rate, as well as average makespan, average waiting time, average
turnover time, and average VM allocation standard deviation. Researchers have
surpassed all previously described methods on specific parameters; also, the al-
gorithm’s time complexity is O(mn) when compared to all previously mentioned
algorithms’ O(mn2). A comparison of this method with some of the most recent
technologies is necessary, and researchers intend to use non-linear programming
and soft computing in the future to create a suggested optimization method.

Table 2.3: Comparison Table of significant literature techniques for Virtual
Machine Generation

Author
name and
Reference

Type of
Algo-
rithm

Technique used Evaluation
tool

Performance
Metric

Pros Cons

Samson
Busuyi
Akintoye
(Akintoye
& Bagula,
2019)

Meta
Heuristic

Hungarian algo-
rithm, Genetic
algorithm-based
Virtual machine
Placement pol-
icy.

CloudSim
• Latency
• Cost

Improvise
Process-
ing time
and
compu-
tation
time.

Many
tasks
to one
machine
allo-
cation
policy
are
missed.
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Table 2.3: Comparison Table of significant literature techniques for Virtual
Machine Generation

Author
name and
Reference

Type of
Algo-
rithm

Technique used Evaluation
tool

Performance
Metric

Pros Cons

Sathish
Kumar
Mani
(Mani &
Meenakshisun-
daram,
2020)

Scheduling
Algo-
rithm

Acknowledgment-
based Fog server
manger

CloudSim
• Makespan

Enhanced
compu-
tation
time as
com-
pared.

Shortcoming
in com-
putation
time.

Sudip
Roy (Roy,
Banerjee,
Chowd-
hury, &
Biswas,
2017)

Scheduling
Algo-
rithm

Range-wise
Busy-checking
2 way-balanced

CloudSim
• Average

waiting
time

• Average
turnaround
time

• Makespan

Reduced
Time
com-
plexity
O(mn).

Compared
with old
tech-
nolo-
gies.

2.4 Smart Cities Application

The Min-Min conventional strategy to controlling Fog and cloud system re-
sources in Smart Buildings was described by Saniah Rehman et al. (S. Rehman
et al., 2018). The suggested method made use of six clusters, each comprising
six areas with twenty buildings. Every region has a smart grid set up to forward
each building’s energy usage request to Fog. For each building, researchers have
received 100 requests per hour for 128-byte data sets used in simulation setup.
To effectively leverage the reservoir of the Cloud-Fog system, the simulation
setup employed a service broker policy and a load management algorithm. For
a simulation cloud analyst tool was used, and the authors’ goal was to lower
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the system’s reaction time and cost. The cost was calculated using the data
transport, micro grid, and virtual machine costs as inputs. A comparison of
the suggested approach, and Round Robin algorithm was shepherd in order to
evaluate the outcomes, and the latter proved to be less effective than the former.
The suggested method works best for tasks that require the least amount of time
to complete.
A method of job scheduling in Fog computing utilizing the Cuckoo optimiza-
tion methodology has been reported by Saqib Nazir et al. (Nazir et al., 2018).
Researchers have applied cuckoo optimization to the smart grid system; six ar-
eas, each with 20 buildings and 40–60 apartments per building, were taken into
consideration. Each region is connected to two patches of Fog. Every apartment
has created a request to contact the Fog nodes. The Fog node then verifies the
availability of virtual machines (VMs) based on underutilized and overutilized
nodes. A selection strategy will then be implemented for the VM allocation.
Requests that are made when the VM is not available will be dispatched to the
cloud server. The Cloud Analyst tool was utilized to build up the simulation,
with average-processing-time,cost, and average-response-time parameters. The
suggested method has been contrasted with Roun Robin and Throttled. On
the specified parameters, the Cuckoo optimization technique (COA) has outper-
formed Round Robin and Throttled. Since the comparison is made between
throttling and round robin, the simulation result does not indicate an improve-
ment in the balanced average reaction time of six regions.
A plan for overseeing coupled resource management for Fog environment for
smart cities was put up by Tian Wang et al. (T. Wang et al., 2019). When a
single sensor receives several user service requests, a coupling resource man-
agement issue arises. To build up the suggested method, researchers expand
the Hungarian algorithm with a buffer queue (EHGB). When coupling resource
management, researchers try to reduce costs and delays while improving re-
source management. Users and resources are matched using the Hungarian
algorithm. To increase resource consumption, however, resources that are still
waiting will be allocated to users. Because buffer queues respond immediately
to results, they are employed in Fog systems to prevent delays. One-half of the
total resources are present in the buffer queue. Matlab 2016a and Visual Studio
are utilize to assess the results. When the simulation outcomes were compared
to those of the FIFO, Hungarian, and Extended Hungarian algorithms, it was
found that the suggested strategy improved both the overall scheduling time and
resource utilization. Left over resources are throwing the system into disarray
due to an unbalanced distribution of users and resources.
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Mutaz A. B. Al-Tarawneh(Al-Tarawneh, 2022) In order to position applications
in the Fog environment, the researchers have devised a biobjective strategy. This
method chooses where apps should be placed on Fog vertex based on the critical
proportion and security mechanism. The NSGA-2 algorithmic is apply to resolve
the bi-empirical knapsack formulation of the application placement issue.

Table 2.4: Comparison Table of significant literature techniques for Smart Cities
Application

Author
name
and
Refer-
ence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Saniah
Rehman
(S. Rehman
et al.,
2018)

Heuristic Min-Min CloudAnalyst
• Response

time
• Cost

Improvise
response
time and
cost.

Traditional
Min-
Min
used.

Saqib
Nazir
(Nazir
et al.,
2018)

Meta
Heuristic

Cuckoo
optimiza-
tion

CloudAnalyst
• Cost
• Average

process-
ing time

• Average
response
time.

Determined
job
scheduling
efficiently.

Shortcoming
in com-
putation
of re-
sponse
time.

Tian
Wang
(T. Wang
et al.,
2019)

Heuristic Hungarian
algorithm
with
buffer
queue

Visual
Studio and
MATLAB

• Delay
• Cost

Effective
for han-
dling
multiple
user re-
quests by
one sensor.

Resource
provi-
sioning
mech-
anisms
are
not in-
cluded.
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Table 2.4: Comparison Table of significant literature techniques for Smart Cities
Application

Author
name
and
Refer-
ence

Type of
Algo-
rithm

Technique
used

Evaluation
tool

Performance
Metric

Pros Cons

Mutaz
A. B.
Al-Tarawneh
(Al-
Tarawneh,
2022)

Heuristic. Bi-
objective
algorithm

iFogSim
• power effi-

ciency
•

Application
placement

•
Performance

• Security
rates

Improvement
is noticed
for all pa-
rameters.

Some
highly
scored
QoS
parame-
ter was
missing.

2.5 Load balancer in Fog computing

To reduce the TET, and TEC associated with dependent operations in a Fog
environment, Sumit Bansal et al.(S. Bansal & Aggarwal, 2023) describe the
PWOA method. Comprehensive simulations employing experimental instances
(30, 50, 100, and 1000) through five distinct systematic effort—Cybershake,
Epigenomics, Inspiral, Montage, and Sipht—are utilize to ingress the execution
of the PWOA algorithm.Varying numbers of tasks were assigned to each of the
workflows. The simulation conclusion showed that, in terms of raising TET and
TEC throughout all processes, the suggested PWOA algorithm performed better
than the traditional PSO and WOA algorithms.Additionally, this study presents a
comparative assessment of the efficient workflow scheduling capabilities of the
PWOA algorithm.
In their study, Bushra Jamil et al.(Jamil et al., 2020) provide a novel Fog com-
puting scheduler that optimizes network use and minimizes delay, while also
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facilitating service-provisioning for the Internet of Everything. To efficiently
handle the demands of Internet of Everything devices on the resources of each
Fog device, we present a case study that illustrates the optimal method for
scheduling requests from these devices.Performance indicators such as delay
and energy utilization are considered, and we utilize iFogSim to compare the
proposed scheduling methodology with alternative alternatives. As demon-
strated by the outcomes, the preferred scheduler reveal patronizing performance
collated to the FCFS approach, achieving a 32% decrease in latency and a 16%
enhancement in network utilization.
Samia Ijaz et al. propose a two-phase scheduling technique named Energy
Makespan Multi-Objective Optimization, as described in their paper (Ijaz, Mu-
nir, Ahmad, Rafique, & Rana, 2021). The muddle is first constructed as a
many-impartial optimization conundrum to start process (Abouaomar, Mlika,
Filali, Cherkaoui, & Kobbane, 2021). INext, while assigning resources to Fog
and Cloud, it computes a balance between competing goals.Essentially, it assigns
latency-sensitive tasks that demand less processing power to computationally de-
manding procedures that must be coordinated with instantaneous response times
from cloud resources. In order to attain an even greater energy savings, we
complement the Deadline-Aware progressive Frequency Scaling strategy with
empty time periods on a single node that occur between two previously sched-
uled jobs. Our solution effectively lessen energy utilization till 50% with no
impact on schedule fulfillment as compared to current methodologies.Our re-
search employing both synthetic and real-world applications forms the basis for
this conclusion.
Pedram Memari et al. (Memari, Mohammadi, Jolai, & Tavakkoli-Moghaddam,
2022) aims to present a scheduling method that matches virtual machines using
meta-heuristics and takes latency into account.Furthermore, the researchers want
to integrate fog computing and the cloud to create an affordable energy manage-
ment system for smart homes. Tabu search is often used in heuristic approaches
because of its broad applicability to a broad scale of optimization trouble and
its memory and speed advantages.Thus, a novel algorithm is suggested and en-
hanced through the utilization of FOA and approximate nearest neighbor (ANN)
techniques. The Tabu search framework serves as the foundation for this algo-
rithm. A final simulation of a case study is performed in order to validate the
suggested methodology. The efficacy of the suggested method is then demon-
strated through its development, consider critical elements for instance allocated
memory, delay, execution time, and cost function. The comparison findings
show that PSO, Tabu search, genetic algorithm, simulation-annealed, and all
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other algorithms perform worse than the suggested approach.
The suggested algorithm is broken down into three phases in the research by
R. Madhura et al. (Madhura, Elizabeth, & Uthariaraj, 2021). Task prioriti-
zation, task selection, and level sorting are the three separate phases of the
procedure. An algorithm is suggested to rank jobs with the highest number of
successors during task prioritizing, allowing excess jobs in the another step to
start executing. The process of selecting tasks considers a combination of local
and global optimal strategies to allocate a job to a preferred processor. This
technique improves the choosing of processors by reducing the time it clasp to
finish jobs and lowering the overall pattern it grabs to thoroughgoing all jobs.
The comparison results clearly show that this algorithm works better than other
used traditional approaches.By conducting multiple experiments involving both
arbitrary-generated and real-life graphs, the efficacy of the provided algorithm is
evaluated. As per the findings, the provided algorithm exhibits condescending
accomplishment collated to all established algorithms, as sustained by perfor-
mance matrices such as makespan, speedup, and average scheduling length ratio.
This surpasses SDBBATS and minimal optimistic processing time.

2.6 Discussion

The relevant work that was discussed in this chapter are compiled in Table 2.1,
2.2,2.3,and 2.4. The parameters used in the methods and algorithms researchers
have employed to solve resource management challenges, the kinds of tools or
simulators employed in earlier studies, and the performance metric employed
to assess the system have all been consider in the representation of the table.
Following our analysis and summary of the relevant literature, we have come to
the following conclusions: Many authors use the iFogSim simulator for config-
uring the Fog, and Cloud system along IoT devices, and many studies employed
the meta-heuristic technique to resolve the scheduling of resources complica-
tion. Researchers most often utilize cost, makespan, latency, and throughput as
metrics to assess system performance.
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Chapter 3

Improved Grey Wolf Optimization
Algorithm for cloud-Fog resource
scheduling

Cloud platforms are where users and applications perform their computations
in current span of cloud environment. The utility model of the cloud provides
a variety of assistance, including IaaS, PaaS, and SaaS (M. Alam, Shahid, &
Mustajab, 2024; Bhatt & Sehgal, 2024). These assistance are billed on a top up
basis.Cloud-based information hub require a significant amount of electricity,
leading to a rise in overall power usage. The initiation of the Fog computing
model was proposed as a solution to address these difficulties (Aslanpour et al.,
2020). The efficient distribution of computing resources in cloud-Fog systems,
especially for time-sensitive applications, is a major challenge in the quickly
developing digital landscape of today. The implementation of the "cloud-Fog
paradigm" in distributed computing architecture relocates cloud functionalities
towards the network’s periphery, thereby enabling improved real-time applica-
tion performance and reduced latency (Khan, Garg, Tiwari, & Upadhyay, 2018;
Srirama, 2024). Depicted in Figure 3.1 is an example of a conventional fog
computing architecture.

To direction the scheduling of resource complications in this setting, researchers
created the "Improved Grey Wolf Optimization algorithm" for Scheduling of re-
sources in a Cloud and Fog Environment for Delay-Sensitive Applications. This
novel solution uses natural-inspired grey wolf behaviors to optimize the distri-
bution of resources including computing power, network bandwidth, and storage
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Figure 3.1: IoT-Fog-Cloud Environment

across a diverse and dynamic cloud-Fog ecosystem. This algorithm’s major goal
is to reduce response times and latency for delay-sensitive applications, deliv-
ering a seamless user experience and meeting demanding Quality-of-Service
(QoS) criteria.
This work looks at the fundamental components and reasons behind the Improved
Grey Wolf Optimization Algorithm, emphasizing its potential to transform re-
source scheduling and management in cloud-Fog scenarios. We will describe
the difficulties associated with delay-sensitive applications, the basic concepts
of the GWO algorithm, and how the enhancements increase its performance in
the subject of cloud-Fog resource allotment. This method is a viable option
for optimizing the resource allocation process, which will ultimately lead to
increased efficiency and responsiveness in cloud-Fog environments, benefiting
a wide range of requirements including real-life data analytics,IoT, and aug-
mented reality. "Improved Grey Wolf Optimization Algorithm" is designed by
improvising the Grey-wolf-optimization-technique (Alzaqebah et al., 2019) with
a heterogeneous earliest finishing time (HEFT) (Dubey et al., 2018).In this work,
details regarding obtainable resources of the Fog node is gathered by the fitness
function. On each iteration, the Fog node fitness function will update. Then
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the task can be issued to every node based on the compute EFT function. The
IGWOA helps to find an effective solution in search space as per exploitation
and exploration techniques. It avoids acquiring adhere in local optima, which
helps in improvement of QoS requirements in the IoT-Fog-Cloud system (Kishor
& Chakarbarty, 2021; Ramzanpoor et al., 2022a).

The key involvement of this work are as given below:

1. A novel optimization technique for resource allocation IGWO is designed
and proposed for Fog environments.

2. The improved heuristic function is designed and used for the ideal alloca-
tion of jobs/tasks towards resources of Fog nodes and cloud servers.

3. Performance comparison is conducted using 3 standard datasets with
peer competing for meta-heuristic optimization techniques like AEOSSA
(Abd Elaziz et al., 2021), Harry Hawks Optimization (Heidari et al., 2019),
PSO(Okwu, Tartibu, Okwu, & Tartibu, 2021b) and the FA (Yang, 2009)
for QoS parameters including makespan and throughput.

Table 3.1 shows the notations used in our suggested solution .

3.1 Background and Detailed Description

This section concisely expresses the grey wolf optimization (GWO) and hetero-
geneous Earliest Finish Time (HEFT).

3.1.1 Grey Wolf Optimization Algorithm

The Grey Wolf Optimization Algorithm, which Seyedali Mirjalili (Okwu, Tart-
ibu, Okwu, & Tartibu, 2021a) developed, is a metaheuristic algorithm that
operates on population forms. It simulates the hunting and supervision mech-
anisms employed by wolves. Grey wolves live in groups and look for food in
groups. Grey wolves follow a dominant hierarchy, as shown in Figure 3.2, for
their groups of 5–12 members. Alpha is considered the head of the group; beta
is the decision-maker candidate for the alpha; delta is the caretaker or dominates
the omegas; and omegas come at last for eating. There are three key stages of
GWO: the 1st phase is looking for prey, the 2nd stage is encircling the prey, and
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Table 3.1: Notation and definitions

Notation Definition

X⃗p(t) Prey-Position-vector

X⃗(t) Current position of wolf

A⃗ and C⃗ Coefficient vector

A⃗ Distance vector

ranku Rank of the Task

W̃ i Task Execution Cost

C̃i,j Communication Cost for the task

ET i,j Execution Time

η Efficiency

Utime Useful Time

Ttime Total Time

β Bandwidth

Υ Throughput

EST Earliest-Start-Time

EFT Earliest-finish-Time

the last phase is hunting the prey.

Description of an Algorithm

This section explains the fundamental components and dynamics of the grey
wolf optimization Algorithm 1.

I. Encircling the prey

Prey will be encircled during hunting by grey wolves. Below mentioned
mathematical equations are suggested for encircling the prey:

D⃗=
∣∣∣C⃗ · X⃗p(t) − X⃗(t)

∣∣∣ (3.1)

X⃗(t+ 1) = X⃗p(t) − A⃗ · D⃗ (3.2)
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Algorithm 1: Grey wolf Algorithm pseudocode
Procedure Start:;

1. Create a wolf population with random positions.;
2. Determine the number of iterations to be performed
(Maxiterations);

3. Define the search space range (Searchspace);
4.For iteration within the range (1,Maxiterations);

For each wolf in the population;
Determine the fitness of the existing solution.;
End For;

5. Arrange the wolves according to their fitness levels.;
6. Bring the alpha, beta, and delta wolves up-to-date ;

αWolf = population[0];
βWolf = population[1];
δWolf = population[2];

7. For each wolf in the population;
Update wolf’s position using the α, β, and δ positions;
End For;

8.Implement Exploration and Exploitation;
a = 2 · rand() ·

(
1 − iteration

Maxiterations

)
− 1 ;

C1 = 2 · rand() ;
C2 = 2 · rand() ;

9. Compute distances for wolves α, β, and δ ;
Dα = |2 · C1 · Wolf-positionα − wolf-position| ;
Dβ =

∣∣∣2 · C2 · Wolf-positionβ − wolf-position
∣∣∣ ;

Dδ = |2 · C2 · Wolf-positionδ − wolf-position| ;
10. Calculate the new position for the wolf;

Newposition =
Wolf-positionα−a·Dα+Wolf-positionβ−a·Dβ+Wolf-positionδ−a·Dδ

3 ;
11. Ensure the wolf’s position is within the search space;
12. Update the wolf’s position using Newposition;
13. Assess the fitness of Newposition ;
14. The best solution found in the whole population as the optimal
solution.;
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Figure 3.2: Grey Wolf algorithm Ranking mechanism

In the above equations 3.1 and 3.2, the current iteration is indicated by t,
the coefficient vector is represented by A⃗ and C⃗, prey position vector is
constituted by X⃗p , and the grey wolf position vector is indicated by X⃗ .

A⃗ and C⃗ vector is deliberated as follows:

A⃗ = 2 · a⃗ · r⃗1 − a⃗ (3.3)

C⃗ = 2 · r⃗2 (3.4)

In above equation 3.3, a⃗ is lessen from 2 to 0 above the iterations, and r⃗1&
r⃗2 vectors as shown in equations 3.3 and 3.4 lies between the [0,1].

55



II. Hunting the prey

Grey-wolves will encircle the prey and hunt them. All stalking of the
wolf groups is escort by the alpha, and the beta, and the alpha have
participated in hunting occasionally. As per the algorithm, we have con-
sidered α, β, andδ to have the best knowledge of the prey, and ω wolves
updated their location as per the location of α, β, andδ wolves. The below-
mentioned equations 3.5, 3.6, and 3.7 describe the discussed concepts:

D⃗α =
∣∣∣C⃗1 · X⃗α − X⃗

∣∣∣ , D⃗β =
∣∣∣C⃗2 · X⃗β − X⃗

∣∣∣ , D⃗δ =
∣∣∣C⃗3 · X⃗δ − X⃗

∣∣∣ (3.5)

X⃗1 = X⃗α − A⃗1 · D⃗α, X⃗2 = X⃗β − A⃗2 · D⃗β, X⃗3 = X⃗δ − A⃗3 · D⃗δ. (3.6)

X⃗(t+ 1) = X⃗1 + X⃗2 + X⃗3

3 (3.7)

III. Attacking the Prey (Exploitation)

Grey-wolves will start hunting, instantly prey come to a stop moving. With
the decrease in its value, wolves will approach prey for hunting. The value
will vary in the range [-a, a]. When the value will vary in the range [-1, 1],
then the contiguous stance of the search agent can be any stance between
the current stance of the prey and the search agent.

IV. Searching for the Prey (Exploration)

As per the position of α, β, and δ, all other wolves improve their locations
and search for prey. With |A|>1, all wolves separate from everyone for
searching prey. Otherwise, with |A|<1, wolves are coming toward the
prey. Value of |A| helps the wolves globally search the prey and avoid
local optima during searching. Another factor C⃗, the value lies between
the [0,2]. Value of C⃗ allows more levels of exploration. with the increase
and decrease in the value of C⃗ , avoidance of local optima can be seen in
GWO.

3.1.2 Heterogeneous earliest finish time technique

HEFT is a heuristic-based scheduling technique for finishing tasks in the min-
imum amount of time on a heterogeneous system. HEFT is good for task
execution, which yields a low makespan on the system (S. Gupta et al., 2022).
HEFT works in 2 phases: the 1st phase prioritizes the tasks, and the 2nd phase
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deals with choosing a suitable machine for tasks so that execution time is low.
If two or more jobs/tasks have the identical precedence, then any random tasks
among them will be assigned to machines. In order to implement the ranking
mechanism, HEFT allocates a weight (w) to every node and edge through the
calculation of average communication and computation costs, as described in
equation below:

ranku(ti) = W̃i + max
tj∈succ(ti)

(
ζ̃i,j + ranku(tj)

)
(3.8)

In above equation 3.8, ranku is the rank of task ti to the last node of the longest
path. In the task(ti, tj), ti is the entry node and tj is the exit node. Between
the path from ti to tj , all successors of ti will come.W̃i is the implementation
cost of task, succ(ti) is the whole successor of task(ti), ζ̃i,j is computed by the
taking average of the transmission cost of the task. At last, the graph is traversed
in an upward direction and ranku is allocated to every node in the path. The
rank of exit node is equal to the average implementation cost of that node.
After assigning the ranks to each node, tasks will be scheduled to machines in
decreasing order of their rank.

Description of an Algorithm

The given Algorithm 2 describes the Heterogeneous Earliest Finishing Time
(HEFT) task scheduling method for a parallel and distributed computing envi-
ronment. By assigning tasks to available heterogeneous resources in the best
possible way, this method search for to narrow the total volume of time that they
take to complete. The following gives an explanation of each algorithmic steps.

I. Data structure initialization:

Priority queue and empty schedule, which will be used to keep track of
task assignments, are initialized at the beginning of the method.

II. The Upward Ranks (URank) for each task should be determined:

The upward rank (URank) for each task in the (TaskGraph) is determined
in this step.When considering the task’s dependent tasks’ execution peri-
ods as well as its own execution time, the(URank) represents the longest
possible time it will take for a task to complete. This knowledge aids in
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Algorithm 2: HEFT Algorithm
Data: TaskGraph, AvailableResources
Result: Schedule
Initialization of Data Structures;
priorityQueue = Create-PriorityQueue();
Schedule = Create.Empty-Schedule();
1. Determine the upward ranks (Urank) for each assignment;

For every Task in TaskGraph do;
Urank[Task] = Calculate.Urank(Task, Availableresources);
End For;

2. Determine the downward ranks (Drank) for each assignment;
For every Task in TaskGraph do;
Drank[Task] = Calculate.Drank(Task, TaskGraph);
End For;

3. Determine the priority of each task;
For every Task in TaskGraph do;
Priority[Task] = (Urank)[Task] + Drank[Task];
End For;

4. Tasks should be prioritized;
For every Task in TaskGraph do;
insert(Task, PriorityQueue, Priority[Task]);
End For;

5.While priorityQueue is not empty do ;
NewT ask = remove.HighestPriorityT ask(PriorityQueue);
Best.Resource = Find.Best.Resource(NextT ask, Availableresources,
Schedule);

Schedule[NextT ask] = Best.Resource;
End While;

return Schedule;
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work prioritization.

III. Find the (DRanks) (Downward Ranks) for each task:

This stage determines the task’s downward rank (DRank), which is similar
to(URanks). (DRanks) represents the shortest time a task needs to finish,
taking into account both its own execution time and the execution times of
tasks on which it depends.

IV. Calculate Each Task’s Priority:

Each task’s priority is calculated by adding its (URanks) and (DRanks).
Higher priority tasks are more important and are probably scheduled ear-
lier.

V. Task Prioritization:

Based on their computed priorities, all jobs are added to a priority queue.
With the highest priority work at the front of the line, the priority queue
makes sure that tasks are processed in order of priority.

VI. Task Scheduling (While Loop):

As long as the priority queue is not empty, the scheduling loop will con-
tinue. Each cycle includes:

(a) The task with the highest priority is taken out of the priority queue
to choose (NextT ask).

(b) The best resource (processor) that is available for (NextT ask) is used
to determine Best.resource. This stage entails taking into account
the processing power of the available resources and maybe distribut-
ing the load among them.
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(c) The specified resource is changed in Schedule[NextTask], indicating
that the task has been assigned to it.

VII. Return Schedule:

The algorithm then delivers the final schedule, which details which tasks
are allotted to which resources and in what order, after scheduling all tasks.

3.2 Proposed Framework of IGWOA

In this segment, we are describing an autonomic approach to resource scheduling
for a Fog-Cloud environment. Firstly, there is an allocation of tasks from the
IoT device layer to the Fog domain (Duan et al., 2022). Then we provide
an automatic task placement strategy as a solution to resource management
problems. An improved grey-wolf technique is employed to deploy tasks to the
Fog domain (Lyu et al., 2020).
A system model for deploying IoT device services to Fog Domain and the cloud
server is described to fulfill the solution of the resource management problem
in Figure 3.3. A framework is dissect into three layers: an IoT layer,Fog, and
cloud layer. The IoT layer consists of an autonomous car, a tablet, and other
small objects with sensing capabilities. These devices produce data and service
requests, both of which must be quickly processed. The middle layer is in charge
of effectively allocating work to cloud servers and Fog nodes. This layer includes
a task scheduler, resource manager, and resource pool for handling the IoT device
service request. The task scheduler is responsible for the allocation of tasks from
available resources with the help of the resource manager. It guarantees that tasks
are completed quickly and effectively. It retains the cumulative facts about the
Fog nodes as per the defined scheduling policy, named Improved Grey-Wolf
Technique. The cloud and Fog layer resources are monitored by the resource
manager. It is essential in determining how to divide up jobs according to
resource availability and other considerations. The resource pool is a collection
of the cloud and Fog layers’ accessible resources. It offers details on the resources
that can be allocated to particular jobs to the task scheduler and resource manager.
The system decides how jobs should be distributed among Fog nodes using a
scheduling mechanism known as the "improved Grey-Wolf technique".
The improved algorithm helps find optimal solutions for resource management
problems. As per the traditional grey wolf optimization approach, omega nodes
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work as per the instructions of delta nodes. The proposed approach is modified by
introducing a "heterogeneous earliest-finish time" in the Grey-wolf-optimization-
technique. By using the HEFT technique on omega nodes, all omega nodes will
get a chance in the exploitation phase, equivalent to delta nodes. The aim of the
approach is to intensify resource utilization, reduce response times, and make
sure that Fog nodes and cloud servers collaborate effectively to process data and
services produced by the IoT. This improvisation helps the proposed approach
find more solutions for resource management problems.

Figure 3.3: IGWOA Framework in Fog Environment
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3.2.1 Detailed Description of Proposed Framework

This section explains the fundamental components and description of an archi-
tectural model.

I. Fog layer The Fog surface is the main surface in the proposed structure,
located between the cloud surface and the IoT device surface. Fog layer
includes three prime elements: administrative control, primary Fog nodes,
and secondary Fog nodes, as exhibit in Figure 3.3. All three components
described below are:

(a) Administrative Control

An administrative control system receives service requests from IoT
devices from the Fog gateway. Requests are considered for as many
tasks as possible by the system. Administrative control includes a
task scheduler that schedules tasks to various nodes and servers as
per scheduling policy while meeting QoS requirements. All resource
information is available in the resource pool. The resource manager
provides resource information to the task scheduler. As per available
resources, the task scheduler decides whether tasks will be executed
on either primary Fog nodes and secondary Fog nodes or cloud
servers.

(b) Primary Fog-nodes

primary Fog-node domain consists of the three best Fog nodes: the
best Fog node, the second-best Fog node, and the third-best Fog node.
Primary Fog nodes are acting on the fundamental of the grey wolf
optimization hunting mechanism. In the grey-wolf- optimization-
technique α, β, and δ are considered best-fitting wolves from the
candidate solution.

(c) Secondary Fog-nodes

Secondary Fog-nodes are nodes other than the primary Fog-nodes.
These Fog-nodes are ω nodes except primary Fog nodes. As per the
grey wolf technique, ω wolves are the least experienced individuals
in the set. Similarly, secondary Fog nodes are the nodes with fewer
resources as compared to primary Fog nodes.
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II. The Cloud Layer The cloud layer comprises of a cloud gateway and
servers at cloud. The cloud gateway forwards tasks that require higher
computation and storage capabilities to cloud servers under administrative
control. The cloud gateway also serves as a load balancer, distributing
workloads among cloud servers in an equitable manner. In the cloud layer,
cloud servers are outfitted with greater storage and processing capacities.

3.2.2 Proposed solution to problem and Implementation

This segment describes the mathematical establishment of the present approach
to the problem of efficiently allocating of tasks to machines.Suppose Task
(Ti)=T1,T2,T3,. . . Tn) consists of n the quantity of activities that are required
to execute on multiple machines in a Fog-IoT environment. Each task has its
own number of parameters, like task length, file input and output, memory re-
quirements, and deadlines. The size of tasks can be computed from the millions
of instructions available in tasks. Fog environments, and cloud consist of n
processors Task (Pi)= P1,P2,P3,. . . Pn). Each processor, server, or node has its
own set of heterogeneous resources like processor frequency, memory storage,
and bandwidth. MIPS are used to measure the processing power of each CPU.
Matrices of the available number of tasks needed to execute on processors will
be designed to compute the expected time of execution (ET) of the processor.
Execution time will depend upon the length of task and the ability of computing
nodes, as shown in equation 3.9. The ET of the task (Ti) is computed as men-
tioned below:

ETi,j = task(Ti).length
pj.power

(3.9)

As discussed earlier, tasks task (ti).length can be computed by the number of
instructions, and pj . Power is the power of computing nodes in relation to MIPS
(Millions-of-instructions-per-second).
In Fog environments, there is still problem of assigning tasks to machines effi-
ciently. The focus is to detect the best solution to the problem so that there will
be a minimization in completion time (makespan) and throughput. This work is
focused on minimizing the makespan and throughput to resolve the Fog-cloud
environment’s task scheduling issue.
Makespan on the system as shown in equation 3.10 will be calculated as follows:

Makespan(X) = max
j∈{1,2,...,m}

n∑
k=1

ETi,j (3.10)
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Throughput (Υ)-Throughput defines a system’s efficiency on a given bandwidth.
The efficiency of the system can be computed by equation 3.11, the equation
describes the system efficiency by the useful time (Utime) on the Total time
(Ttime) for the system. Useful time (Utime) defines the timing for which the
system performs without delay.

η = Utime

Ttime
(3.11)

Throughput of the structure can be computed by equation 3.12, which defines
the system efficiency over a given bandwidth (β).

Υ = η · β (3.12)

In order to formulate the problem of task scheduling, one must minimize both
the makespan and throughput. Conceptually, the solution to this issue can be
delineated as follows:

Objective-function(F (Z)) = min
(

max
j∈{1,2,...,m}

n∑
k=1

ETi,j

)
+max(Throughput(Υ))

(3.13)
Main objective of this work as shown in equation 3.13, is to optimize throughput
while minimizing makespan. For the purpose of optimizing the implementation
of existing resources and inscription provocation associated to task scheduling.

3.2.3 The proposed improved Grey-wolf-optimization-algorithm

Proposed algorithm is created utilizing the HEFT approach, and Grey-wolf-
optimization-algorithm. In the suggested algorithm, the exploration is enlarged
by focusing on the grey-wolf-algorithm and exploitation is enhanced, because as
per the proposed algorithm, all omega nodes do not depend on the delta nodes
or third-best nodes for their hunting. In the proposed algorithm all omega or
secondary nodes will get a chance equivalent to the delta nodes for hunting.

64



Algorithm 3: IGWOA Algorithm
Input: Maxiteration, list of brokers, list of machines, IoT tasks list.
Output: Optimal solution for Taskallocation to Brokers.
Start:;

1. Initialization:;
(a) Initialize the grey wolf population Xi (i = 1, 2, . . . , n);
(b) Initialize the parameters a, A, and C;
(c) Compute the fitness of each search broker and categorize the
broker as per Equation 3.13;

(d) xα = the best solution in the search space;
(e) xβ = the second-best solution;
(f) xδ = the third-best solution;
(g) Initialize t = 0;

2. While (t < maximum number of iterations);
(a) For each search broker;

(b) Update the location of each broker by section I. of
encircling prey;

End For;
3. If (broker ̸= xα && broker ̸= xβ && broker ̸= xδ);

(a) Compute ranku for each task (ti) by traversing the graph as
in equation 3.8;

(b) Sort the task (ti) in the scheduling list in decreasing order of
ranku values;

End If;
4. Updating the parameters a, A, and C;
5. Again, compute the fitness of all search brokers and categorize
them;

6. Update the location of xα, xβ , and xδ and all other search brokers;
7. While there is an unscheduled task (ti) on the list do;

(a) Choose the first task (ti) as per the highest ranku value from
the list of scheduling;

End While;
8. For each process (pi = p1, p2, p3, p4, . . . , pn) in the processor
do;

(a) Calculate EST (Ti, Pi) and EFT (Ti, Pi) values;
(b) Assign Task (ti) to processor Pi that minimizes EFT of task
(ti);

End For;
9. t = t+ 1;
End While;
End;
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Description of an Algorithm

This section explains the detailed description of proposed Algorithm 3 .

I. Initial Stage

In the above-mentioned algorithm, the initial phase is the initialization
of the grey wolf population Xi (i=1, 2. . . . n) and parameters a, A, and
C as mentioned in steps 1(a) and 1(b). A suitable initialization of the
population is required for dealing with a issue with job scheduling in a
cloud-Fog scenario. The modification in Grey Wolf is required to deal
with problems of task scheduling. In step 1(c), the fitness of each machine
will be calculated as per equation 3.13. Fitness calculation is required
for generating ranks on the best-suited machine for computation in the
system. In the above algorithm, steps 1(d)–1(f) provide the best machine
with ranking α,β, and δ. In step 1(g), t is used to represent the current
iteration of the iteration process. The iteration process will be stopped
after the number of iterations reaches the maximum number of iterations
as mentioned in step 2.

II. Encircling the prey (updating stage)

In the initial stage, the exploration phase is performed to search for prey
and assign a rank to the best machines. The second phase of the algorithm
is encircling the prey and initiating the best exploitation strategy, as shown
in step 2(b). As per fitness calculation, those machines are not α,β, and
δ. The HEFT algorithm is applied to them to improve the exploitation of
the algorithm in steps 3(a)–3(b). On every iteration, parameters a, A & C,
and the position of each broker will be updated to perform hunting as in
steps 4-6 of an algorithm.

III. Hunting the prey

After encircling the prey, the third phase of the algorithm involves hunting
the prey. In the final phase of the proposed algorithm, it assigns unsched-
uled tasks to the suited machines. In the traditional grey wolf algorithm,
omega wolves are in control of delta nodes. Omega nodes are not getting
an equivalent chance to hunt the prey. In the proposed algorithm, the
HEFT mechanism is applied to nodes that are not α,β, and δ. So that they
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are also getting a chance to hunting equivalents to other nodes. Steps 7-8
in the algorithm are working to allocate unscheduled tasks to the machines
as per their ranking based on the HEFT algorithm. Step 9 is incrementing
the iteration step by t=t+1.

Figure 3.4: Methodology of improved Grey Wolf Algorithm

The proposed improved grey wolf algorithm is represented in Figure 3.4. Impro-
visation is done in the exploitation phase of the algorithm, where an unscheduled
task is efficiently allocated to available resources in the cloud-Fog system. A
designed objective function is shown in equation 3.13, which is calculated on
the makespan and throughput by using the grey wolf and HEFT algorithms of
the system. Related steps get repeated until the best solution is obtained and stop
conditions are reached.
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3.3 Experimental Evaluation

This segment, gives a information of the experimental setup, tests, and evaluation
of results is done. The suggested approach IGWOA is evaluated and compared
with existing approaches AEOSSA (Abd Elaziz et al., 2021), HHO (Heidari et
al., 2019), PSO(Okwu et al., 2021b), and FA (Yang, 2009) for measuring the
efficacy of the suggested approach.

3.3.1 Exploratory Environment and Experimental parame-
ters

This segment describes the environment or parameters set during the exper-
imental evaluation. The comparison and efficacy of the suggested approach
are evaluated using the iFogSim toolkit (H. Gupta, Vahid Dastjerdi, Ghosh, &
Buyya, 2017). All the examination are conducted on a constant and real dataset
with a Core i5-2.40 GHz processor and 8GB of memory on a system equipped
with Windows 10 64-bit.

Table 3.2: Cloud-Fog Entities

Entities Value

Clients [50,100]

Cloud server 2

Broker 4

Broker Storage capacity 1TB

Broker Bandwidth 10Gb/s

Broker RAM Size 16GB

Table 3.3: Task Entities

Entities Value

Number of tasks [200,1000]

Tasks Length [1000,20000] MI

File Size [300,600] MB

Output Size [300,600] MB
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Specifications of the constant environment for client, cloud, broker, and tasks are
shown in Tables 3.2 and 3.3. For experimental evaluation, the number of clouds
and Fog nodes is set to 2 and 4. Broker storage capacity, broker bandwidth,
and broker RAM size are set to 1TB, 10 GB/s, and 16 GB. All experiments are
done for 200 to 1000 tasks, with each task length used [1000, 20000] MI. To get
accurate results, each experiment is conducted for 30 iterations.

Table 3.4: Description of the real dataset

Dataset Name Tasks Users CPUs File Size

NASA iPSC 18239 69 128 204kb

HPC2N 202871 257 240 2.9MB

For the experimental setup, pseudo datasets, NASA iPSC, and HPC2N (production
system, july 2020) are used to show the efficiency of the proposed IGWOA. These
datasets are provided by parallel workload archives. The log files are presented
in original and cleaned versions by the community. All workload files are avail-
able with the extension.swf (standard workload format). In this work, a cleaned
version is used to evaluate the approach, as shown in Table 3.4.
Makespan and throughput are evaluation metrics used in this work, as discussed
in Section 3.2.2. An objective function described in equation 3.13 is used to
compute the efficiency of machines. Machines with improved makespan and
throughput values are assigned to scheduled tasks as per the proposed approach.

3.3.2 Results examination

In this subsegment, experimental results processed by the proposed approach
IGWOA are analyzed, tested, and compared with AEOSSA, HHO (Harris-
Hawks-optimization), PSO (particle-swarm-optimization), and FA (Firefly al-
gorithm). Results are evaluated on performance metric parameters like makepan
and throughput based on the defined objective function. Results are evaluated
and compared with the techniques mentioned for finding optimal solutions from
global space. Table 3.5 presents the variable environments of the proposed and
compared approaches.
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Table 3.5: variable environments of proposed and compared approaches.

Algorithm Variables Value

IGWOA a
r⃗1 and r⃗2

A
C

[0, 2]
[0, 1]
[−1, 1]
[0, 2]

AEOSSA Swarm size
rand1, rand2,rand3,and rand4
c1, c2, and c3

100
[0, 1]
[0, 1]

HHO Swarm size
E0

100
[−1, 1]

PSO Swarm size
Inertia weight w
c1
c2

100
0.9 → 0.4
1.49
1.49

FA Swarm size
γ

β

α

100
1
0.2
0.5

For checking the convergence manner of the proposed algorithm IGWOA, the
convergence curve of the proposed algorithm is compared with AEOSSA, HHO,
PSO, and FA in Figures 3.5, 3.6, and 3.7. The curve represents the frequency
and quickness with which the algorithms deliver the best results. In comparison,
IGWOA successfully outperforms all traditional techniques. In all comparisons,
IGWOA represents the highest convergence rate and successfully provides opti-
mal solutions from search space in comparison to other traditional techniques.

In Figure 3.5, a comparison is done with the number of iterations and aver-
age makespan on 200–1000 tasks for a pseudo-workload. As comparison has
shown in all cases mentioned, on average makespan, IGWOA successfully out-
performs all approaches. An improvement of 7.51%-9.34% is noticed over
the AEOSSA, 4.69%-5.67% over the HHO, 68.73%-72.56% over the PSO, and
56.87%-65.67% over the FA on the pseudo dataset. The proposed strategy out-
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(a) 200 Tasks (b) 400 tasks

(c) 600 Tasks (d) 800 Tasks

(e) 1000 Tasks

Figure 3.5: Curves of convergence for pseudo workload
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(a) 500 Tasks (b) 1000 tasks

(c) 1500 Tasks (d) 2000 Tasks

(e) 2500 Tasks

Figure 3.6: Curves of convergence for real workload NASA iPSC
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(a) 500 Tasks (b) 1000 tasks

(c) 1500 Tasks (d) 2000 Tasks

(e) 2500 Tasks

Figure 3.7: Curves of convergence for real workload HPC2N.
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performed conventional methods for tasks with a size of 200 to 800 with better
improvement, while the convergence curve improved less for tasks with a size
of 1000. Figure 3.5 shows evaluation during 30–1000 iterations. When the
suggested technique runs for 1000 iterations, the makespan value decreases for
various job sizes. there is a potential that resources will be less available in sub-
sequent iteration steps. IGWOA’s superior optimization tactics and search space
exploration methods—which are more effective than those used by other tech-
niques—allow it to produce better outcomes with a greater convergence rate.
The enhancement over traditional techniques indicates that IGWOA’s search
techniques are better able to converge on optimal solutions. The superiority of
IGWOA over AEOSSA, HHO, PSO, and FA on pseudo datasets implies that it
can better balance exploration and exploitation, resulting in better overall opti-
mization outcomes.

In Figure 3.6, a comparison is done with the number of iterations and average
makespan on 500–2500 tasks for a real NASA iPSC workload. When a compari-
son is made with the NASA iPSC real dataset, an improvement of 5.34%–6.73%
is noticed over the AEOSSA, 2.28%–9.67% over the HHO, 63.83%–69.73%
over the PSO, and 47.23%–58.69% over the FA. In Figure 3.7, a comparison is
done with the number of iterations and average makespan on 500–2500 tasks for
a real HPC2N workload. Similarly, on the HPC2N dataset, an improvement of
4.42%–6.89% is shown over the AEOSSA, 64.96%–68.56% is shown over the
PSO, 54.59%–59.76% over the FA, and 3.47%–4.68% over the HHO.In contrast
to HHO, AEOSSA, and proposed approaches, FA and PSO optimization strate-
gies have a greater value for 30-1000 iterations across 500–2500 jobs, as shown
in Figures 3.6 and 3.7. When compared to PSO and FA approaches, HHO and
AEOSSA techniques perform better in an exploratory environment as set in the
system as established for outcomes evaluation.on HPC2N real dataset for cus-
tomized environment, a deviation is noticed for AEOSSA, and HHO technique
from 1000 tasks-2500 tasks over 200 iterations then stability is noticed after
200 iteration -1000 iterations.IGWOA has proven to be effective in addressing
real-world data and optimization difficulties by producing better results with a
higher convergence rate. The variation in improvement percentages raises the
possibility that the performance of IGWOA may be influenced by the particulars
of the problem instances within the real dataset. This significant improvement
demonstrates IGWOA’s superiority over traditional techniques on the NASA
iPSC and HPC2N Real Dataset in terms of convergence rate and solution quality.
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Figure 3.8: Average throughput time of pseudo Workload

Figure 3.9: Average throughput time of NASA iPSC real workload
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Figure 3.10: Average throughput time of HPC2N real workload.

Figures 3.8,3.9,3.10 represent the comparison of average throughput time for all
datasets on 200–1000 tasks. The comparison is done on the number of tasks and
throughput. The proposed approach achieved a better average throughput time in
comparison to AEOSSA, HHO, PSO, and FA algorithms. The achieved results
have shown the effectiveness of the proposed approach compared to traditional
approaches. In Figure 3.8, a comparison is done on a pseudo-dataset on param-
eter throughput, and an improvement of 57.6%–62.4% is noticed among them.
Figure 3.9 represents a comparison of average throughput time on NASA iPSC
datasets; an improvement of 49.3%–52.8% is shown over traditional algorithms
among the proposed approaches. Similarly, Figure 3.10 shows a comparison
of the HPC2N dataset, and among this, a 35.2%–41.6% improvement is seen
over the traditional technique among the proposed approach. IGWOA effectively
explores the solution space by using a search method. By properly exploring and
utilizing the search space, this tactic can assist the algorithm in finding better
solutions. The outcomes repeatedly show that, for average throughput time, the
recommended IGWOA technique outperforms the traditional techniques. These
increases in average throughput time show IGWOA’s ability to improve system
performance, speed up task completion, and help with Fog computing activities.
In Summary, the in-depth analyses and data repeatedly show that IGWOA is very
successful in maximizing IoT task scheduling in Fog computing environments.
On a variety of datasets, including synthetic and real-world data, it regularly out-
performs conventional optimization algorithms. This suggests that IGWOA can
schedule IoT jobs more effectively, resulting in enhanced system functionality
and quicker task completion.
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3.4 Statistical validation for IGWOA

ANOVA statistical analysis for three datasets on different task lengths has been
done in Table 3.6. An analysis of all three datasets, with 1000 tasks for the
pseudo dataset, 2500 tasks for the NASA iPSC dataset, and 2000 tasks for the
HPC2N dataset, is performed. In all three analyses, the efficiency of the proposed
algorithms is noticed over traditional algorithms. In statistical analysis, a p-value
is less than 0.05 and the value of F crit is less than F, which shows the effectiveness
of the suggested strategy. According to this analysis, the proposed approach has
proven better for tackling optimization problems on the cloud-Fog system.
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Table 3.6: ANOVA Statistical Analysis for three datasets on different tasks
length.

Source of
Variation

SS df MS F P-value F crit

Rows 158482.2 5 31696.44 9.883326 7.09E-05 2.71089

Columns 185642.1 4 46410.52 14.47135 1.05E-05 2.866081

Error 64141.24 20 3207.062

Total 408265.5 29
(a) ANOVA Statistical Analysis for the pseudo workload on 1000 tasks

Source of
Variation

SS df MS F P-value F crit

Rows 134754.7 5 26950.95 9.832376 7.34E-05 2.71089

Columns 545991.8 4 136497.9 49.79784 4.04E-10 2.866081

Error 54820.83 20 2741.041

Total 735567.3 29
(b) ANOVA Statistical Analysis for real NASA iPSC dataset on 2500 tasks

Source of
Variation

SS df MS F P-value F crit

Rows 9.12E+08 5 1.82E+08 8.926269 0.000139 2.71089

Columns 9.61E+09 4 2.4E+09 117.5306 1.36E-13 2.866081

Error 4.09E+08 20 20441738

Total 1.09E+10 29
(c) ANOVA Statistical Analysis for real HPC2N dataset on 2000 tasks
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Chapter 4

Whale Earthworm Optimization
Algorithm for Load Balancing in
IoT-Fog-Cloud Environment

In Industry 5.0 and the next generations, the IoT has a remarkable impression on
network and computing technologies. The Internet of Things and its connect-ed
components, such as sensors and network connectivity to various gadgets and
house-hold things, enable access to many applications such as healthcare, traffic
control, and self-driving automobiles, among others (Ramzanpoor et al., 2022a;
Ramzanpoor, Hosseini Shirvani, & Golsorkhtabaramiri, 2022b). A variety of
information are being generated by smart machines that must be prepared and
computed for clients and end users in the least time to remain relevant with the
speed of technologies.
In support of the evolution of the IoT and as an adjunct to cloud,and Fog comput-
ing is introduced. In order to mitigate the issue of latency (Gorlatova, Inaltekin,
& Chiang, 2020; Tiwari, Sille, Salankar, & Singh, 2022), the Fog nodes extend
the cloud layer to the periphery of the system, in closer proximity to the locations
where IoT data is generated. To overcome various problems like latency, energy
efficiency, and security data are prepared at Fog-nodes and data are moved to
the cloud for high repository and more computational requirements. Evaluating
paradigms Cloud and Fog are required for all kinds of IoT data. For enhanced
QoS requirements, the Fog-Cloud paradigm is one of the best solutions available
at the time(Mehmood et al., 2019; Qureshi et al., 2020).
A Fog system always deals with the constraint of processing capacity, unlike
a cloud system. Many IoT applications are latency-sensitive and have latency-
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tolerance with different types of requirements. Due to latency problems, schedul-
ing, and management of these types of applications get difficult and not accepted
in fields of healthcare and autonomous driving or real-time data processing re-
quirements in the gaming industry. Resource scheduling is a solution to dealing
with these types of problems(Aslanpour et al., 2020; Abouaomar, Cherkaoui,
Kobbane, & Dambri, 2019). Communication and computation cost also be-
comes higher for various IoT applications due to the usage of cloud platforms.
Computation time and storage are two factors that may affect the pricing of using
a Fog-Cloud environment. Many existing techniques are unable to tackle the
balance between the cost and Quality of Service (QoS) parameters.
Therefore, in this work, we are considering the task’s significance with QoS and
cost when they are scheduled in a Fog-Cloud environment. For scheduling tasks
efficiently, a hybrid optimization algorithm based on the Whale-optimization-
algorithm(Albert & Nanjappan, 2021) and earthworm-optimization-algorithm
(Kumar & Karri, 2023) named Whale Earthworm Optimization Algorithm(WEOA)
is proposed. The proposed algorithm is designed to achieve job scheduling which
has cost benefits and efficient QoS attainment.
The main contribution of this work is as follows:

1. A hybrid Whale optimization and Earthworm optimization algorithm is
proposed named WEOA to implement resource management efficiently in
the Fog-Cloud environment.

2. The exploration phase and convergence speed are improved for optimal
resource allocations.

3. Proposing and designing autonomous “Load-balancer based task Alloca-
tion Frame-work” as per the three-layer architecture of Fog environment.

4. Validating proposed work with many experiments on performance metrics
like cost, makespan, and response-time.

As shown in Table 4.1, we provide the notations utilized in our recommended
solution.
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Table 4.1: Notation and definitions

Notation Definition

W⃗ Position vector of whale

W⃗p Current position of Whale

A⃗&C⃗ Coefficient vector

P⃗ Position of the Prey

F ti
time Finishing time of the Task

Sti
time Starting time of the Task

t Current Iteration

D⃗ Distance

Tmax Maximum iteration

NP Earthworm Population Size

nKEW Number of earthworms

ψcost Total Cost

ψcomp−cost Computation Cost

ψcomm−cost Communication Cost

ψcost(m) Cost of Memory

ψcost(p) Cost of CPU

ψcost(b) Cost of Bandwidth

MS Makespan

RT Response Time

Wttime Waiting Time

ART Average Response Time
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4.1 Background information and Explanation

The whale-optimization-algorithm (WOA) & Earthworm optimization method
and autonomic computing procedure are briefly explained in this section.

4.1.1 whale optimization algorithm

WOA is a meta-heuristic optimization algorithm 4 that draws inspiration from
biology. The WOA is established on the humpback whales’, and bubble net attack
procedure. One of the three methods—random search, shrinking encircling, or
spiral feeding—is used to update the locations of search agents.
The humpback whales can track the surface of a diminishing circle & spiral path
to detect the location of the prey while swimming around it. Thus, there are
two methods of exploitation. The following is the equalization 4.1 and 4.2 for
Shrinking Encircling:

W⃗ (t+ 1) = W⃗ (t) − A⃗ · D⃗ (4.1)

D⃗ = |C⃗ · (W⃗p)(t) − W⃗ (t)|

A⃗ = 2a⃗ · r⃗ − W⃗ (t)

C⃗ = 2r⃗ (4.2)

Over the iterations, vector a a⃗ decrease from 2 to 0, while r vector r⃗ reclines
between [0,1].
Between the present position and the prey, a spiral updating position is followed.
The formula is as follows in equation 4.3:

W⃗ (t+ 1) = D⃗ · ebL · cos(2πL) + W⃗ ∗ · t (4.3)

where b guarantees a logarithmic shape and l is a random value within the range
[-1, 1]. The Random search method of the whale, which is chosen by A, ensures
algorithm exploration. Thus, the equation 4.4 for the investigation is as follows:

W⃗ (t+ 1) = W⃗rand(t) − A⃗ · D⃗ (4.4)
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Algorithm 4: Algorithm: Whale Optimization Algorithm
Input: Tasks and resources R for a Fog node Fnod where
Fnod = ∑c′

c=1 Fnodc

Output: Best option for allocating resources Wb.
1. Initialize the whale population pop with P individuals represented as Wi

(where i = 1, 2, . . . , P ). Set the current iteration t to 0 and define the
maximum iteration Tmax.

2. Select the best search agent Wb(t) among the whales based on the fitness
criterion.

3. while t < Tmax do
(a) for each whale Wi in the population from 1 to P do

i. Adjust parameters A, C, a, r, and prob.
ii. if prob < 0.5 then

A. if magnitude of A (|A|) is less than 1 then
• Adjust D and Wi using Equations 4.1 and 4.2.

B. else
• Wrand, select a random whale.
• Adjust D and Wi using Equations 4.4.

Endif
iii. else

• Adjust D′ and Wi using Equations 4.3.
Endif
EndFor

(b) Adjust Wi if it goes beyond the search space.
(c) Calculate the whale’s Wi fitness.
(d) Based on the fitness criterion, update Wb, the optimal search agent.
(e) t = t+ 1.

4. end while
5. Return Wb.

4.1.2 Earthworm Algorithm

The way that earthworms reproduce presents several optimization issues, how-
ever, the processes they take to reproduce can be made flawless by according
to the following rules as shown in algorithm 5. Every earthworm can repro-
duce, and there are two different ways for each earthworm to do so.Every single
earthworm-generated child possesses all the genetic material that is equal in
length to the earthworms’ parents.The earthworm that has the best fitness level
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has direct next-generation permission and cannot be changed by operators. This
can confirm that the earthworm population will not decrease as generations in-
crease.

Algorithm 5: Earthworm algorithm
Initialization:

1. Convert t to 1 in the generation counter.
2. Set the MaxGen number of generations.
3. Decide on the NP population size.
4. Decide on the nKEW number of earthworms to keep.
5. Decide on the similarity factor α.
6. Configure the proportional aspect β.
7. Establish the constant γ as 0.9.

Assessment of Fitness:
Adjust the aspect (fitness) of each earthworm to meet its location.
Main Loop: while the best solution is not achieved or t < MaxGen do

1. All earthworms should be sorted by fitness value.
2. for i = 1 to NP do (loop over all earthworms).

(a) xi1 children should be produced through reproduction 1.
(b) Produce xi2 descendants by reproduction 2.

End for
3. Execute a crossover operation on the offspring.
4. if i > nKEW then

(a) Choose N parents using the roulette wheel selection method.
(b) Create M descendants.
(c) Based on the produced offspring M , determine xi2.

else
(a) Pick a single earthworm at random to serve as xi2.
(b) Update the earthworm’s location.

End if
5. for j = nKEW + 1 to NP do (loop over unkept earthworm individuals).

(a) Execute the Cauchy mutation.
End for

6. Calculate the population using the positions that have just undergone
restructuring.

7. t = t+ 1.
End while
Output:
The best solution should be presented.
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4.2 Proposed Framework of WEOA (Whale Earth-
worm Optimization Algorithm)

The WEOA is implemented via the Load Balancer a shown in Figure 4.1. The
tasks are delivered to the Load Balancer first,If the number of tasks is multiplied
by the number of instructions exceeds the threshold, then load balancer commu-
nicates with the API gateway, which requests that the VM Controller construct
extra worker virtual machines (Abualigah & Diabat, 2021). The API gateway
obtains all of the machine parameters from the VM Controller and forwards
them to the “Load Balancer”.

Figure 4.1: WEOA Framewok in Fog Environment

The “Load Balancer” then chooses the best machine using WEOA, tags tasks
with machines to assign, and sends them to the “Resource Controller” over the
API Gateway. The ideal machine’s metadata is saved in the "Global Configura-
tion" and can be utilized in subsequent cycles. The "Resource Controller" now
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assigns all jobs to the worker VMs. The "VM controller" removes idle VMs
to save power usage. The "Resource controller" forwards completed Tasks to
the IoT device layer via Load Balancer. Depending on the size of the tasks,
they will be routed to either the Fog or the Cloud devices. Depending on the
computations, it may be moved from the Fog to the cloud or from the cloud to
the Fog during task processing.

4.2.1 Proposed solution to problem and Implementation

Figure 4.1 depicts the task scheduling system, where Task T=(t1,t2,....tn) repre-
sented the jobs received from IoT devices. FN1, FN2,....FNn are the Fog nodes,
and CN1........CNn) are the cloud nodes, which are in charge of task execution.
However, in the Fog-Cloud scenario, there is an issue with the efficient assign-
ment of tasks to these nodes. The overall number of server nodes in the system
is the sum of Fog and Cloud nodes. All of these nodes are heterogeneous in
terms of bandwidth (Nb) and processing speed (Nps).

The Fog nodes process the tasks first, followed by the cloud nodes. The primary
motivation for this research is to determine how to efficiently assign jobs to these
nodes in order to minimize cost, time, and reaction time. When allocating jobs
to nodes, our load balancer algorithm will take into account all of these limits.

The goal of this work is to reduce costs, makespan, and response time. These
three parameters are taken into account in this work since most applications,
such as self-driving cars, healthcare, gaming, and media, require the quickest re-
sponse time, the largest throughput, and the lowest operational cost. As a result,
these characteristics are crucial in any Fog-Cloud-based computing system.

Cost
There is always a cost associated with the work accomplished by nodes either
by Fog nodes or by cloud. Task computation costs and communication costs
are always there in a system. Computation cost can be computed by the cost of
memory, processing, and bandwidth occupied by the nodes and Communication
cost is the cost of time consumption in allocating resources, it can be computed
by network latency, time required for execution of resource management algo-
rithm and number of devices requesting resources. Total-Cost in network can
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be computed by combination of Computation cost and communication cost as
shown in equation 4.5.

Total − Cost = ψComp-cost + ψComm-cost (4.5)

Computation Cost
Computation cost can be computed by the cost of memory, processing, and
bandwidth occupied by the nodes.

ψComp−cost = ψcost(m) + ψcost(p) + ψcost(b) (4.6)

The Computation Cost of a system may be computed by the cost of memory
utilization, the cost of CPU, and the cost of Bandwidth as mentioned in above
equation 4.6.

ψcost(m) =
m∑

i=1
cm

i (4.7)

The cost of memory taken by nodes Ni during job completion is described in
equation 4.7. It is calculated using the cumulative memory used by Fog nodes
and the cloud.

ψcost(p) =
n∑

j=1
cp

j (4.8)

Similarly, the above equation 4.8 describes the cost of using the CPU by nodes
Ni during task processing, and it also includes processing during the wait time.
Total CPU cost is the sum of cloud and Fog costs, as shown in equation 4.9.

TotalCost
CPU = Ccloud

CPU ∪ CFog
CPU (4.9)

The cost of bandwidth must also be factored into the overall system cost. Band-
width utilization on Fog nodes and in the cloud may be the same. The total
bandwidth utilized by both Fog and cloud during the system’s working period
can be used to calculate bandwidth cost, as shown in equation 4.10.

ψcost(b) =
l∑

k=1
cb

k (4.10)

Communication Cost
Communication cost is the cost of time consumption in allocating resources, it
can be computed by network latency in a system, time required for execution of

87



resource management algorithm and number of devices requesting resources.

ψComm-cost = Tnet-latency + Talgo-exec +NDev (4.11)

Based on the above equation 4.11, The network latency Tnet-latency will affect the
time of resource allocation between the Fog nodes and the devices. Reduced
latency leads to faster resource allocation and it can be measure in seconds(s).
The efficiency of the Fog environment resource management algorithm can have
a substantial impact on time consumption Talgo-exec and it can be measure in
seconds. A well-optimized algorithm can quickly discover available resources
and more efficiently allocate them. The total number of devices NDev connected
to the Fog environment can affect the time it takes to allocate resources. Han-
dling additional devices may necessitate more time for resource allocation and
administration.

Based on the equation 4.6 and 4.11, total cost in a system can be computed as
per equation 4.12.

Total-Cost = (ψcost(m)+ψcost(p)+ψcost(b))+(Tnet-latency+Talgo-exec+NDev) (4.12)

Makespan Makespan can be calculated by subtracting the time of job completion
from the time of task start. It is the time it takes to complete a task from start to
end. Makespan is calculated as per equation 4.13

MS = min
{
F time

ti
− S time

ti

}
, where ti ∈ T (4.13)

Here F time
ti

is the finishing time of the task, and S time
ti

is the starting time of the
task. Makespan must be minimum for efficient task scheduling.

Response-Time The machine’s response time to any enquiry is defined as re-
sponse time. Response times can be estimated for n concurrent user processes
and m requests.

RT = n

m
+Wt × time (4.14)

In the preceding equation 4.14, numerous questions will be raised by many
users n, and all of these questions m will be answered by machines at any given
time. Waiting time between two jobs might be included to calculate response
time accurately. To process any inquiry, a system may have a long response time.
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The average reaction time is the time it takes machines to complete n tasks,
where Ti=t1,t2,...tn. The average response time can be calculated using equation
4.15.

ART =
∑m

i=1 Ti

n
(4.15)

Ti is the machine’s individual time for task completion, and n is the number of
tasks completed.

Objective-Function

According to the preceding discussion, the objective function of our task, as
stated in equation 4.16, is to minimize cost, time, and reaction time.

Objective-function = We1 ∗ ψcost +We2 ∗MS +We3 ∗RT (4.16)

Where We1, We2, and We3 are the relevant metric weights. The weightage of
cost, time, and reaction time must be equal to one, as described in equation 4.17.

3∑
i=1

Wei = 1 (4.17)

4.2.2 Algorithm for proposed WEOA

This section discusses the algorithm we suggest, Algorithm 6. WEOA is a
mix of the whale optimization and Earthworm optimization algorithms. The
advantages of both optimization techniques are used to improve the system’s
efficiency.For reproduction, the suggested technique employs the earthworm
optimization technique, with only reproduction 2 from the classic earthworm
algorithm being used. The earthworm algorithm’s cross-over operation aids in
the replication of numerous machines in our proposed approach, and the whale
optimization algorithm is employed for encircling and hunting the prey (tasks).
The proposed approach aids in the optimization of the exploration phase and
convergence speed, which aids in the discovery of optimal resource management
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solutions in the Fog-Cloud system.

Algorithm 6: The WEOA pseudo-code
Input: Maxiteration, ThresholdTask−Size.;
Output: Efficient Depict of tasks by reducing ψcost, MS, RT.;
Procedure: Start;
1. Initialize population W of whales and Earthworms. // Count of
Machine M and Number of Tasks.;

2. Evaluate the Fitness Function.;
3.While currentitr ≤ Maxiteration do;
4. if prey (Task-size) > TaskThreshold // Check Task-Size based on
the instructions.;

then;
5. Evaluated the fitness of Whales. ;
6. Cross-over reproduction from fitness and append to (W ) as
equation 4.18. // Initializing heterogenous machines from fitness.;

7. elif Encirclingprob > 0.5;
then;
8. Update the whale position using encircling equation 4.19.
//Update global configuration with the optimal machine.;

9. else do;
10. update the whales position randomly. //Update global
configuration with optimal machine;

11. End if;
12. End if;
13. End-While;
14. Search for an optimal Machine from globalconfig;
15. Optimal Machine Found.;
16. End Procedure;

Description of an Algorithm

1. Initialization The whales’ placement represents a plausible answer to an
optimization challenge. The primary goal of this work is to compare effi-
cient mapping between tasks and machines. The whales and earthworms
are initialized in step 1 of this procedure. The abundance of earthworms
aids in whale reproduction. A random maximum number of whale po-
sitions aids in the search for the best-optimized solution in the search
space.
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2. Iteration Process and Fitness Function The algorithms’ next steps deal
with the iteration process and fitness function, which determine which
search agent is the best in the search space. The maximum iteration (Max-
iteration) value will continue the iteration process. The job size will be
determined in each iteration depending on the task size threshold value.
If the task size exceeds the threshold value, the machine’s fitness will be
evaluated using the supplied equation. If the machine’s fitness is no longer
sufficient, the reproduction strategy will be selected using the earthworm
optimization process. Optimization algorithm stages exploration and ex-
ploitation will be done during each iteration process.

3. Exploration phase based on Earthworm strategy: The Earthworm
optimization approach is used in the exploration phase of this algorithm.
Machine reproduction or replication will proceed according to equation
4.18:

Xy(i) =

Xa(i), 1 ≤ i < k

Xb(i− k), k < i ≤ m
(4.18)

Let A and B be the two machines; we will reproduce new machine Y
using A and B. Let Xa represent machine A’s feature vector, Xb represent
machine B’s feature vector, and Xy represent machine Y’s feature vector.
Because we are using crossover reproduction (EOA), the offspring will
have some random characteristics from A and some from B. The above
equation demonstrates how the traits in Y are inherited from A and B.

As per the above equation, the "ith" feature of Y will be an "ith" feature
from the parent A, if 1 ≤ i < k, and "ith" feature of Y will be the "(i−k)th"
feature from B if k < i ≤ m . where "k" is called the cross-over point and
is a random integer between 1 & n and "n" is the length of feature vectors
of A and B.

As a result, the progeny Y will be a hybrid species with random traits of
A and B, indicating cross-over reproduction.

Note*: A vector is a single column or row matrix. thus, a feature vector is
a single column or row matrix containing features as its elements.

91



4. Encircling the prey: Whale encircling is relied on spiral encircling;
whales are positioned in search space based on the encircling approach or
by random position based on the position of other whales. If the likelihood
of encirclement exceeds 0.5, the position of the whales is altered as shown
in equation 4.19:



X(t+ 1) = X(t) + A · cos(a · t) · cos(b · t)

Y (t+ 1) = Y (t) + A · cos(a · t) · sin(b · t)

Z(t+ 1) = Z(t) + A · sin(a · t)

X⃗(t+ 1) = X(t+ 1)̂i + Y (t+ 1)̂j + Z(t+ 1)k̂

(4.19)

The encircling motion of the whales is represented by the preceding equa-
tion, and the functions x(t), y(t), and z(t) give the x, y, and z coordinates
of the whale in 3-dimensional space, respectively. The amplitude of the
whale’s spiral movement is represented by A in the above equation, while
a and b are two whale-specific angles.

The value of t, which varies from 0 to 1, reflects the progression of the
spiral movement over time.

The final equation is used to convert vectors from coordinates returned by
the functions. As a result, X is the whale’s position vector.

5. The exploitation phase is based on the Whale attacking mechanism.
The exploitation phase aids in the hunt for prey; in our proposed ap-
proach, the exploitation phase is carried out in accordance with the whale
optimization algorithm, as shown in equation 4.20:

X⃗(t+ 1) = m · (P⃗ − X⃗(t)) + X⃗(t) (4.20)

Let P be the prey’s location vector and X(t) be the whale’s position vector
at time t. The above equation represents the whale’s attacking character.
The movement factor "m" here is between [0, 1]. It is determined by things
such as the machine’s specifications or the behaviour of other whales in
the population.

92



The operation will be continued till the maximum number of iterations is
reached. The ideal solution will be found from the global configuration
after the maximum number of iterations are completed. If the ultimate
ideal solution from the global configuration is determined, the procedure
will be completed.

Figure 4.2: Methodology of WEOA Framewok
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Figure 4.2 depicts the proposed WEOA process. The flowchart begins with the
initialization phases, which include the initialization of whales and earthworms.
The method is continued until an optimal solution is identified based on the
iteration number specified. The fitness function of the machines is derived using
equation 4.16, which takes into account cost, makespan, and response time.
The entire system is employed in vehicular Fog computing situations where
automatic automobiles are operating on roadways and real-time data without
delay is required for automatic vehicles to run. According to the Performance
improvement rate stated in the result section for the vehicular Fog computing
environment, response-time is weighted (We1) at (0.60), makespan is weighted
(We2) at (0.20), and cost is weighted (We3) at (0.20). Response-time weightage
is substantially higher since data on traffic bottlenecks, humps, and when to
apply breaks are required on a high priority without delay for making decisions
and avoiding an accident.

4.2.3 Explaining example for the proposed technique

As illustrated in Figure 4.3 current state-of-the-art (Alizadeh et al., 2020), IoT-
Fog-Cloud environment designs include VMs that are identified as Fog devices
with static functionalities. As demonstrated in Figure 4.3, some VMs are idle
i.e., those are without assigned jobs for numerous tasks. As a result, Fog devices
2 and 4 are labelled as idle devices, resulting in unnecessary hardware utiliza-
tion. Furthermore, tasks having instructions above the threshold value must be
delivered straight to the cloud layer for computation (Rahbari & Nickray, 2019;
Shen et al., 2017). For heterogeneous architecture, there are chances that some
tasks are left unallocated despite the resources available for the allocation, and
the main reason behind this is the atomic nature of the tasks. The existing state
of the art has some cons such as inefficient allocation of resources, improper
distribution of resources among different VMs, and inability to allocate tasks to
machines because of the atomic nature of the task.(Naas, Lemarchand, Raipin,
& Boukhobza, 2021)

94



Figure 4.3: Static VM allocation process without Task-Threshold

As shown in Figures 4.4 and 4.5, the proposed approach uses WEOA for the
Cloud-Fog architecture. The WEOA is a hybrid genetic algorithm that has the
ability of reproduction (Earthworm cross-over reproduction) to reproduce the
VMs as per threshold, and the whale optimization algorithm helps in whale
encircling and attacking the prey. Initially, a random number of machines are
initialized, and their fitness value is calculated. The load balancer iterates over
the tasks queue to check if the task queue is greater than the threshold. Thus,
the strength of the Earthworm’s cross-over reproduction can eradicate the issues
caused by the atomic nature of the Task. The proposed architecture has a Thresh-
old value for the task size that decides whether the VMs need to reproduce or
not. If the task size exceeds the Threshold, then the cross-over reproduction
takes place and new VMs are reproduced.
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Figure 4.4: Dynamic VM allocation process using WEOA before Machine
Replication

The parents for the machine to be reproduced are selected based on the least
fitness value and the one with the second least fitness value as done in Figure
4.4 Machine 2 and Machine 3 have the least fitness values 1208 and 1063. Then
replication process will be done through these machines as shown in Figure 4.5.
With each iteration, the fit-ness of the machine is calculated, and the Whale’s
encircling phenomenon plays its role. The VMs iterate over the task queue again,
taking into consideration, the newly reproduced VMs, the task is allocated dy-
namically. Due to the dynamic allocation of the tasks, the problems caused by
the atomic nature of tasks (tasks are independent and cannot be di-vided into
chunks) such as improper allocation of resources are coped up. For the case,
where the number of tasks is less than the running VMs, VMs with high fitness
value are shut down and tasks are only allocated to the machines with low fitness
value.
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Figure 4.5: Dynamic VM allocation process using WEOA after Machine Repli-
cation

This dynamic nature of the architecture helps us to reduce the unwanted usage
are resources that were being used by the idle machines and thus, saving power
consumption. Thus, the proposed architecture has two major processes, the first
one is the reproduction of machines as per threshold value and the second one
is the allocation of resources by iterating over the task queue to allocate tasks
selectively.

4.3 Experimental Evaluation

In this segment, we are discussing regarding experimental set-up and compari-
son contrasting with traditional techniques. All experiments are performed on
the iFogSim toolkit(H. Gupta et al., 2017) with system setup core i7, Windows
10 OS, and 16GB of RAM.
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4.3.1 Experiment setup and dataset statistics

The data-workflows for performance checking of the proposed approach are
brought out from real-world data sets HPC2N and CEA-CURIE https://www.cs.hu
ji.ac.il/labs/parallel/workload. The execution traces bring out from the process-
ing of coinciding HPC tasks exist in these workload logs. Table 4.2 illustrates
the real workloads used in this work. In a real scenario, HPC2N and CEA-Curie
have many workloads, but in this work, we have taken only 10 workloads.

Table 4.2: Illustration of real workloads

Workload
Log

Parallel Tasks CPUs Users Filename

HPC2N 202871 240 257 HPC2N-2002-2.2-cln.swf

CEA Curie 312826 93312 582 CEA-Curie-2011-2.1-cln.swf

For simulation setup, both Fog and cloud nodes are taken for processing. Evalu-
ation of the experimental setup has been done on parameter Cost, makespan, and
response-time. Each machine on Fog and Cloud has some level of bandwidth,
processing speed, and RAM. Fog nodes have a lower range of bandwidth, CPU
frequencies, and RAM utilization in comparison to the cloud. Cost is considered
with a unit of (Grid$). Table 4.3 describes the configuration details of the Cloud
and Fog scenario.

Table 4.3: Configuration of Cloud and Fog scenarios.

Parameters Fog Cloud Units

Processing Speed [1000:2000] [3000:5000] MIPS

Bandwidth [128:1024] [512:4096] Mbps

RAM [250:5000] [5000:20000] MB

Cost [0.2:0.5] [0.6:1.0] G$

VMs Numbers [15,20,35] [10,15,20] VM
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4.3.2 Simulation results

For evaluation of simulation results proposed approach is compared with an
existing technique that was implemented using optimization algorithms like
whale optimization, earthworm, cuckoo search, etc. We have compared our
proposed approach with five existing techniques including h-DEWOA (hybrid-
differential-evolution-enabled whale-optimization algorithm)(Chhabra, Sahana,
Sani, Mohammadzadeh, & Omar, 2022), cuckoo-search- differential algorithm
(CSDEO)(Chhabra et al., 2021), Cuckoo-search-particle-swarm-optimization
algorithm (CSPSO)(Chhabra, Singh, & Kahlon, 2020), blacklist matrix-based-
multi-objective algorithm (BLEMO) (Vila, Guirado, Lerida, & Cores, 2019), and
EEOA (Electric-earthworm-optimization algorithm) (Kumar & Karri, 2023).
All comparisons are made for 30 iterations for 10 workloads from given HPC2N
and CEA-CURIE datasets.

Results for CEA-Curie workload
Figure 4.6 is shown comparison results on performance metric makespan for the
proposed approach with all mentioned five techniques. As per comparison results
CSPSO failed to perform better among all techniques, the value of makespan
for CSPSO is much higher than all the techniques. In the h-DEWOA technique
differential evolution technique is integrated with the whale algorithm, as the
whale algorithm is having the problem of getting remain in local optima and low
convergence speed. h-DEWOA also doesn’t have fair makespan results. The
proposed approach outperforms all mentioned techniques on performance metric
makespan, the approach is getting the benefit of dynamic machine allocation,
and load balancer approach, which continuously replicates the machine in case
if tasks with higher threshold values arrived during iterations.
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Figure 4.6: Best Makespan for CEA-Curie workload

Performance improvement rate is calculated to determine the % of improvement
of the proposed approach with all mentioned techniques as shown in Table 4.4,
performance is calculated by the equation 4.21

ppre − ppro

ppro
(4.21)

Here ppre is the makespan value of the previous approach, and ppro is the
makespan value of the proposed approach. As shown in Table 4.4, the proposed
approach successfully gets performance over the techniques. For workload,
WE01 best case makespan value of EEOA is 9987.45, and for the proposed
approach it’s 9788.07, then as per the PIR equation 9987.45−9788.07

9788.07 ≈ 2.04 %.
That’s why a 2% improvement is noticed by the proposed approach over EEOA.

100



Table 4.4: PIR (%) of the proposed approach with all existing techniques

Workloads h-DEWOA CSDEO CSPSO BLEMO EEOA

WE01 4.98 12.07 29.50 4.21 2.04

WE02 26.83 38.54 63.81 17.03 1.05

WE03 7.82 17.50 62.80 13.68 1.94

WE04 21.78 24.61 40.16 14.14 2.38

WE05 17.80 29.58 53.86 14.19 2.49

WE06 20.92 40.36 73.97 26.87 1.75

WE07 8.55 15.97 23.43 15.03 1.15

WE08 18.28 34.71 76.54 17.25 1.38

WE09 5.33 20.53 65.84 32.03 2.69

WE10 30.08 42.46 127.87 46.76 1.83

Figure 4.7: Cost comparison for CEA-Curie workload

Figure 4.7 shows the cost comparison on CEA-Curie workload, as per repre-
sentation CSPSO has a higher cost in the system. BLEMO, h-DEWOA, and
CSDEO have approx the same cost for workload WE01-WE08. Our proposed
approach outperforms the EEOA technique and has a performance improvement
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of 2% on the CEA-curie workload. The proposed technique performs efficiently
with lower cost value because VMs are allocating effectively. The load balancer
and resource controller are managing the network together. If the load balancer
raises some inquiry through the API gateway regarding task mapping, the re-
source controller will check the available resources with each machine. No idle
machine will remain in the network helps in reducing the cost of the proposed
approach.

Figure 4.8: Response-time comparison for CEA-Curie workload

Figure 4.8 represents the response-time comparison with existing techniques on
the CEA-Curie workload. Response time is calculated using the communication
time with think time in the system. Delay in the CSPSO technique is higher,
that’s why RT of the CSPSO technique is more in comparison with all techniques.
Task mapping of CSDEO and BLEMO is almost the same. Both technique is
vector based where a vector is maintained for mapping the tasks with VMs. The
proposed approach has low RT in comparison to existing techniques. The whale
optimization exploitation phase helps in responding to tasks fastly. In contrast,
our algorithm has responded effectively on all workloads. the proposed approach
successfully gets performance over the techniques. For workload, the WE01 RT
value of EEOA is 20.14, and for the proposed approach it’s 18.89, then as per
the PIR equation 20.14−18.98

18.98 ≈ 6.11 %. That’s why a 6% improvement is noticed
by the proposed approach over EEOA.
Results for HPC2N Workload Figure 4.9 shows comparison results on per-
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formance metric makespan for the proposed approach with all mentioned tech-
niques. As noticed in Figure 4.9, the CSPSO technique is performing badly on
the HPC2N workload for the Performance metric makespan. The task mapping
technique of CSPSO is unable to perform on the high-performance network.
h-DEWOA and BLEMO approaches is having the same performance on 10
workloads under 30 iterations. Our proposed approach performed better and
outperforms other techniques. VMs in the proposed approach is managed prop-
erly by the VM controller and resource controller even for the High-performance
network dataset. Here Exploitation phase, which is running under the control of
the whale optimization algorithm is responding well.

Figure 4.9: Best Makespan for HPC2N Workload

Performance improvement rate is also calculated for the HPC2N workload for
the proposed technique with other techniques using equation 4.21 as shown in
Table 4.5. For workload, WE01 best case makespan value of EEOA is 17612.19,
and for the proposed approach it’s 17225.72, then as per the PIR equation
17612.19−17225.72

17225.72 ≈ 2.24 %. That’s why a 2% improvement is noticed by the
proposed approach over EEOA.
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Table 4.5: PIR (%) of the proposed approach with all existing techniques

Workloads h-DEWOA CSDEO CSPSO BLEMO EEOA

WE01 6.75 13.76 25.53 19.66 2.25

WE02 11.16 22.83 47.361 8.99 1.45

WE03 7.32 14.81 30.45 7.49 2.22

WE04 3.53 12.42 35.17 4.81 1.58

WE05 19.73 39.48 69.51 28.71 2.99

WE06 15.48 25.24 78.33 31.58 2.12

WE07 7.80 11.31 62.77 18.25 2.25

WE08 11.71 26.43 78.17 28.53 1.93

WE09 41.37 43.13 79.44 73.08 2.40

WE10 54.80 75.91 80.66 78.36 1.88

Figure 4.10: Cost comparison for HPC2N workload

Figure 4.10 shows the comparison of the total cost for the HPC2N workload,
here cost is measured in G$. The cost factor is determined by the parameter’s
bandwidth, CPU, and RAM. As per 4.10, the cost of CSPSO is much high, and
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the cost of BLEMO & h-DEWOA is equally approached. The cost for workloads
WE04 and WE05 has been raised for all techniques. The proposed technique has
less cost in comparison to EEOA and other techniques. 2% of performance is
noticed for the proposed approach over the EEOA technique. As per the proposed
approach cost of using VMs is low because VMs are generated dynamically as
per the requirements. but in the case of the CSPSO technique, all VMs are
initialized in starting without seeing the load of the network. That’s why the cost
of the CSPSO technique is much high as compared to other techniques.

Figure 4.11: Response-time comparison for HPC2N workload

Figure 4.11 represents the response-time comparison with existing techniques on
HPC2N workload. Similarly, for the HPC2N workload, the delay in the CSPSO
technique is higher, that’s why the RT of the CSPSO technique is more in com-
parison with all techniques. The proposed approach has low RT in comparison
to existing techniques. In contrast, our algorithm has responded effectively on
all workloads. the proposed approach successfully gets performance over the
techniques. For workload, the WE01 RT value of EEOA is 23.58, and for the
proposed approach it’s 22.18, then as per the PIR equation. 23.58−22.18

22.18 ≈ 6.31
%. Due to this, a 6% improvement is noticed in the proposed approach over
EEOA.
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Figure 4.12: Objective Function value throughout a single run of the proposed
algorithm for CEA-Curie workload.

Figure 4.13: Objective Function value throughout a single run of the proposed
algorithm for HPC2N workload.

Figures 4.12 and 4.13 display the objective function values throughout a single
run iteration for both the CEA-Curie and HPC2N algorithms. As per Equation
4.16 , the fitness value for both the proposed and EEOA algorithms is calculated,
considering the values of We1 and We2, which are 0.2 and 0.6, respectively.
The suggested WEOA algorithm exhibits quicker convergence compared to the
EEOA algorithm. The results indicate that, when contrasted with the EEOA
algorithm, the suggested WEOA algorithm effectively explored the solution
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space and reached the optimal value within a comparable timeframe.

Figure 4.14: Degree of imbalance of the offloaded the tasks.

Figure 4.14 depicts the degree of imbalance for the EEOA algorithm and the pro-
posed approach using the same previous parameter settings as the number of IoT
nodes increases. The graph demonstrates that the suggested WEOA algorithm
maintains less values. This suggests that the proposed approach successfully
distributes the workload across the Fog nodes.
Discussion
The positive results of this study demonstrate the efficiency of the suggested
WEOA algorithm in optimizing resource management in a Cloud-Fog scenario.
The algorithm creates a balance between exploration and exploitation by combin-
ing the strengths of the Earthworm and Whale optimization algorithms, resulting
in enhanced job allocation and overall system performance. The findings of this
study have practical relevance for service providers operating in Cloud-Fog en-
vironments that generate enormous amounts of data from IoT devices. These
providers can improve resource utilization, reduce costs, improve response times,
and achieve higher task completion rates by applying the WEOA algorithm.

4.4 Statistical validation for WEOA

Table 4.6 shows the results of an ANOVA statistical analysis of two factors with-
out replication on the degree of imbalance. The proposed algorithms outperform
traditional algorithms in terms of analytical efficiency. In statistical analysis, a
p-value less than 0.05 and an F crit value less than F demonstrate the capability
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of the suggested approach. According to this analysis, the proposed approach is
superior for handling optimization challenges on the IoT-Fog-Cloud system.

Table 4.6: Anova Statistical Analysis: Two Factor Without Replication For
Degree Of Imbalance

Source of
Variation

SS df MS F P-value F crit

Rows 0.050375 5 0.010075 30.68528 0.000929 5.050329

Columns 0.003008 1 0.003008 9.162437 0.029183 6.607891

Error 0.001642 5 0.000328

Total 0.055025 11
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Chapter 5

Conclusion and Future Direction

The findings of this study have practical relevance for service providers operat-
ing in Cloud-Fog environments that generate enormous amounts of data from
IoT devices. These providers can improve resource utilization, reduce costs,
improve response times, throughput, and achieve higher task completion rates
by applying the WEOA,and IGWOA algorithms. The successful outcomes of
this study demonstrate the efficiency of the suggested WEOA,and IGWOA in
optimizing resource management in a Cloud-Fog scenario. The algorithms cre-
ates a balance between exploration and exploitation , resulting in enhanced job
allocation and overall system performance.
When WEOA compared to EEOA, the results show a 6% improvement in re-
action time, 2% in cost, and 2% in makespan. Furthermore, when compared
to other systems such as h-DEWOA, CSDEO, CSPSO, and BLEMO, it demon-
strates remarkable improvement of up to 82% in reaction time, 75% in cost, and
80% in makespan.
The proposed IGWOA approach is contrasted with three other well-known op-
timization algorithms: AEOSSA, HHO (Harris Hawks Optimization), and PSO
(Particle Swarm Optimization), to determine how effective it is. Three separate
datasets, each of which represents a different scenario or set of tasks inside the
Cloud-Fog environment, are used to thoroughly test the suggested methodology.
These assessments’ findings reveal that the suggested approach constantly out-
performs the alternatives, illuminating its higher capacity for job optimization
and QoS improvement.
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5.1 Future Directions

Given the work’s future projections, task offloading could include machine learn-
ing models, which could improve Quality of Service (QoS) optimization in Fog-
cloud-based systems. By anticipating the job placement order, such models may
give increased scalability and efficiency in optimizing QoS parameters.
Furthermore, new opportunities for enhancing resource scheduling in Fog com-
puting are presented by the integration of cutting-edge technologies like federated
learning and blockchain. Blockchain technology offers a decentralized, tamper-
resistant ledger for documenting transactions and resource allocations, which
can improve security, transparency, and trust in scheduling choices. Federated
learning makes it possible for remote Fog nodes to collaborate on model training
while maintaining data privacy, which makes QoS management more effective
and customized.
Future study should also focus on resolving the scalability issues related to
resource scheduling in extensive Fog settings. To enable the expansion of
Fog computing deployments, scalable scheduling methods that can handle the
growing complexity and volume of devices and applications will be neces-
sary. Furthermore, in order to achieve comprehensive resource management
in Fog environments, it will be imperative to investigate novel approaches for
multi-objective optimization that take into account aspects like energy efficiency,
dependability, and scalability in addition to quality of service.
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