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ABSTRACT

The traditional chest radiograph should be re-evaluated, given the essential role
that chest X-ray images (CXRs) play in diagnosing lung diseases. This reassess-
ment is crucial because CXRs provide vital insights into various lung conditions,
enabling earlier detection and improved patient outcomes. As advancements in
imaging techniques and Al interpretation emerge, updating our understanding of
CXRs can enhance diagnostic accuracy and clinical decision-making. Interpreting
radiographs presents inherent challenges, such as overlapping anatomical structures
and subtle abnormalities that can obscure critical findings. Consequently, highly
trained radiologists are essential for minimizing false positives and negatives. Their
expertise is vital in navigating these complexities, considering the variability in im-
age quality and the similarities between different conditions.

Radiologists typically rely on their experience to make informed diagnoses by
carefully examining CXR images for signs of infection. However, the explanations
for their conclusions can often be vague or inconsistent due to the complexities in-
volved in interpreting CXR images. From medical images, convolutional neural
networks (CNNs) have proven highly effective in classifying and identifying dis-
eases. While deep learning (DL) models show significant promise, their lack of ex-
plainability presents a major challenge to clinical application in the highly regulated
healthcare environment. To assist radiologists, a system architecture was developed
while addressing DL model lack of explianability. It consit of multiple phases.
One phase employs a deep network architecture to identify relevant diseases, while
another phase utilizes Explainable Artificial Intelligence (XAI) methods to iden-
tify local indicators within the CXR images. This approach not only facilitates the
classification of lung diseases, including COVID-19, but also effectively addresses
issues related to data imbalance.

By employing weakly supervised learning, we aim to identify significant re-
gions within CXR images, derive interpretation rules, and explain the reasoning

behind the DL model’s outputs to replicate the decision-making process of radiol-
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ogists. The study is structured into six major sections: (1) an examination of the
evolution from conventional feature engineering to advanced deep learning tech-
niques; (2) a study of these techniques applied to identify lung diseases such as
COVID-19, pneumonia, and tuberculosis; (3) exploration of a custom deep learn-
ing network to extract lung features; (4) employing a localization network to extract
local indicators from CXR images to mitigate the black box nature of the model;
(5) creating an ensemble of localization models; and (6) handling data imbalance
through a multi-stage approach while utilizing transfer learning models.

In this work, we contribute by extracting discriminant features using XAl meth-
ods. A fusion of regions of interest and other features was performed, leading
to our fusion models achieving a mean accuracy of 99.29% and a mean recall of
99.33% on training data, and 97.81%, 98.39% on test data, respectively. We also
implemented XAI ensembles that utilize saliency maps, gradient-weighted class
activation mapping (Grad-CAM), and local interpretation model-agnostic explana-
tions (LIME) to generate visual explanations for DL models predicting COVID-19
infections. The experimental results demonstrate the robustness of the ensemble
approach, with the XAI ensemble achieving an accuracy of 98.85%, compared
to 99.62% for individual LIME. Among transfer learning approaches, the XAlI-
Xception net yielded the best test result with 99.89% accuracy and 99.85% recall.
By addressing class imbalance, our custom network achieved 99.61% accuracy on
test data.

However, the study does present certain limitations. The dependency on specific
imaging datasets may limit the generalizability of the findings to broader clinical
populations. Furthermore, the complexity of the proposed models could hinder
their adoption in clinical settings without sufficient explainability and validation.
Our contributions encompass the generation of XAl annotations and the extraction
of features that aid radiologists in their assessments. These XAl annotations will be

made available to the research community.
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Chapter 1

INTRODUCTION

Humans are the most precious living beings on earth, and they suffer from various
diseases. Major diseases occur due to various conditions. The main reason to suffer
from diseases is due to the failure or malfunction of an internal organ in the body.

These can be the brain, heart, kidney, liver, and lungs.

Lung diseases are infectious diseases. Any condition with the lungs that prevents
them from performing properly is referred as a lung disease. There are three main

types of lung diseases

1.1 TYPES OF LUNG DISEASES

Airway diseases: These conditions affect the tubes (airways) that carry gases like
oxygen into and out of the lungs. As a result, the airways are commonly constricted
or closed. Asthma, chronic obstructive pulmonary disease (COPD), and bronchiec-
tasis are examples of illnesses of the airways.

Lung tissue diseases: These conditions have an impact on the lung tissue’s struc-
ture. Scarring or tissue inflammation (restrictive lung disease) prevents the lungs
from fully expanding. As a result, it is challenging for the lungs to absorb oxygen
and release carbon dioxide. They are consequently unable to breathe fully. These
diseases include sarcoidosis and pulmonary fibrosis.

Lung circulation diseases: The blood arteries in the lungs become clotted, scarred,
or inflamed, which results in several d isorders. The condition of the heart is im-

pacted by certain illnesses. Among them is pulmonary hypertension.



The most common lung diseases include:

Asthma, Collapse of a part or all of the lung (pneumothorax or atelectasis)

Swelling and inflammation in the main passages (bronchial tubes),

Chronic obstructive pulmonary disease(COPD), Lung cancer and Lung in-

fection(pneumonia),

Pulmonary edema (abnormal build-up of fluid in the lungs), pulmonary em-

bolus (Blocked lung artery).

In all these types, patients have breathing problems such as shortness of breath,
inability to breathe deeply, and difficult to exhale. Along the same lines, a related
pneumonia kind of disease “severe acute respiratory syndrome” (SARS) reported
in Guangdong Province, China in late 2002 and actually named as SARS in 2003
[1]. Another severe respiratory disease was reported in Wuhan, Hubei province,
China in 2019 and it is termed as “WH-Human 1’ coronavirus is also referred to as
‘2019-nCoV’ [2] later named COVID-19.

With the development of COVID-19, researchers’ focus has shifted to different
lung conditions, among which include COVID-19, Pneumonia and Lung cancer are
few conditions. The reason for COVID-19 and Pneumonia is lung infection. Lung
cancer results in the formation of lung nodules, some of which remain unchanged
over the time until they develop into malignant lesions. Al system’s goal is to
identify these diseases by looking at different diagnostic reports. Here the focus is
on identifying COVID-19 from Chest X-ray (CXR) images. The further sections

talk about different modalities.

1.2 MEDICAL IMAGING

There are various medical imaging techniques available to capture the human body
structure and organ tissues in order to determine the abnormalities. The following

are the different modalities available [3].



Figure 1.1: Basic elements of a projection X-ray system

1.2.1 X-RAY TRANSMISSION

X-ray transmission imaging is based on measuring the quantity of X-ray radiation
that reaches a detector after the initial X-rays have been diminished by objects in
their path [4]. The amount of diminishing is the result of the number of X-rays
received by objects and scattering caused by the object itself. Since the amount
of diminishing is different for various structures, these can be distinguished easily
except for the ones that are in the single line of projection. Based on the intensity
of X-rays and the proper one to utilize based on the type of body part to be diag-
nosed. There are different modalities in X-ray transmission such as Radiography,
Mammography, and Fluoroscopy. In radiology, the differences in attenuation from
body parts or tissues are captured on the detector which was placed just behind the
patient’s body as shown in the Figure 1.1. It shows the front view of the CXR image
1.

According to the patient’s posture and orientation in relation to the X-ray source
and detector panel, CXRs are broadly categorized into posteroanterior, anteropos-
terior, and lateral. In the posteroanterior (PA) and anteroposterior (AP) views, the

X-ray source is positioned to the rear or front of the patient, respectively.

1.2.2 COMPUTED TOMOGRAPHY(CT)

With three different orientations for the X-ray beam source and detector, different
projection views can be obtained by manipulating the position and direction of the

beam in C-arm X-ray imaging, which improves upon the plain film approach. Two-

Thttps://radiologykey.com/projection-x-ray-imaging

3



dimensional images will be captured at different angles which help to construct a
full image using a technique called filtered back projection. Filtered backpropaga-
tion and different computer algorithms are used to capture the three-dimensional
view and projected it into two-dimensional images of different slices. Essentially
CT uses X-rays to project the images onto a film in 360 degrees by rotating clock-

wise around the patient’s body as shown in the Figure 1.2.

Large Fixed Detector
g Array

------------ -.\\
Large Fan Beam "
A ',
X-ray Tube
LY Active Detector
€ Elements
"

-

Figure 1.2: Fourth generation of CT scanner design.

1.2.3 MAGNETIC RESONANCE IMAGING (MRI)

Magnetic Resonance Imaging (MRI) is well-known for its ability to provide high-
resolution images of soft tissues using magnetic fields and radio waves [4]. Al-
though MRI is less frequently applied to lung disease detection due to inherent
challenges like low proton density and motion artifacts, it remains valuable in cer-
tain scenarios. Techniques such as hyperpolarized gas MRI and oxygen-enhanced
MRI offer detailed assessments of pulmonary conditions, including fibrosis and
COPD. However, limitations such as high costs, extended scanning times, and sen-

sitivity to patient movement hinder its regular use for lung disease screening .

1.24 ULTRASOUND IMAGING

Ultrasound imaging, commonly known as sonography, is a valuable diagnostic tool
that utilizes high-frequency sound waves to generate real-time images of internal

structures. In the context of lung examination, sonography is employed primarily



for assessing pleural conditions, such as pleural effusions or thickening, as it can
provide information about the presence and extent of fluid accumulation. However,
its application in lung pathology is limited compared to other modalities. Ultra-
sound is less effective for evaluating lung parenchyma due to the difficulty of visu-
alizing air-filled structures. Additionally, operator dependency and limited field of
view can hinder its diagnostic accuracy. Thus, while ultrasound has specific appli-
cations in lung assessment, it is not a primary imaging modality for comprehensive

lung disease evaluation.

In this study, X-ray images are preferred due to their widespread availability, cost-
effectiveness, and rapid acquisition, making them a practical choice in clinical set-
tings. Unlike other imaging modalities, such as MRI or CT scans, which can be
expensive and time-consuming, X-rays provide immediate insights into lung condi-
tions. They are particularly valuable for diagnosing diseases like COVID-19, where
timely intervention is crucial. Furthermore, the existing infrastructure for X-ray
imaging in healthcare settings facilitates easier implementation of Al-driven diag-
nostic tools. This accessibility allows for a broader application of Al techniques
in analyzing X-ray images, ultimately enhancing the ability to detect and monitor

lung diseases efficiently.

1.3 EVOLUTION OF TECHNIQUES FOR CHEST DISEASE DETECTION

The objective of this research is to study the techniques that help to detect chest
disease using the idea of localization. In the process, we are examining and inves-
tigating techniques for recognizing chest ailments such as COVID-19, Pneumonia,
and Tuberculosis (TB) and how technology has evolved. How the research has
evolved in finding the patterns from images over the decades starting from tradi-

tional methods to recent state-of-the-art techniques is shown in the Figure 1.3.
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Despite the use of Artificial Neural Networks (ANNSs) to diagnose interstitial
lung disorders in 1999 [13], ANNs had never been used to predict pneumonia until
2003 [14]. CXR images were used to predict pneumonia in infants in 2004 [15];
researchers believed that a mix of pattern recognition and clinical experience is the
best way to diagnose lung conditions [16]. Image wavelet transform coefficients
were predominantly used to generate feature vectors [17], a 15-nearest neighbor
algorithm, and distance-dependent weighting were able to identify pneumonia from
CXR images. The authors [18] employed ANNs to diagnose pneumonia, and TB
from patient epicrisis reports, whereas [19] identified it by decoding the region of
interest from CXR images. Texture and shape features from segmented lung fields
derived from CXR images used support vector machine (SVM) to classify TB and
pneumonia on top of it [20]. In contrast, a fuzzy inference system was introduced to
detect TB from CXR images by [9]. A machine learning-based framework where
Computer-Aided Detection(CAD) scores from CXR images and clinical features of
each subject are considered to identify TB [21]. In contrast, a neural net is employed
to identify TB and pneumonia by deriving geometrical features from segmented
CXR images [22].

A customized CNN was developed to detect interstitial lung diseases using lung
image patches [23] with Adam optimizer, learning rate of 0.001. Feature extrac-
tion through Transfer Learning(TL) techniques has began [24, 25, 26, 27, 28, 29]
to classify lung diseases. Various TL methods such as AlexNet [12], GoogleNet,
InceptionNet [30, 31], ResNet [32], VGG16 [33] and DenseNet [34] are different
feature extractors. ChexNet [11] is a 121-dense layer CNN used to identify pneu-
monia that became the state-of-the-art method and a benchmark model by outper-
forming average radiologist performance. However, [35, 36] tailored CNN cannot
be ignored. The authors [37] have extracted region of interest features through an
attention-based mechanism to identify TB from CXR images. Several review pa-
pers [38, 39, 40, 41, 42] have given detailed reviews with various deep learning
methods from their perspective and compared with human readers, adding more

value to state-of-the-art transfer learning techniques. Despite these studies, the dis-



ease has mysterious hidden secrets that need further attention. The studies which
detect COVID-19 from various authors include COVIDNet [43], Dark COVID
Net [44] inspired by Dark Net-19 [45], COVIDX-Net [46], COVID-ResNet [47]
with different scales of input images, Deep COVID [48] employed with SqueezNet
[49] and DenseNet, CoVNet-19 [50] is an ensemble of VGG19 and DenseNet121,
CoroDet [51] is a custom CNN trained from scratch. Similarly a modified ver-
sion of Extreme Inception [52, 53], a modified Efficient-Net [54], A VGG-19 with
five additional max pooling layers [55], a patch-based CNN with limited set of
trainable parameters [56], fuzzy tree-based feature extraction with ensembles by
[57, 58] proposed Distance Based Naive Bayes (DBNB), which uses a computa-
tional method called Advanced Particle Swarm Optimization (APSO), which ex-
tracts the most compelling and relevant features from clinical findings and then
employs Naive Bayes, pre-trained models InceptionV3, DenseNetl121, and VGG19
were used to extract features and then combined individual predictions using Cho-
quet fuzzy integral to get final labels [59], Apostolopoulos [60] experimented with
VGG19, MobileNetv2 [61], Inception, Xceptionv2 [52], InceptionResNet-v2 with
different parameters.

CXR images were pre-processed through the fuzzy color technique, stacked
with original images to avoid noise [62], fed to a Squeeznet, MobileNet, and classi-
fied through SVM. A state-of-the-art fully connected CNN in conjunction with the
adversarial critic model Attention U-Net to segment the lungs [63]. At the same
time, Rajaraman has focused on reducing network complexity by iterative pruning
on an ensemble of deep learning techniques to classify COVID-19 [64]. Fractal
methods were used [65] to extract features and then a deep convolution neural net
was defined to classify COVID-19.

Lung nodules are tissue lumps in the lungs that are tiny, round, or oval in shape.
If you have a lung nodule, you have a more than 40 percent chance of developing
lung cancer. Early detection and treatment of lung nodules can greatly enhance
the quality of life for patients. Lung nodules are difficult to identify using various

medical imaging modalities due to their small size and the interwoven nature of



chest architecture. Lung cancer is the most common disease, and the majority of
the early literature focuses on lung nodules. However, there has been a shift in re-
search towards tuberculosis, community-acquired pneumonia, and COVID-19, as
the world has experienced or is experiencing these diseases at different times de-
pending on their severity. Computer assisted methods(CAM) are used to determine
lung nodules from digital chest images using difference image approach digital
morphological processing, feature extraction approaches that use non-linear filters
erosion and dilation to reduce the camouflage effect of ribs and vessels [66]. To
detect lung cancer, [67] created the directional contrast filter for nodules (DCF-N),
which consists of three concentric circles. An automated method developed by [68]
for detecting Pneumothorax by detecting curved line patterns using the hough trans-
form. Artificial neural networks were used in the diagnosis of pulmonary nodules
from CXR images [69] using thresholding, profile matching analysis, and a three-
layer feed-forward network, and [70] double matching method neocognitron [71]

as a backbone with different convolutional kernels.

In this work, we focus on identifying COVID-19 from CXR images through the
localization process, addressing a significant gap in the application of Al in medical
imaging. While Al has shown promise in detecting various lung diseases, there is
a lack of methodologies that effectively utilize localization techniques to enhance
diagnostic accuracy. Our research objectives aim to explore how these methods can
identify crucial regions of interest in CXR images for more accurate COVID-19
diagnosis. The report is structured to support these objectives, starting with a liter-
ature review that highlights the limitations of current Al approaches in radiology.
This leads to the problem formulation, which details the challenges of diagnosing
COVID-19 using traditional methods. Methodology outlines the multi-phase sys-
tem architecture we developed, integrating deep learning and Explainable AI (XAI)
methods then the experiments and results sections present research findings, while
the discussion contextualizes these results within the broader Al landscape. Finally,
the conclusion and future scope will summarize our contributions and propose di-

rections for further research to proceed in healthcare along with the limitations.
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Chapter 2

LITERATURE REVIEW

One of the pioneer experts in the medical field Dr.Ginneken [ 10] described how
machine and deep learning surpassed prior rule-based approaches to become the
most common ways to identify lung illness. Deep learning is based on the Con-
volution Neural Network (CNN), which was initially presented as ”Cognitron” by
Fukushima [72, 71] and later improved as ”Neocognitron”, a more vigilant way
for finding visual patterns based on geometrical s imilarities. We can observe from
the Figure 2.1 the number of publications over the years and how COVID-19 has

pushed the research onto other lung diseases.

2.1 LUNG DISEASE DETECTION

It is known that non-medical researchers’ knowledge will not match that of radiol-
ogist experts however one doing algorithm analysis on CXR images should have a
basic knowledge of Chest anatomy and various abnormalities. These can be studied
from chapter one of [73]. Disease detection is primarily defined as a classification

problem that consists of various stages as shown below:
1 image acquisition.
i1 image preprocessing and segmentation.
i1 feature extraction.

iv training classifier.
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Research publications on Lung Diseases over years(1998-
2023)
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Figure 2.1: Worldwide research on various diseases from 2000 to 2023 (Date last
access: on 25th October 2023, keywords- COVID-19, Pneumonia, Tuberculosis.
https://www.sciencedirect.com/search)

Image acquisition: The electromagnetic spectrum is the primary phenomenon that
underpins image acquisition. The most familiar images are those based on radiation
from the electromagnetic spectrum, particularly visible light images used in pho-
tography. Other electromagnetic spectrum images include radiofrequency (radioas-
tronomy, MRI), microwaves (radar imaging), infrared wavelengths (thermography),
X-rays (medical, astronomical, or industrial imaging), and even gamma rays (nu-
clear medicine, astronomical observations). In addition to electromagnetic imaging,
several other modalities are used. Acoustic imaging (using infrasound in geologi-
cal exploration or ultrasound for echography), electron microscopy, and synthetic
(computer-generated) imaging are some of these methods.

Image preprocessing and segmentation: Image preprocessing is much needed
step in the pipleine, where all the images may not be in the same size, images
may not be captured properly, noise gets added during transmission, sometimes
enhancement may improve the results. Segmentation is another preprocessing step

that is used to focus on perticular part of image i.e set of pixel values that are
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necessary to focus on. Basic segmentation methods are thresholding to advanced
methods like U-net++ segmentation. Lung images are segmented commonly by
researchers for any lung disease study to capture lung regions.

Feature extraction: After preprocessing features gets extracted from images i.e
geometrical features or CNN based features or content based image retrieval meth-
ods and transfer learing methods. The number of channels/resolution of images
plays major role in extraction of useful features. Features are more useful when
there is less noise in the images.

Training classifier: Once feature extraction is done, fully connected layers are
used to derive further features and a sigmoid/softmax used to classify the diseases.
Support vector machines are the usefull classifiers when more features present in
the data.

The methods applied in various phases has been shown in the Figure 2.2.

2.2 IMAGE PREPROCESSING METHODS

Image preprocessing is crucial step before feeding the images to the CNNs. Real
time image capturing techniques may lead to various resolutions that need resizing
without loosing the quality of pixels, there may be occlusions or noise that needs to
addressed with noise removal methods. In additon, image normalization to be done
to brought the pixel values to the same range. Most of the literature has included
the steps such as resizing, normalization, image enchancement [11, 74, 75, 76]
and image augmentation as the preprocessing steps [77] to classify the images fur-
ther. Mean normalization or z score normalization, image enhancement includes
Histogram Equalization(HE) methods. In this work, a global thresholding method
Otsu thresholding [78] has been used. Thresholding methods comes under image
segmentation as shown in the the Figure 2.3!.

The Otsu’s thresholding algorithm is an automatic global thresholding algorithm

identifies thresholding values with the following process:

e It processes the input image 'I’

"https://learnopencv.com/otsu-thresholding-with-opencv/
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Figure 2.2: Disease classification: various phases and methods
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Figure 2.3: High level classification of image segmentation approaches
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* Obtain image histogram (distribution of pixels)
* Compute the threshold value T using Otsus’ method

* Replace image pixels into white in those regions, where saturation is greater

than T and into the black in the opposite cases.

The technique analyzes the histogram of the image and segments the objects by
minimizing the variance for every class. For bimodal images, this strategy typically
yields the desired outcomes. Two distinct peaks, signifying varying intensity value
ranges, can be seen in the histogram of this photograph. Otsu method has two
options to find the threshold. The first is to minimize within-class variance defined
above o2 (t), the second is to maximize between-class variance using the expression
below: o2(t) = wy(t)wy(t)[u1(t) — pa(t)]?, where p; is a mean of class i. wi,w2
are the weight of background and foreground intencity values for the corresponding
variances [78]. The between-class variance maximization is done in the following

way:
* calculate the histogram and intensity level probabilities
* initialize w;(0), 11;(0)
* iterate over possible thresholds: t = 0,..., max_intensity

* update the values of w;, y;, where w; is a probability and ; is a mean of class

i

« calculate the between-class variance value [07(t) = >'_, P(i) Zi[:t 1 PG [ (t)—

w2 (t)]?] where probability P is calculated for each pixel value in two separated

clusters ('}, Cs using the cluster probability functions.
* the final threshold is the maximum o7 (¢) value

Importance of image processing methods is better explained in [79]. Various
types of noise artifacts typically seen in radiographs include Poisson, Gaussian,

salt, and pepper noise, especially when acquired in huge quantities from public
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domain sources such as the internet [80]. The need for such images is growing in
part because eliminating one form of noise can sometimes affect the other. General
pre-processing involves enhancement, and subtraction [81]. A brief description of

the pre-processing stage is shown in the Table 2.1.

Preprocessing Most popular methods

Lung Filed segmentation ~ Active shape modeling, Graph cut algorithm, Intensity-based thresh-
old methods, Image Matching, Rule-based methods to detect Lung con-
tours, Water shed method, Separation of background and foreground,
Unet, UNet++ Architectures

Image enhancement Histogram based methods (AHE, CLAHE), Fuzzy color techniques, and
Filtering with Morphological operators.

Resizing, Normalization =~ Min-Max, cropping

Extracting Rol from Lungblob detection/ localization attention-based methods

Fields

Table 2.1: Different techniques in image pre-processing phase

Preprocessing steps such as image resizing, contrast enhancement, segmentation
using Otsu’s thresholding are applied to improve the quality of input images and
extracting roi from lung fields using attention based methods are employed in this

study.

2.3 LUNG DISEASES
2.3.1 COVID-19

Since the first case of COVID-19 in 2019, so much research has taken place world-
wide. We have selected heterogeneous articles published by Elsevier, Google Scholar,
IEEE, and other leading publishers. Researchers used a variety of state-of-the-art
image processing approaches, ranging from hand-crafted techniques to the most
cutting-edge transfer learning, and adversarial networks used to create synthesized
images.

COVID-Net [82] is presented as one of the first Al architectures for detect-
ing COVID-19. Thereafter a slew of studies has sprung up based on the COVIDx

data set and diverse sampling methodologies. The COVID-Net architecture em-

15



ploys lightweight residual projection-expansion-projection-extension (PEPX) de-
sign patterns composed of many stages of projections with 1*1 convolutions and
3*3 depth-wise convolutions. According to the authors’ understanding, such a
tailored, lightweight, machine-driven design pattern has never been seen before.
COVID-Net also has architectural diversity in terms of long-range connectivity,
with kernel sizes ranging from 1*1 to 7*7. COVID-Net trained for 22 epochs with
a batch size of 64, a learning rate of 0.0002, and a patience of five.

Several architectures were trained to detect COVID-19. For example [44], im-
plemented Dark COVIDNet, a 17-layer architecture inspired by DarkNet-19 [61]
with a flattened and a dense layer, softmax to classify three classes of COVID-19,
pneumonia, and healthy lungs. The network trained for 100 epochs to improve the
results and observed higher loss at the start of training due to fewer samples in the
COVID-19 class. Five-fold cross-validation was done to avoid the problem of over-
fitting. Similarly, [83] applied a variety of transfer learning networks and concluded
that DenseNet201 [34] produced the best results.

Apostolopulos employed VGG19 and MobileNet-V2 as feature extractors with
the rectified linear unit as an activation function at hidden layers [60]. Khan has
experimented with the Xception network [52] to classify COVID-19, pneumonia
bacterial, pneumonia viral, and normal with a batch size of 10, trained for 80 epochs
generated an output vector of shape 5%5%2048 for each sample of CXR image
[53]. The authors of [47] leveraged the usage of ResNet-50 by introducing the net-
work in three different stages with input images of shapes 128*%128%3, 224%224%3,
229%229%*3, where the first two stages divided into head and body trained for (3,5),
(3,5) epochs, and last stage for 25 epochs respectively with discriminating learn-
ing rate [84]. The authors have aimed for a better generalization using progressive
resizing with different input size images and reported a hundred percent recall on
the COVID-19 class. COVID-CX Net has been developed by [74] with a back-
bone network DenseNet 121; it applied various image enhancement techniques
such as Histogram Equalization (HE), Adaptive Histogram Equalization (AHE),
and Contrast-Limited AHEs(CLAHE). It is inspired by ChexNet [11] and modified
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as per the requirement of binary classification with a fully connected layer of 10
nodes followed by a drop out of 0.2 to prevent overfitting with sigmoid as an ac-
tivation function in the last layer. An SVM classifier has been used by extracting
features from multiple CNN models to classify the disease [85]. The ResNet50
model provided discriminant features that helped COVID-19 detection as per their
study.

The Authors [62] have worked on three classes, namely coronavirus, pneumo-
nia, and normal X-ray imagery; enhanced the images through affine transforma-
tions, i.e., a Fuzzy Colour technique [86]. After that, stacked the output image with
the original image through Yotam’s code?, extracted features through SqueezNet
[49], MobileNetV2 and used linear SVM classifier.

Efficient Net family [45] is well known to take care of depth, width, and reso-
lution dimensions while training the model. The family of models takes the inputs
from 224*224%3, 240*240%*3, 260*260*3, 300*300*3, 380*380*3, and 456*456*3
by adding a fully connected layer and an output layer with softmax. Perhaps the au-
thors [54] utilized swish [87] as an activation function, resulting in a smooth curve
throughout the minimization loss process using a gradient descent technique.

FC Dense Net101 has been used to segment the lung regions from CXR images
[56] and proposed a patch-based network, say 224*224 pixels cropped randomly
from the image at various instances and fed to the network ResNet-18 with Adam
optimizer [88], the initial learning rate of 0.0001 and trained for 100 epochs. Au-
thors have investigated potential biomarkers in the CXR and found that the globally
distributed localized intensity variation can be discriminatory for COVID-19.

The two-dimensional curvelet transformation used by [89] subdivides the in-
put using a linear and weighted mixture of fundamental functions called curvelets.
A curvelet is a set of radial and angular windows specified in the polar coordi-
nate system in the frequency domain. A Fast Digital Curvelet Transform(FDCT)
is implemented via wrapping to synthesize data from RGB image to grayscale and

then fed to Efficient Net-BO [45]. Leverage the usage of different transfer learning

Zhttps://github.com/yig/imagestack/blob/master/imagestack.py
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techniques including ResNet18,ResNet50,SqueezNet and DenseNet-121 on smaller
datasets to identify COVID19 [48] . Models were trained for 100 epochs, with a
batch size of 20, Adam optimizer with a learning rate of 0.0001, and image input
of 224%224. As per the author’s knowledge, CovidGAN [90] is the first paper so
far to generate synthesized CXR images using Generative Adversarial Networks.
With CovidGAN, authors could generate normal CXR and COVID +ve images by
training with a batch size of 64, a learning rate of 0.0002, and a beta of 0.5 for 2000
epochs.

Another network experimented with DenseNet-121 by [91] with various com-
binations of parameters such as loss functions, optimizers, several epochs, learning
rates, and reported good metrics with the Ada max optimizer with Cross-Entropy
loss function and Step LR scheduler. An ensemble of Inception[31], VGG19, and
DenseNetl121 has been implemented by the authors of [59]. Further, the classi-
fiers’ predictions are aggregated using the Choquet Fuzzy integral method [92],
which will give weight to individual classifiers based on the calculated fuzzy scores.
Similarly, The authors of [50] proposed CoVNet-19, an ensemble of VGG19 and
DenseNet-121 feature extractors, and SVM as a meta-learner. In contrast, [93]
employed various multi-kernel-size spatial channel attention(MKSC) modules to
extract feature maps further to classify COVID-19. COVID-RENet-1 and COVID-
RENet-2 [94] introduced an averaging layer, ensuring region and edge-based oper-
ations between convolution blocks. These two networks differ in their architecture;
however, they achieved the same score. A hybrid learning approach [95] consists
of CNN and Recurrent Neural Nets(RNNs). Each step has a length of 64 in RNN,
totaling 700. However, there is a lack of information on how RNNs have been used
to extract features and fuse with CNN to call it a hybrid model. Interestingly [96]
authors have focused on real-time detection by leveraging LeNet-5, Extreme Learn-
ing Machines (ELMs) [97], Chimp optimization Algorithm(ChoA) [98]. LeNet-5
is used as a feature extractor after being trained on a large dataset and provided to
ELM input, and ChoA will take care of the rest. ChoA is designed to overcome

the problem of slow convergence speed and getting trapped in local minima. This
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makes the ELM network stable and reliable to operate in real-time operation.

Tahir proposed a systematic and consistent approach [99] for lung segmenta-
tion and COVID-19 localization with infection quantification. Lung segmentation
is done by training 3000 annotated images through U-Net [100] , U-Net++. Image
segmentation through watershed approach, i.e., separating foreground from back-
ground and fed to a transfer learning algorithm to extract features and for further
classification using the weighted sum metric of various models [101]. Authors
have given [102] importance to preprocessing of images before actually using sev-
eral transfer learning techniques from VGG16 to SqueezNet. Image enhancement
methods such as AHE and CLAHE made the image tidier. A content-based image
retrieval (CBIR) model, as presented by [103], employs multi-similarity loss [104]
along with an attention mechanism and a sophisticated mining sampling technique
to find the best embedding space. Optimized embedding space is nothing but the
low dimensional feature space learned through ResNet50 as a backbone and, in
addition, a spatial attention module employed to extract local embeddings to pro-
vide additional guidance. A lightweight convolutional model is trained on Gaussian
blurred images proposed by [105]. The architecture consists of four convolutional
layers with 32,32,64,64 filters respectively, and each kernel size is 3*3. A Fully
connected layer of 64 neurons with a drop out of 0.5 and a final layer with a soft-
max activation function.

In contrast to all the approaches proposed [106] has shown similar accuracy
by completely masking lungs from the CXR image, which poses questions on the
deep learning approaches. However, it is worth mentioning that the authors have
proposed new protocols to automate the detection process of COVID-19. Some of
the papers’ observations and feature extractors are shown in the Table 2.2.

The authors have employed [107] the DarkCOVID Net model, formulated as
binary and three class problem, trained on more than 10,000 CXR images, and
achieved an average accuracy of 99.53,94.18 for binary and multi-classification re-
spectively. DarkCOVID Net uses DarkNet-19 as a base model, which is constructed

using YOLO(you look only once) real-time object detection system. Images are of
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256*256 pixels fed to the network and trained for 100 epochs for binary and 50
epochs for the multiclass problem; A Concat CNN [75] was developed to detect
COVID-19, viral pneumonia, and regular infections. The authors have used four
CNN models as feature extractors and concatenated the feature maps for better
efficiency of the network. Class imbalance is addressed by sampling an equal num-
ber(500) of images from three classes. The feature extractor is defined in terms
of a number of filters in two convolutional layers with 32,64 combinations with
max pooling of 2*2, dropout of 0.5, and activation of relu is used to bridge the
layers. These results were compared with state-of-the-art models VGG16, Incep-
tionv3, ResNet50, and DenseNet121 with five-fold cross-validation. The authors
[108] focused on three classes, COVID-19, Viral pneumonia, and Healthy images
with 219,1341,1345 images in each class repectively. The authors have trained four
pre-trained deep neural networks to find the best net. AlexNet gave good results
among the other applied models, VGG16, MobileNetv2, and ResNet18.

A Deep CNN based technique (Focus Covid) [109] is proposed for COVID-19
prediction using chest radiographs. It is a modified version of Focus Net where
some layers were removed, reducing the number of parameters (16,32,64,128,256).
It has helped to reduce training time by reducing the no. of parameters. A lightweight
CNN architecture [110] is for detecting COVID-19 disease, which is robust—a
comparison study performed between transfer learning and shallow CNN. A total
of 2541 samples were considered from two public databases consisting of Nor-
mal and COVID-infected images. Other transfer learning models are Inception-v2,
Xception, MobileNet, and DenseNet201. The shallow six-layer network trained for
different batch sizes 16,20,25,32,50,64 has a learning of 0.001 for 20 epochs.

A trained output-based transfer learning(TOTL) [111] approach for COVID-19
detection from CXRs. Pre-processing methods such as noising, contrasting, and
segmentation were applied before feeding the image into pre-trained transfer learn-
ing models such as Inception, Xception, MobileNet, ResNet, and VGG. Here the
features extracted from pre-trained models are fed to a shallow model consisting of

64,128,256,128,64 neurons with relu activation function and a dropout rate of 0.2.
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A total of 18 models were implemented, [112] and their performance was evaluated.
Major voting built on top of 18 models, including the top four models with above 93
percent accuracy. Two certified radiologist analyzed the image outputs generated by
Grad-CAM, and their decision resemblance with Sqeeznet output. The performance
of the CNN classifier can be improved using the nature-inspired optimization algo-
rithm Hill Climbing(CNN-HCA) [113] by enhancing the CNN model’s parameters.
After evaluating the present state, the hill climbing algorithm is a local search op-
timization technique exploring superior solutions among neighborhoods. However,
this algorithm works for two hyperparameters, such as kernel size and the number of
neurons in the first dense layer, which certainly adds more parameters as it evolves.
A multi-level image segmentation method [114] based on the swarm intelligence
algorithm (SIA) to enhance the image segmentation of COVID-19 X-rays. Ant
colony optimization was introduced later, direction crossover was used to enhance
the convergence speed of the algorithm. Directional mutation strategy helps to
jump out of local optima. This helps to find the right threshold value to segment the
CXR image. A deep two-step learning (DL) architecture Multi COVIDNet [115]
to detect COVID-19. The uniqueness of this paper introduces an optimization al-
gorithm called "Multi-Objective Grasshopper Optimization Algorithm(MOGOA)”
to optimize the DL network layers; the Grasshopper optimization Algorithm(GOA)
can balance between exploration and exploitation. The nature-inspired swarming
nature of GrossHooper inspires it. It has generated multiple solutions, picking the

best one using the Pareto Optimality(PO) operator.

2.3.2 PNEUMONIA

U-Net Architecture was utilized to segment the lung field from CXR by [116] and
employed ResNet-50, InceptionV3, InceptionResNetV2 architectures using Adam,
SGD optimizers and a batch size of 16,32 to produce the best results to detect
pneumonia. Some of the papers’ observations and feature extractors are shown

in Table 2.2.
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Experimentation has been done [120] with an extreme version of inception
(Xception), VGG16 as feature extractors and concatenated a dense output layer
with two neurons, softmax activation function, and trained for 50 epochs. Dis-
criminative localization [35] exhibited using Class Activation Maps and solved the
block-box nature of deep learning models to an extent using modified VGG16 on
pediatric CXR images. Rajaraman et. al employed an algorithm [35] based on
Anatomical atlases for the auto-detection of lung borders. Parameters tuned using
the grid search method stopped at a learning rate of 0.0004, momentum 0.99, L2
regularization of 0.000001 in VGG16. Using characteristics extracted from [121],
an unsupervised Fuzzy c-means classification learning method was applied to clas-
sify pneumonia disease into five groupings. In contrast, [19] encoded the region
of interest into a vector of wavelet texture measures and derived statistical-based
features to detect pneumonia from CXR images, and [17] have used other wavelet
texture measures to extract features for the same task. Thorax disease classification
[122] approach is a three-branch attention-guided CNN (AG-CNN). Pneumonia de-
tection was achieved through ResNet-50 and DenseNet121. CheXLocNet [43] seg-
mented CXR images using Mask R-CNN [123] and achieved better localization.

2.3.3 TUBERCULOSIS

ResNet101, VGG19, and DenseNet201 were employed [124] independently to ex-
tract features from the given data set without further fine-tuning. These features
were extracted from the last convolutional block before the global average pooling
layer. After the last convolutional block, the output shape of ResNet101,VGG19,
DenseNet201 for a sample image are (7,7,2048) , (7,7,512),(7,7,1920) respectively.
These vectors further flattened and passed to the XGBoost classifier to classify the
TB. An ensemble of pre-trained models put forth by [117] having Inception-V3,
InceptionResNet-V2, DenseNet-121 with an average stacking have shown better
results. In addition, a three-layer custom CNN was built with 64,128,256 neurons
in respective layers. It is trained for 100 epochs with a kernel size of 5*5 in each

layer. A custom architecture of four CNN layers with 32,32,32,64 neurons, respec-
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tively is designed by [125]. It is followed by a flattened and fully connected layer
of 128 neurons. The model was trained for 200 epochs with a kernel of 3*3, activa-
tion function relu, and batch size of 32. A Convolutional Block Attention Module
(CBAM) was proposed by [37], placed at every bottleneck of the residual network.
CBAM will give more weight to the essential features and extract complex, in-depth
features as training progresses. CBAM aims to ensure nonlinear interaction with an
emphasis on multiple channel features. For the first time, a mix of demographic
data and deep learning characteristics is applied by [28]. A deep CNN architec-
ture [126] consists of 1,1,3,1 layers in each block of CNN-Max pooling, two fully
connected layers, and a dropout layer towards the end. The authors stated that get-
ting optimized weights with the said architecture is challenging, and they moved
to transfer learning approaches for the better results. On the other hand, [21] has
combined the CAD score and clinical features of patients to detect TB through ML.
The authors have used AlexNet, Google Net, VGGNet, and ResNet as feature ex-
tractors with a meta learner for classification [24, 25, 26]. AlexNet, and GoogleNet
are trained with a learning rate of 0.01,0.001 using a stochastic gradient descent
optimizer, momentum of 0.9, and exponential decay of 0.002.

A reliable automated CXR image-based screening system [127] for detecting
pulmonary diseases with a significant focus on TB. The approach mainly focused
on localization to see lung boundaries from CXR. The feature sets were derived
from segmented lung fields through object-detected methods, CBIR methods, and
standard MATLAB region proposals.

The Lung fields were segmented from CXR images using a graph cut technique
[128]. Object detection-inspired features such as shape and texture descriptors were
extracted using various histogram methods such as the Intensity Histogram (IH),
Gradient Magnitude Histogram(GM), Shape Descriptor Histogram(SD), and Cur-
vature Descriptor Histogram(CD).Using CBIR algorithms, low-level characteristics
like texture, intensity, edge, and form moment were retrieved, yielding a total of
594 features. An SVM classifier is trained to classify feature sets into normal and

abnormal. Table 2.3 gives an overview of selected papers.
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A CXR image enhancement algorithm is proposed by [132]. It consists of
segmentation and enhancement as sub-steps. Image segmentation is achieved by
applying a sequence of membership and fuzzy distance-based operations on one-

dimensional function and image enhancement through the fuzzy-based contrast en-

hancement technique.

2.4 RESEARCH GAP ANALYSIS

As discussed in the previous section, the literature review focuses on three dis-
eases, although our work concentrates on one lung disease: COVID-19. The litera-

ture review has been conducted in a manner that emphasizes lung diseases and the

methodologies used, as shown in Figure 2.4.

Y

Literature Review
(102 papers)
\ 4 Y
Usage of XAl
Usage of CNN and Methods and
ensembles .
(54) Localization
(25)

Other relevant
diseases and
additional papers
(23)

Figure 2.4: Literature review process

Since the research focus is on COVID-19, a thorough gap analysi study was con-

ducted and consolidated the summary and gaps in the Table 2.4 from the selected

studies.
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2.5 MATERIALS AND METHODS

2.5.1 CONVOLUTIONAL NEURAL NETS (CNN), MACHINE LEARNING,
SEGMENTATION

A CNN is employed to collect feature vectors during feature extraction phase, as
shown in the Figure 2.5. Deep CNNs comprise a convolutional, max pooling, dense
layer with parameters such as the number of kernels, kernel size, hidden and out-
put activation functions, dropout rate, and the number of neurons. Different model
architectures have been formed with various combinations. Finding the proper ar-
chitecture is a laborious process that demands more data and optimization of hy-
perparameters such as batch size, learning rate, momentum, number of epochs, and

batch normalization.

= a

Feature one dimensional
extractor-1 ‘ Feature vector Learner-1
[ ™
Feature one dimensional
extractor-2 Feature vector Learnend
N )
XRay Image
Feature one dimensional Meta
extractor-3 Feature vector Leagnerss, Learner

one dimensional

Feature
( extractor-n Feature vector ‘

Figure 2.5: Image classification pipeline (ensemble method)

A CNN network is categorized as shallow or deep based on the number of lay-
ers. A customizable CNN is a deep network trained on a specific task. A CNN

network consist of various building blocks. These are connected sequentially and
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passes the image from one block to other block and finally a feature vector gets
created for every image. These blocks consist of convolutional, activation, max-
pooling, drop out layers. These gets repeated depending on the type of architecture,

a flattened layer comes towards the end.

* Convolutional block consist of certain number of filters increases as network
goes in deep. A filter is a two dimensional matrix of numbers that does ele-
ment wise multiplication with the pixel values of image and slides through the
image, produces spatial features. These are called feature maps. The feature
map size may be same as input feature map size or it may reduces depending

on the user’s choice of padding.

* Activation block converts the feature values to non linear form by using var-
ious activation functions. For example, rectified linear unit that makes any
values less than zero as zero and no change if it is positive number. This
overcomes the problem of vanishing gradients. Other choices are tanh, leaky

relu and etc.

* Maxpooling block does subsampling, i.e it reduces the feature map size by
two. For example given a 16*16 feature map, a max pool of two uses 2*2
window and gets the maximum value out of all four values and slides for
two pixel values towards the right and repeats the same task. It produces 8*8

feature map. It solves the problem of high number of parameters.

* Drop out is an optonal block uses to solve the problem of overfitting. Dropout
rate determines how many neurons to fire while training and it make sures

only a certain number of neurons active for every epoch.

* Flatten is layer that converts two dimension feature map to one dimensional
feature vector. For example a 8*8 two dimensional map is converted to 1*16

feature vector.

The Figure 2.6 illustrates how this feature extraction process differs from typical

neural net construction. These are elements of a standard layer of CNN. These
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levels are referred to by two standard term sets. The convolutional net is seen in
Figure 2.6(a) as a limited number of relatively sophisticated layers, with numerous
“stages” in each layer. In Figure 2.6(b), the convolutional net is perceived as a
multiplicity of basic layers, with each processing stage being considered a separate

layer. It follows that not all layers” have parameters.

Complex layer terminology

Simple layer terminology

Next layer

Next layer

1

Convolutional Layer

Pooling stage

Pooling layer

\

Detector stage:
Nonlinearity
e.g., rectified linear

Detector layer: Nonlinearity
e.g., rectified linear

A

A

Convolution stage:
Affine transform

Convolution layer:
Affine transform

A

?

Input to layer

Input to layers

()

(b)

Figure 2.6: Building blocks of CNN

Pooling contributes to the representation being roughly invariant to modest trans-
lations of the input in both variants. When an input is translated by a modest
amount, the majority of the pooled outputs remain unchanged, a property known as
invariance to translation. These blocks let one to create several CNN architectures,
as Figure 2.8 illustrates. Unlike the chain topologies presented here for simplicity,
real convolutional networks also frequently feature large degrees of branching. A
fixed image size is processed by a convolutional network, as seen in Figure 2.8(a).
The tensor for the convolutional feature map is altered to smooth out the spatial

dimensions after a few layers of switching between convolutional and pooling. A
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Figure 2.7: Lung disease classification-CNNs [134]

standard feedforward network classifier makes up the remainder of the network.
CNN s play a crucial role in lung infection detection using CXR images. The basic
architecture of CNN is shown in the Figure 2.7.

A convolutional network retains a completely connected portion even after pro-
cessing an image of varying sizes, as seen in Figure 2.8(b). This network provides
a fixed-size vector of 576 units to the completely connected component of the net-
work by using a pooling operation with variable pool sizes but a fixed number of
pools. As depicted in Figure 2.8(c), a convolutional network lacks a fully connected
weight layer. Instead, one feature map for each class is produced by the final con-
volutional layer. Presumably, the model learns a map representing the likelihood
of each class occurring at each spatial point. A feature map’s average reduced to a
single value serves as the uppermost softmax classifier’s argument.

Machine learning models such as logistic regression, k-nearest neighbor, SVM
and ensembles such as bagging,boosting (Adaboost, XGboost) can be trained on
structured data. Structured data could be clinical features such as age, patient habits,
smoking (y/n), diabetes (y/n), or texture, shape, intensity, color, statistical, and other
features of CXR images. Different geometrical, machine learning, and ensemble
methodologies utilized to classify CXRs were discussed in detail in [80]. Various
CXR segmentation methods edge detection [135], Active shape modeling [136] ,
and modern methods such as U-Net [100], U-Net++ [137, 138, 63, 101] could be

used for segmentation.
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Figure 2.8: Various CNN architectures

2.5.2 TRANSFER LEARNING(TL) METHODS
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A Deep CNN constructed and trained on an extensive data set and achieved excel-
lent results could be reused. The caveat here is that the original network may have
been trained on different data. These networks extract feature vectors and then build
a meta-learner. These networks are known as Transfer Learning techniques (TL).
Since 2015, many transfer learning methods have been developed, including Alex
Net, Dense Net, Efficient Net, GoogleNet, Inception, Mobile Net, ResNet, Squeeze
Net, VGGNet, and Xception.

AlexNet, ResNet, VGGNet, and GoogleNet are the most often used TL mod-

els in medical image analysis [42], while SVM is the most commonly used meta-
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Figure 2.9: Transfer learning method: vgg16 model summary
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learner. For example, feature vectors are taken from the flattened layer (None,
25088) or the fully connected layers(fcl or fc2) (None, 4096) as illustrated in the
Figure 2.9 might be fed into a softmax or SVM.

AlexNet [12] contains eight learned layers, five convolutional and three fully-
connected as shown in the Figure 2.10. A 1000-way softmax receives the output
from the final fully-connected layer and generates a distribution across the 1000
class labels. By maximizing the average of training samples of accurate labels
under the prediction distribution, the net maximizes the multinomial logistic re-
gression objective. Only the kernel maps from the preceding layer are connected
to the kernels of the second, fourth, and fifth convolutional layers. Every kernel
map in the second layer is connected to the kernels of the third convolutional layer.
Every neuron in the layer above is connected to every other neuron in the com-
pletely connected layers. The first and second convolutional layers are followed by
response-normalization layers. Max-pooling layers come after the fifth convolu-
tional layer and both response-normalization layers. Every convolutional and fully
connected layer’s output is subjected to the relu non-linearity. It has 60 million
parameters that maximizes the problem of overfitting. To handle such cases data

augmentation and drop out are the two mechanisms introduced in the network.

EN d
7 3 |- (| EN B
>>>>>>>> - : 3\
192 192 128 2048 2048 \dense
13 \ 13
,,,,,,, - -l I
> e > 3 3 1 13 dense dense
& 3| 1000
192 192 128 Max ||
Max 128 Max pooling 294 2048
pooling pooling

Figure 2.10: CNN architecture: AlexNet [12]

The VGG nets concept served as inspiration for ResNet [32]. Originally in-
tended to be a simple network, as seen in Figure 2.11(b) convolutional layers typi-

cally use 3x3 filters and adhere to two straightforward design principles:
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1 The number of filters in each layer is the same for the size of the output

feature map.

i1 If the size of the feature map is half, then the number of filters must be dou-

bled in order to preserve the temporal complexity per layer.

It directly uses convolutional layers with a stride of two to conduct down sam-
pling. A global average pooling layer and a 1000-way fully-connected layer with
softmax complete the network.. There are 34 weighted layers in all. As demon-
strated in Figure 2.11(c), shortcut connections are added based on the plain net,
converting the network into its corresponding residual version. In cases where the
dimensions of the input and output are same, the identity shortcuts y = F(x, W; )
+ x can be utilized directly (solid line shortcuts in 2.11(c)). It has taken into con-
sideration two possibilities when the dimensions expand (dotted line shortcuts in

2.11(c)):

1 Identity mapping is still carried out by the shortcut, with additional zero en-
tries padded for larger dimensions. This option adds no additional parame-

ters;

ii Ix1 convolutions are employed to match dimensions by using the projection

shortcut in y = F(x, W, + W * x).

For both scenarios, the shortcuts are executed across feature maps of varying

sizes using a stride of two.
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Figure 2.11: ResNet Architecture [32]



DenseNet [34] is again another TL model that is trained on imagenet by show-
ing difference in the connection between layers. It has introduced direct connec-
tions from any layer to all subsequent layers as shown in the Figure 2.12 illus-

trates the layout of consequently, the n'* layer recieves the the feature-maps of

all preceding layers, [zo, ..., Z,_1], as input: x, = H,(xg,T1......... Tn_1) where
[0, T1, ceeernns x,_1] refers to the concatenation of feature maps produced in layers
0...n-1
Input
Prediction

Dense Block 3

Dense Block 2

Dense Block 1

Figure 2.12: DenseNet Architecture [34]
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In the Figure 2.12 Dense blocks refers to the sequence of convolutional blocks
connected with varying filter sizes. It is available in diffferent versions(121,169,201

and 264 layers) as shown in the Figure 2.13.

Layers Output Size DenseNet-121 | DenseNet-169 | DenseNet-201 | DenseNet-264
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 x 3 max pool, stride 2
Dense Block [ 1x1conv [ 1x 1conv | [ 1x1conv | [ 1x1conv
6 % 56 6 6 6 6
(1) 26 %3 | 3 x 3conv * _3><3|:cm\.r_>< | 3 x3conv * | 3 x3conv *
Transition Layer 56 x 56 1 x I conv
) 28 x 28 2 x 2 average pool, stride 2
Dense Block [ 1x1conv [ 1% 1conv ] [ 1x1conv ] [ 1x1conv
28 x 28 12 12 12 12
) . L 3 x 3 conv . _3X3(:0nv_x | 3 x 3 conv x | 3 x3conv *
Transition Layer 28 x 28 1 x 1conv
@ 14 x 14 2 x 2 average pool, stride 2
Dense Block [ 1x1conv [ 1x 1conv ] [ 1x1conv | [ 1x1conv
14 x 14 24 2 48 64
3) x 3 % 3 conv * 3 x 3 conv x3 3 x 3 conv % 3 x 3 conv x
Transition Layer 14 x 14 1 x I conv
3) Tx7 2 x 2 average pool, stride 2
Dense Block [ 1x1conv [ 1x1conv ] [ 1x1conv ] [ 1x1conv
Tx7 x 16 x 32 x 32 x 48
@) L 3 x 3 conv | 3 x3conv | | 3 x 3conv | 3 x 3conv
Classification 1x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax

Figure 2.13: DenseNet Architecture- different versions [34]

Efficient Net [139] is an idea of increasing/decreasing the depth of the existing
network. i.e scaling up and down, wider scaling, deeper,resolution scaling,compund

scaling as shown in the Figure 2.14.
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One can scale up/down existing ResNet architecture/some other architecture,
however there is no clear understanding of suitability of network for a given input
image of size w*h. This forces neural architecture to search for a new baseline net-
work and grow it up to produce the EfficientNets family of models. EfficientNet-B7
achieves state-of-the-art 84.3% top-1 accuracy on ImageNet out of all EfficientNet-
BO to B7.

MobileNets [140] are class of EfficientNet models that are light weight in nature
built by depthwise seperable convolutions. Depthwise seperabel convolutions are
the core layers for MobileNets. This type of factorized convolution breaks down a
regular convolution into two different types: a depthwise convolution and a point-
wise convolution, which is a 1x1 convolution. The depthwise convolution for Mo-
bileNets gives each input channel a single filter. The outputs of the depthwise con-
volution are then combined by the pointwise convolution using a 1x1 convolution.
In a single step, a conventional convolution filter and mixes inputs to create a new
set of outputs. This is divided into two layers by the depthwise separable convo-
lution: a filtering layer and a combining layer. The result of this factorization is a
significant reduction in computation and model size. A representation of the model

architecture is provided in Figure 2.15.

Type / Stride Filter Shape Input Size

Conv /82 3x3x3x32 224 x 224 x 3
Conv dw /s1 3 x 3 x 32dw 112 x 112 x 32
Conv /sl 1x1x32x64 112 x 112 x 32
Conv dw /52 3 x 3 x 64 dw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw /sl 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl L x1x128 x 128 56 x 56 x 128
Conv dw /s2 3% 3 x 128 dw 56 x 56 x 128
Conv /sl L x 1 x 128 x 256 28 x 28 x 128

Conv dw /sl

3 % 3 x 256 dw

28 x 28 x 256

Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 % 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 512 14 x 14 x 256
5 Convdw /sl | 3x 3 x512dw 14 x 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw /52 3% 3 x512dw 14 % 14 x 512
Conv /sl 1x1x512x1024 | 7x7x512
Conv dw /52 3 % 3 x 1024 dw 7T x7x1024
Conv /sl 111024 %1024 | 7x 7 x 1024
Avg Pool / sl Pool 7 x 7 TxTx1024
FC /sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

Figure 2.15: Mobilenet Architecture [140]
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GoogleNet is [30] an Inception network where Inception modules are stacked
on top of each other. Inception module consist of 1*1,2%2,3*3,5*5 convolutional
kernels connected depthwise between layers as shown in the Figure 2.16(a). This
causes the increase in number of outputs between layers. It is reduced by a dimen-
sionality reductions and projections. That is, 1x1 convolutions are used to compute
reductions before the expensive 3x3 and 5x5 convolutions as shown in the Figure
2.16(b). Besides being used as reductions, they also include the use of rectified
linear activation which makes them dual-purpose.

The entire architecture is shown in the Figure 2.17. Propagating gradients back
through all the layers in an efficient manner was a challenge, considering the some-
what deep depth of the network. We would anticipate that by including auxiliary
classifiers linked to these intermediate layers, we would give more regularization,
boost the gradient signal that is transmitted back, and promote discrimination in
the classifier’s lower stages. They add their loss, which was weighted by 0.3 for
the auxiliary classifier losses, to the network’s overall loss during training. These

backup networks are eliminated at inference time.
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Figure 2.17: CNN architecture:Googlenet [30]



Some of the researchers also detected lung disease using object detection ar-
chitectures DarkNet-19[61], DarkNet-53 [141] that are backbone for YOLO. These
architectures are primarly designed for real time object detection. Like the VGG
models, DarkNet-19 uses filters primarily and doubles the number of channels af-
ter each pooling phase. It employs filters to compress the feature representation
between convolutions and global average pooling to produce predictions, in line
with the work on Network in Network (NIN). The model batch is regularized, con-
vergence is accelerated, and training stability are achieved using batch normaliza-
tion. The CNN known as DarkNet-53 serves as the foundation for the YOLOV3
object identification methodology. The detailed architectures are shown in the Fig-
ure 2.18(a) and (b). One can observe the DarkNet-53 is more deeper and residual

layers in between instead of maxpool layers.

Type Filters | Size/Stride Output

Convolutional 32 3x3 224 x 224

Maxpool 2x2/2 | 112 x 112 _ .
Convolutional 64 3% 3 112 % 112 Type Filters Size Output

Maxpool 2 x2/2 56 % 56 Convolutional 32 3x3 256 x 256
Convolutional 128 3x%x 3 56 X 56 Convolutional 64 3x3/2 128 x 128
Convolutional 64 1% 1 56 X 56 Convolutional 32 1x1
Convolutional 128 3x3 56 x 56 1x| Convolutional 64 3x3

Maxpool 2x2/2 28 % 28 Residual 128 x 128
Convolutional 256 3% 3 28 x 28 Convolutional 128 3x3/2 64x64
Convolutional 128 1x1 28 x 28 Convolutional 64 1 x1
Convolutional | 256 3x3 28 x 28 2x| Convolutional 128 3 x3

Maxpool 2x2/2 14 x 14 Residual 64 x 64
Convolutional 512 3x3 14 x 14 Convolutional 256 3x3/2 32x32
Convolutional 256 1x1 14 x 14 Convolutional 128 1x1
Convolutional 512 3x3 14 x 14 8x| Convolutional 256 3 x3
Convolutional 256 1x1 14 x 14 Residual 32x32
Convolutional 512 3x3 14 x 14 Convolutional 512 3x3/2 16x 16

Maxpool 2x2/2 TxT Convolutional 256 1 x 1
Convolutional 1024 3 X3 TxT 8x| Convolutional 512 3x3
Convolutional 512 1x1 TxT Residual 16 x 16
Convolutional 1024 3x3 TxT Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1 TxXT Convolutional 512 1 x1
Convolutional 1024 3x3 Tx7 4x| Convolutional 1024 3 x3
Convolutional | 1000 Ix1 TXT Residual 8x8

Avgpool Global 1000 Avgpool Gilobal

Softmax Connected 1000

Softmax
(a) DarkNet-19 (b) DarkNet-53

Figure 2.18: DarkNet Architectures [61, 141]

An extreme version of Inception called XceptionNet [52] was created on the

theory that there is complete decoupling between the mapping of cross-channel
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correlations and spatial correlations in feature maps. As seen in Figure 2.19, the
Xception architecture has 36 convolutional layers that serve as the network’s foun-
dation for feature extraction. With the exception of the first and last modules, each
of the 14 modules made up of the 36 convolutional layers has a linear residual
connection surrounding it. The input flow receives the data first, followed by the
middle flow—which is repeated eight times—and the exit flow. Batch normaliza-
tion and a depth multiplier of 1 (no depth expansion) are applied to all convolution

and separable convolution layers.

Entry flow Middle flow Exit flow

299x299x3 images 19x19x728 feature maps 19x19x728 feature maps

|
[Conv 32, 3x3, stride=2x2
[ReLU

| ReLU

|
| [ReLU
| | SeparableConv 728, 3x3
I
|

|Separable€onv 728, 3x3
T

I
Conv 64, 3x3
I
[ReLU

Conv 1x1
stride=2x2

|
|
[ReLu |
| SeparableConv 728, 3x3 |
|
|

| SeparableConv 1824, 3x3

]

J
[ReLU

I

|

[SeparableConv 128, 3x3
I

I
|ReLU |MaxPuuling 3x3, stride=2x2

[SeparabLeCcnv 728, 3x3

2048-dimensicnal vectors

Optional fully-connected
layer(s)

Logistic regression

|
Conv 1x1 [ReLU |
stride=2x2 |SeparabLeConv 128, 3x3
T [SeparableConv 1536, 3x3 ]
[MaxPooling 3x3, stride=2x2 | | ReLU
19x19x728 feature maps T
[SeparableConv 2048, 3x3 ]
[ReLu | [ReLu : |
|5eparableCon7 256, 3x3 | Repeated 8 times [GlobalAveragePosling
Conv 1x1 | [ReLU | |
stride=2x2 |SeparahleCnnv 256, 3x3 |
I

|HaxPcoLing Ix3, stride=2x2

[ReLU
| SeparableConv 728, 3x3

|
Conv 1x1 |RELU
stride=2x2 | SeparableConv 728, 3x3

T
|NaxPonLing 3x3, stride=2x2

19x19x728 feature maps

Figure 2.19: The Xception architecture [52]

2.5.3 VISION TRANSFORMERS

Vision Transformers (ViTs), an increasingly prominent neural network architecture,
are utilized for computer vision tasks, particularly in the field of medical image
processing. ViTs utilize the transformer architecture, initially designed for natural
language processing, to handle image data. Here is an overview of how ViTs might

be used to identify lung infections in CXR images, following the general principles
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of ViT application in computer vision[142].

Transformer Encoder
2@

Multi-Head
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Figure 2.20: Vision Transformer architecture [143]

ViT, developed by [143] as shown in the Figure 2.20, utilizes a transformer to
achieve image identification. The transformer requires one-dimensional sequences
as input. To accommodate this, the image was initially separated into patches
of equal size. These patches were then flattened to generate a sequence of two-
dimensional patches. After applying linear projection, patch embeddings are ob-
tained. These patch embeddings are then inputted into the transformer encoder,
where position embeddings are added to them. The Multi-layer Perceptron (MLP)
was included into the transformer encoder while the multi-head self-attention (MSA)
component from the transformer model was kept. Ultimately, the picture classifi-
cation was produced using the MLP head module. A module in which many at-
tention modules learn distinct features of attention in separate sub-spaces is called
the multi-headed attention module [144]. First, the vector matrix X was obtained
and subsequently mapped to various sub-spaces. Using the learnable matrices
Wy, Wi, W, accordingly, to produce the matrices query (Q), key (K), and value
).

Q, K, and V are all equal in the encoder. In this case, the decoder’s first layer’s
output is Q, and its second layer’s outputs are K and V. The final feature repre-

sentation is obtained by projecting these via the remaining learnable weights. Sev-
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eral subspaces can be created thanks to the multi-head attention process, where
each head focuses on different informational components. Multi-head attention
enhances the network’s resilience and stability at the same time. The number of
people working on a given task may change. It is important to note that although
ViTs have shown potential in various computer vision tasks, their use in medi-
cal image analysis, specifically in detecting lung infections [145, 146, 147] may
require adjustments to accommodate the distinct characteristics and challenges of
medical images. Furthermore, in order to ensure the accuracy and applicability of
ViT-based models in healthcare settings, it is crucial to utilize comprehensive and
varied datasets, conduct meticulous model evaluation, and validate the model. It
is also outperforming deep learning methods [148] while classifying lung diseases

from CXRs.

2.54 EXPLAINABLE ARTIFICIAL INTELLIGENCE(XAI) IN LUNG DIS-
EASE DETECTION

There are several Explainable Artifcial Interlligence(XAI) methods that are divided
based on the way of applying. Few XAI methods are applied after training the
model, few are during training the model it self and few are tested by computing
predictions for a group of samples. The detailed division has been shown in the
Figure 2.21.

Among these, few can be applied to images: Class Activation Mappings(CAM)
is one among those. It makes localization possible for CNNs specialized in cate-
gorization. The discriminative regions that are used to identify that category are
indicated by CAM. Although they are not necessary, explicit bounding box anno-
tations alter the model’s architecture. Just prior to the final output layer, global
average pooling is applied on convolutional feature maps. After that, a fully linked
layer receives these features and generates the required output.

For a given image, let fi(x,y) represent the activation of unit "k’ in the last con-

volutional layer at spatial location (x, y). Then, for unit ’k’, the result of performing
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Figure 2.21: Categorization of XAl methods[149]

global average pooling,

Therefore, for a given class c, the weight corresponding to class ¢’ for unit "k’ is
the input to the softmax, S, = Zk wi Fi, wi. In essence, it shows how significant

Fy, is for class c. Ultimately,

exp(Se)/ () exp(Se)).

yields the softmax output for class c, or P..

Sc = Zw,ﬁka(x,y) => Zz.fk(x7y>a
k T,y zy k

can be obtained by plugging F}, = 3, f(z,y) into the class score.
M, = Z wsz(l', y)
k

where the class activation map for class c is denoted by M,; hence, S. = Zx’y M. (z,y).
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This indicates the importance of the activation at spatial grid (x, y) leading to the
classification of an image to class c. One drawback of CAM is that it needs feature
maps to come before softmax layers. These designs might perform less accurately
than general networks on other tasks. Hence a technique that doesn’t require chang-
ing the current architecture is required. That is where Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) has come.

Grad-CAM uses gradients of the target class flowing into. This class discrimina-
tive localization method doesn’t require architectural modifications or retraining to
operate on any CNN-based network. This class discriminative localization method
doesn’t require architectural modifications or retraining to operate on any CNN-
based network. It has been tested on ResNet. It assess the impact of moving from
deep to shallow layers. It has been applied to the best classification, VQA, and cap-
tioning models currently in use. Convolutional layers typically preserve spatial in-
formation, whereas completely connected layers lose this information. Grad-CAM
determines each neuron’s significance for a decision of interest by utilizing gradient

information coming from the last layer. Grad-CAM works as follows:

* Compute gradient of "y’ for class ’c’ with repect to feature map y: gTy;'

* Then, Global average pool these gradients to obtain neuron importance weights.

8C
O‘i = %222] 3,351,-

* Perform weighted combination of forward activation maps and follow it by

relu to obtain LS, .; cay = ReLU(Y", ag AR).

The concept originated from the fact that fully connected layers lose spatial
information while convolutional layers retain it. When gradients go into the final
convolutional layer, the information is used to assign importance to each neuron. It
computes the gradient of the class score with respect to the feature map activations
of the convolutional layer first, and then flows back with each convolutional layer to

obtain the localization map. Every layer after that goes through the same procedure
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again. Gradients are global averages pooled as an aggregation process as they flow
back. These techniques are more trustworthy, and they were one of the successful
techniques to describe visuals from CNN output.

Grad-CAM was used to put multiple pre-trained models to the test by generat-
ing overlay heatmaps across the region of interest. For example, [150] has observed
heat maps superimposed on bilateral multifocal ground-glass opacities with patchy
consolidations. In the case of bacterial pneumonia, localized heat maps show opac-
ities with consolidation on the lower and upper lobes in some of the images.

Further, Brunese and his colleagues [151] have employed a three-fold method to
classify COVID-19 from other pulmonary diseases. Grad-CAM visuals considered
only lung regions while classifying disease. These activations matched with radiol-
ogist results. As shown in the Figure 2.22, one patient has bronchial wall thickening
with tiny peripheral patchy infiltrates, while another has multi-focal patchy opaci-

ties while being diagnosed with COVID-19.

Figure 2.22: Examples: Grad-CAM activation maps [151]

Local Interpretable Model Agnostic Explanations(LIME) [152] is such another
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model that works in a different way, it does modify the samples. LIME follows the

following approach:

* LIME decomposes image I’ into 'd’ superpixels. These are small homo-
geneous image patches using quick shift algorithm; Quickshift is a mode-
seeking technique that treats the pixels as samples over a 5-dimensional space,
which consists of three color dimensions and two space dimensions. These

little homogenous image patches are created using quickshift.

* generates several new images 1, ..., z, by alternating these superpixels at

random.
* finds the predictions by querying the model in the image y; = f(x;).

* constructs a local weighted surrogate model m’ that fits the y;’s to the exis-

tence or non-existence of superpixels.

* An original image I’ superpixel is linked to every coefficient of ’'m’. It makes
sense that a superpixel is more significant for the prediction at ’I’ if it is more

positive, according to LIME.

* Typically, the superpixels linked to the highest positive coefficients are high-

lighted when a user visualizes the 'm’ hat.

Saliency map [153] is a ranking-based technique that ranks pixels based on
their influence on the class score. CNNs are assessed [154] CAM by classifying
normal and abnormal. Several cases were studied concerning correct and wrong
predictions. The model was accurately impacted by the lower left cardiac area. The
relatively high CNN score for this negative example (0.48) suggested that this study
was rated as borderline abnormal by both the CNN and the physician. Local lesion
attention guided network(LLAGnet) [155] is built to classify different thoracic dis-
eases in CXR images. The net’s objective is to find local lesions. Back-propagating

gradients will be used by a weakly-supervised attention mechanism integrated into

51



the global branch to acquire visual regions of lesion locations. To give more gran-
ular features for visual categorization, the ideal attention region is amplified and
applied to the local branch. A multi-attention CNN [156] is designed for automatic
diagnosis. It learns discriminative features for each category. It has been done in
two phases—one extracts convolutional feature representations with DenseNet121
as a backbone. Two is applying weekly supervised learning of deep convnets to
extract local patches.

Adversarially Robust Optimization[157] is a method that improves learned fea-
ture representations that are robust against adversarial examples. Adversarial exam-
ples are inputs that are perturbed. It is a min-max problem. Objective one is to find
perturbed inputs which maximize the loss. Objective two is to minimize the overall
loss of the classifier while learning interpretable features. All the networks in the
experiment are learned using SGD with a learning rate of 10~2and a momentum of

9*10~2 with binary cross entropy loss which is defined as:

—(1/N)Z yi * log(yf) + (1 — y;) x log(1 — o)

A segmentation-based deep fusion network(SDFN)[158] was trained on Tho-
racic disease classification. This network focuses on local regions rather than the
whole image. Local regions are identified by the Local Region Generator(LRG).
LRG uses Unit architecture to segment the lung regions. A couple of Densenets
consisting of 121 layers were used as feature extractors and further fine-tuned to
classify the diseases. CAMs were used to generate heatmaps to test the model.
CNN with attention feedback(CONAF) [159] is designed to identify a chest radio-
graph that is likely to contain one or more lesions. Pediatric chest radiographs[160]
could be explained using profound learning predictions. Radiographs of patients
with pneumonia were used to visualize the model’s predictions. The CAMs were
displayed using LIME and Gard-CAM, respectively. Infections from lung inflam-

mation typically result in puss or fluids in air sacs.
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CheXNeXt [161] have used class activation mappings to create heatmaps that
indicated regions in the CXR images. It is a 121-layer DenseNet architecture used
to detect 14 different chest diseases, such as pneumonia, pneumothorax and etc.
Multiple instance learning is another localization approach that divides the CXR
image into overlapping patches. Probability scores for each patch will be generated
by training patches through CNN. Patch-level probabilistic localization helps in
critical findings.

Tang was [162] able to determine abnormalities from CXR images with proper
explanations for each group of images with overlaid heat maps. The heatmap rep-
resents the forecast of anomalies with a high probability. The CNN model, for
example, forecasts it as abnormal with 0.99 probability, and a heat map will be
created, whereas four radiologists categorized it as abnormal.

Grad-CAM visualization method used to explain the COVID-19 disease [55,
163]. However, the explanations are only for samples of images, where local fea-
tures were not given more importance. Grad-CAM was used on top of the existing
classifier, as shown in the Figure 2.23. An improved version of Grad-CAM has

used by authors of [164] to segment the medical images.

Input / ‘ \ Pneumonia

. (_, — @ rov-covip-19
- s —
“ . COVID-19

Y
Figure 2.23: Usage of Grad CAM to explain infections[55]
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Feature Haps Activations
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Several Cancer diseases were explained through XAI methods [165]. For ex-
ample, Lung cancer is explained through Supervised Iterative Descent, Grad-CAM,

Deep Hierarchical Semantic CNN; Breast cancer with Deep-Miner, Grad-CAM,
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Integrated Gradients; Brain cancer with Capsule Network, Pyramid Grad-CAM;
Liver cancer with saliency maps, activaton maps. Deep network activation maps
were studied in [166] with joint localization and severity grading aids in predicting
disease. However, they remain inaccurate in localizing the actual infestation termed
infection maps.

There are other XAI methods such as Partial Dependency Plots(PDP), Accumu-
lated Local Effects (ALE), Individual conditional expectation (ICE), SHAP, ELI5,
etc. PDP plots [167] illustrate the incremental impact of one or two features on the
anticipated outcome of a machine-learning model. ALEs are more similar to PDP
with a change in the way of computing the feature importance. It is based on differ-
ences in predictions rather than averages [168]. On the other hand, ICE plots [169]
are used to assess the impact of a variable on a trained machine-learning model,
assuming that all other variables remain constant. By estimating each feature’s
contribution to the prediction, SHAP seeks to clarify the forecast of an instance x.
Shapley values are computed using coalitional game theory by the SHAP explana-
tion technique [170]. The objective of SHAP is to elucidate the prediction of an
instance x by calculating the contribution of each feature to the prediction. The fea-
ture values of a data instance function as participants in a coalition. Shapley values
provide a method for equitably allocating the “payout” (i.e., the prediction) across
the different attributes. It is inspired by a local surrogate model. ELIS [171] is
primarily designed for text data to explain the answers in a simple way. Among all
these methods LIME, Grad-CAM, and Saliency mappings are visualization meth-
ods that explain images. Methods like PDP, ALE, and ICE work on lower dimen-
sions and structured data for example predicting a customer churn from customer
demographical, potential to buy, and job-related and etc..features. SHAP has not
been applied to any medical images so far. So we employ LIME, Grad-CAM, and

Saliency maps to get the region of interest features.
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Chapter 3

PROBLEM FORMULATION

3.1 BACKGROUND

Automated medical image analysis began when the first medical image was dig-
itized. It has combined low-level pixel processing (edge and line detector filters,
extracting region) and computational analysis (fitting lines, circles, and ellipses) to
develop compound rule-based systems that perform complex operations during the
1970s to 1990s [172].

CXR images can convey a great deal about a patient’s condition; hence the
standard chest radiograph should be reconsidered [81]. Early detection of lung
disorders is crucial for effective treatment and may reduce stress in the healthcare
system. CXR images and CT scans are the standard image diagnosis tests for lung
diseases. Although CT scans are the gold standard, CXRs are still valuable because
they are less expensive, faster, and widely available. A detailed literature review on
the techniques to identify lung diseases is presented by [172, 173]. Even though
the authors [174] discussed various deep learning methods published between 2015
and March 2023, To the best knowledge of the authors, nothing substantial was
found in the literature that could explain the localization of a disease with the
region of interest features and how feature extraction is migrating from tradi-

tional approaches(geometrical-based methods) to deep learning methods.

3.2 MOTIVATION

* Though much work has been done on the CXR images in medical imaging, it
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is challenging to identify very tiny lesions similar to other tissues. There is a

need to develop a complete Al system to address the same.

* The open-source and open-access study community’s work inspires and mo-

tivates me as I try to figure out how well Al systems work.

* As learning is a continuous process, one should update their skill set on the

current research andutting-edge techniques used in academia and business.

3.3 PROBLEM STATEMENT

Identifying lung diseases like COVID-19 from medical images is challenging
due to the difficulty in accurately localizing affected regions. Current AI mod-
els lack precise localization capabilities, leading to reduced diagnostic accu-
racy. A new Al system is needed to support medical practitioners by accurately
identifying lung diseases through the localization of key regions in medical im-
ages, improving both speed and precision in diagnosis. .

The modality used here is the chest X-ray imaging technique. Its usage is be-
cause these are available at less cost and accessible to the public. This work has
taken portable network graphics(png) and joint pixel export group(jpeg) format im-
ages during the implementation. The proposed approach experimented with limited
system capacity and it may take a while to generalize this method as most of the
work needs to be certified by an expert radiologist. This work is only to be used for

academic and research purposes and is not to be commercialized.

3.4 OBJECTIVE

To build an Al system that supports medical practitioners in identifying lung dis-

ease(for example COVID-19) through localization.
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Sub Objectives:

1. To develop local indicators (Region of Interest features) using an
attention-guided mechanism and associate them with global features ex-

tracted for determining the chest infection.

2. To design a mechanism using a majority voting attention-based classifier

for data imbalance problems in the architecture.

3. To analyze the correlation of multiple architectures on variable patterns

3.5 DATA

The proposed approach utilized COVID-19 and Normal CXR images during the ex-
periments. A total of 2,896 COVID-19 images were sampled from Dr. J. P. Cohen’s
GitHub repository. Dr. J. P. Cohen, from the University of Montreal, collected data
consisting of CXR and CT scan images [175]. To the best of the author’s knowl-
edge, this was the first COVID-19 dataset shared on GitHub. Additionally, 1,341
Normal CXR images were sampled from the RSNA Pneumonia Detection Chal-
lenge dataset [176]. These images were divided into training and testing datasets,
as shown in Table 3.1. Few samples from COVID-19 and Normal images has been

given in the Figure 3.1.

S.NO Type COVID-19 Normal Total
1 Train data 2396 1041 3437
2 Test data 500 300 800

Table 3.1: Data distribution proposed approach (Dataset created by sampling COVID-19
images from [150,175], Normal images from [176]).

COVIDx dataset [82] comprising 13,975 CXR images across 13,870 patient
cases. The authors integrated and modified five publicly available data repositories
to create this dataset. i. COVID-19 image collection of Dr. J.P. Cohen, ii. COVID-
19 chest X-ray Dataset Initiative [177], i11. Actual Med COVID-19 chest X-ray
Dataset Initiative[178], iv. RSNA Pneumonia Detection Challenge dataset [176] v.
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(d) COVID
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(e) NORMAL (f) NORMAL (g) NORMAL (h) NORMAL

Figure 3.1: COVID-19 and Normal images from the dataset

COVID-19 radiography database [179]. The dataset can be reproduced through the

codes from [180]. Data distribution is shown in the Table 3.2.

Type Normal Pneumonia COVID-19 Total
Train 7966 5421 152 13539
Test 100 100 31 231

Table 3.2: Data distribution in COVIDx Dataset

Non-COVID and COVID instances of both CXR and CT images are included
in the COVID-19 dataset. A total of 17,099 X-ray and CT images are generated
from the dataset using various techniques [181]. COVID-R [51] dataset consists of
2843 COVID-19, 3,108 Normal, and 1,439 Pneumonia CXR images. Some of the

publicly available datasets are shown in the Table 3.3.
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The National Institute of Health released one of the largest publicly labeled
datasets Chest X-ray8 [183] in this field, containing 1,08,948 images of 32,717
different patients, classified into eight different categories. The radiologists’ anno-
tations were labeled using natural language processing techniques. Chexpert [184]
is another large dataset containing 2,24,316 CXRs from 65,240 people divided into
14 classes. Tuberculosis chest X-ray database [129] consists of 3,500 TB images
and 3,500 Normal CXR images.Montgomery County X-ray Set [185] consists of
80 Normal, 58 TB from the Department of Health and Human Services of Mont-
gomery County, MD, USA. Shenzhen Hospital X-ray 336 TB, 326 Normal CXR
images. X-ray images in this data set have been collected by Shenzhen No.3 Hospi-
tal in Shenzhen, Guangdong Province, China. Two datasets named Dataset A(DA)
and Dataset B(DB) [130]. The DA was composed of the test set (26 non-TB and 26
TB CXRs) and the training set (52 non-TB and 52 TB CXRs). In contrast, the test
set consists of 25 non-TB and 25 TB CXRs, whereas the database has 50 TB and 50
non-TB CXRs. Two highly qualified chest radiologists from the National Institute
of Tuberculosis and Respiratory Diseases in New Delhi, India, and Indira Gandhi
Medical College in Shimla, India, independently assessed each CXR and deter-
mined which cases were TB and which were not. [186] Two radiologists collected
chest X-rays at each center (BWC, with 19 years of experience in chest radiology,
MIJC, 18 years of experience, and six chest radiologists with more than ten years
of experience) from four hospitals from 2015 to 2017. This dataset consists of 200
Abnormal and 800 Normal images. The US National Library of Medicine [128] has
made two datasets with a significant focus on TB. One contains 80 normal cases and
58 TB; with 326 normal cases and 336 TB. [187] CXR images with lung nodules
are 154 and 93 without a nodule were selected from 14 medical centers. Some of

the datasets that are available for the public have shown in the Table 3.4.
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Chapter 4

METHODOLOGY

To classify the lung images to COVID-19 and healthy images, we have proposed a
system architecture that consists of generating local features from images with the
XAI method and training the CNN network twice, one model on global features
and another on local features and the final one with a fusion of local and global
features. There are various options to extract features. Employ a custom CNN
network with sigmoid as output activation, another is to employ a transfer learn-
ing network for feature extraction. Class imbalnce is one of the problem and it is
addressed by designing a multi stage approach while handling through ensembles
methods. Preprocessing methods such as image resize, contrast enhancement, and
otsu’s thresholding algorithm for segmentation are included as part of the system.

The entire proposed system has been shown in the Figure 4.1

The rest of the sections will present overview of each sub objective in details.
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4.1 SUB OBJECTIVE 1

To develop local indicators (Region of Interest features) using an attention-
guided mechanism and associate them with global features extracted for de-

termining the chest infection.

The suggestedd approach is to obtain local features through the attention-guided
mechanism. This can be achieved through the Explainable AI method by applying
it to a trained classifier. A trained classifier is a model that was designed and trained
on a binary classification problem of lung diseases. Then, the XAl method was used
to generate a Region of Interest(ROI) features that reveals why an image is classified
into that class. It explains the hidden nature of a typical CNN-based model. Using
the XAl method, annotate the ROI features on the trained data set. Here the goal is
to super impose a binary mask on the region of interest. Train a model on the ROI
of images. These are additional features that further explain and help the classifier.
The challenge here is that while extracting ROI, there is a chance of missing the
spatial information of features. This information is captured through a proposed
quadrant approach, shown in the algorithm 1. The proposed method’s architecture
is shown in the Figure 4.2. It has multiple phases, i. Train a CNN model on the
given set of images using the best architecture, ii. Generate local features from the
set of images using the XAI method, e.g., LIME., iii. Train another CNN model
using the local discriminant features, iv. Combine the generated local features with
features generated in phase one, v. Perform a simple classification model on the
fusion data set. For example, the ROI mask can be observed from COVID-19 class
images in the Figure 4.4. These ROlIs are the output images from phase two. Local
and global features are given equal weight during fusion. The architecture used
to train images is a light weight model with four CNN layers,max-pooling, and
dropout layers.

In addition to local discriminant features, the location of features will be ex-
tracted as given in the Algorithm 1. CXR image is partitioned into four quadrants

labeled Q1, Q2, Q3, and Q4. The centroid is computed from all non-zero pixel
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Figure 4.2: Proposed method to extract local indicators

locations. A pixel at location (i,j) is denoted as i’th row j’th column. Every image
mask can be denoted with two pointers; one is on top of the left corner and the other
from the bottom right corner. The top left corner pointer is the least of the coor-
dinates in the given locations, and the other right corner is the higher coordinate.
These two reference pointers will helps to get the feature’s centroid which further
aids in labeling.

The fusion of local and global features which helps to classify the disease as
shown in the Figure 4.3. Here the fusion of features is carried out in the following

way:

* CXR images sent to a trained CNN network and features gets extracted: say

output of one image is a flattened vector of size 1*500 - global vector

* similarly local features extracted from other CNN network that is trained on

local features: say output is a flattened vector of size 1*500 - local vector
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Algorithm 1 Extracting spatial location of features with Quadrant approach

while ¢ <len(images) do
if image; is valid then
x1 < non — zero — locations(image;)
Zeount  size(xl)
x11 + man(zl, axis = 1)[0]
x12 + min(zl, axis = 1)[1]

T21 < Mmax

Too < ax
Ty — T11+T21

2
Te I1242r£1?22

t <+

xl,axis = 1)|
xl,azis = 1)[1]

sizeofimage

elseif r, <=1¢ and r. <=t then

append(11,Q1)

elseif r, >=1t¢ and r. <=t then

append(11,Q2)

elseif r, <=1t and r. >=t then

append(11,Q3)

else

append(11,Q4)

end if
end while
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Figure 4.3: fusion of local and global features
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* now, we have two flattened vectors of same size, perform element wise addi-

tion.

* element wise additon could be weighted sum. i.e wl* global vector + w2*

local vector ; wl, w2 could be varied from 0.1 to 0.9 such that wl+w2=1.

One way to reduce the featues is through a traditional principal component anal-
ysis, however one looses the explainability,it could be considered for a quick un-
derstanding of features.

The proposed methods are evaluated based on computing ROI from multiple-resolution

images. This is further discussed in detail in the next section.

3 -

(a) COVID-36 (b) COVID-1984  (c) COVID-1997  (d) COVID-2056
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(e) COVID-36 (f) COVID-1984 (g) COVID-1997 (h) COVID-2056

(i) COVID-36 (j) COVID-1984 (k) COVID-1997 (1) COVID-2056

Figure 4.4: COVID-19 images and their corresponding localization maps along with masks
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4.2 SUB OBJECTIVE 2

To design a mechanism using a majority voting attention-based classifier for

data imbalance problems in the architecture.

An imbalanced learning problem is a challenge that has grabbed the interest
of academics and industry. Class imbalance is a wide spread problem in ML due
to the unavailability of data in a specific category. Several under-sampling and
over-sampling methods handle class imbalance; however, finding the correct pat-
tern heavily depends on the sub-sampling. This work proposes a two-stage ap-
proach with a data sampling method with Mutually Disjoint Data Sets(MDS) and
ensemble models. Ensembles give more importance to the minority samples with
a double voting method. The proposed method has an improvement of 3.78, and
13.78 percent of average recall on the train and test data respectively compared to
best-base model results. The suggested method comprises two stages: stage one
separates the data from the majority class into Mutually Disjoint Datasets (MDS).
By merging MDS with minority samples, a subsample is created. Most samples
will be used in this way for building the model. Each sub-sample will be used to
train a set of classifiers. The second stage creates meta-classifiers using learned
models. The outcomes of each model’s predictions are combined. It can be done in

the following way.

* divide the predictions-MDS predictions, minority predictions.
* combine all MDS prediction sets.

* second level voting on minority samples.

This approach’s schematic is shown in the Figure 4.5. Further, the trained models

can be stored and used for future data in the following way.

¢ send unseen data to all trained models
* get the prediction sets

* use majority voting method to get the final predictions.
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Figure 4.5: Proposed approach: A two stage approach to handle class imbalance.
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4.3 SUB OBJECTIVE 3

To analyze the correlation of multiple architectures on variable patterns.

Gradient-weighted Using gradients of the target class flowing into the final con-
volutional layer, Class Activation Mapping generates a coarse localization map that
highlights the critical places in the image for predicting the target class [189]. The
concept originated from the fact that fully connected layers lose spatial information
while convolutional layers retain it. When gradients go into the final convolutional
layer, the information is used to assign importance to each neuron. It computes the
gradient of the class score with respect to the feature map activations of the convo-
lutional layer first, and then flows back with each convolutional layer to obtain the
localization map. The same process is repeated at each other layer. Gradients are
global averages pooled as an aggregation process as they flow back. These tech-
niques are more trustworthy, and they were one of the successful techniques for
describing visuals from CNN output.

Saliency map [153] is a ranking-based technique that ranks pixels based on their
influence on the class score. Because the class score function is highly nonlinear,
identifying the significance of a pixel is difficult. However, the importance of a pixel
can be computed using a linear function utilizing the first-order Taylor expansion.

S.(I) = ||w||*I + b where w is the derivative of S with respect to the image I at the

dSe

point (image) fo: w = [%F]1,-

LIME [152] is another innovative explanation method that learns an interpretable
model locally around the predictions in order to explain the predictions of any clas-
sifier in an understandable and accurate manner. Interpretable explanations must
use a representation that is understandable to humans, regardless of the model’s
real attributes. The output, which allows the model to most accurately predict the
class, is a binary vector that indicates whether a continuous patch of pixels is present
or absent.

A collection of XAI models is created and trained to address the problem of
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Algorithm 2 Ensemble of XAI models -Training

I: Read CXR images of 224%224 resolution.
2: Load customized trained model(base model) from h5 object.

Phase 1 - Generating ROIs-Local features from CXR images

3: while All images exhausted do
4: Input model and image to the XAl model to generate ROI mask.

5: 1 < X AlImethod
6: if i = GradCAM or i = saliencymap then
7: Send the image to the XAI method to get the ROI mask
8: Apply Otsu’s method on ROI to get the right segments
9: else
10: Send the image to the XAI method to get the ROI mask
11: end if

12: Write the roi generated image to disk.(named as local dataset(LD)
13: end while

Phase 2 - Training CNN model on local features- Local models

14: while On each dataset produced in the previous step do
15: Train a CNN model.

16: Store the model as an h5 object.

17: end while

Phase 3 - Fusion of original images with extracted local regions
18: while On each LD(s) do

19: read images from LD and original dataset

20: while All images exhausted do

21: Point wise pixel addition local feature and original image
22: prepare a numpy array

23: end while

24: Store numpy array for each - Fusion Dataset(FDs)

25: end while

Algorithm 2 Ensemble of XAI models -Training (Continued)

Phase 4 - Training a CNN model on combined dataset

while On each FD(s) do

Train a CNN model

Store it as h5 object (Fusion model-FM)

Get the predictions

Take the mode of predictions as the final output
end while

binary classification that detects the presence or absence of an individual who has
COVID-19. GradCAM, LIME, and Saliency maps are some of the XAl approaches
used in this work. Each XAI approach generates ROIs from CXR pictures. To
produce ROIs, various XAl approaches are applied, and a CNN model is trained on
each output before the final predictions are selected by a majority vote.

The process has been explained thorugh the algorithm 2 to train the model,
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Figure 4.6: Block diagram for proposed method-Ensemble XAI; DCNN-Deep convolu-
tional neural net;F-DCNN-Fusion DCNN

Algorithm 3 Ensemble of XAI models -Testing

Read test CXR images of 224*224 resolution.
Load customized trained model(base model) from h5 object.
Load three local models from the h5 object.
while All images exhausted do
while each of three XAI method(s) do
produces local features using the XAI model.
Fusion with original data.
Apply fusion model to get the prediction.
end while
Take the mode of all as the final prediction.
: end while

POV RXIDINSE DN

—_

testing is in Algorithm 3, and the schematic has been shown in the Figure 4.6.
The following is the summary of the process 1. train a CNN model on given input
images, ii. sharing the stored model and images with XAI method to generate rois,
iii. fusion of input images and generated rois and training another custom DCNN
on data generated from phase ii, iv. get the predictions from the previous phase for

all XAl techniques and finalize the prediction using majority voting.
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The proposed methodologies offer several distinct advantages over conventional ap-
proaches for lung disease classification in CXR images. Unlike standard CNN mod-
els that primarily operate as “black boxes,” our method leverages XAl techniques,
such as Grad-CAM and LIME, to extract and visualize local features, thereby en-
hancing interpretability. This is particularly crucial in medical imaging, where un-
derstanding the rationale behind a model’s predictions can significantly impact clin-
ical decision-making. Additionally, the fusion of local and global features, derived
from separate models, allows for a more comprehensive representation of the data,
capturing subtle patterns that may be overlooked by single-model systems. This
integrated approach not only improves classification accuracy but also provides
deeper insights into the spatial distribution of disease-specific markers within the
lungs. Furthermore, our multi-stage ensemble framework, which utilizes Mutually
Disjoint Datasets (MDS) for addressing class imbalance, offers a robust alternative
to traditional sampling methods, ensuring better performance on underrepresented
classes. This comprehensive system architecture thus demonstrates superior effi-

cacy and reliability compared to existing methodologies.

73



Chapter 5

EXPERIMENTS AND RESULTS

5.1 ARCHITECTURE DETAILS TO GENERATE LOCAL FEATURES

The problem formulation has been done in the following way: A disease classifi-
cation problem with two classes COVID-19 and NORMAL. Data from [150] with a
size of 3437 samples were used in the experiment. Images of different scales
120%120,150*150,180*180,224*224 were used for better generalization and to per-
sist scale invariant transformations. Four global models were trained, local dis-
criminant features were extracted, and four local models were trained using local
features. Principle Component Analysis(PCA) is applied to local features while
combining with other quadrant information. Further, rules are derived by apply-
ing a Decision Tree(DT). The experiments were conducted on different-resolution
images, as shown in the Figure 5.1.

In phase one, we divided the data into train and validation sets while reading
through the image data generator. Each image is cropped to a target resolution size,
e.g.:224%224. A custom CNN network was taught for 5*10! epochs with a learning
rate of 10~ and patience of five. A learning rate regularizer was used to avoid over-
fitting. T he a rchitecture ¢ onsists o f C NN(2%64,2*128) a nd m ax p ooling, dropout
layers between bound with a set of dense layers(64,1 neurons) towards the end.
Most of the time, models try to learn patterns over the epochs, and very few errors
shoot up towards the end, as shown in Figure 5.2.

In phase two, sharing the model and image with LIME [152] to work on the
image; LIME is an agnostic model that tweaks the features in the dataset to see

the change in the output. When we set the feature weight to a lesser value, we
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Figure 5.1: Experiment set up

are able to fetch the critical feature. These features are masked and produced as
shown in the Figure 4.4. A sample of images from one class is shown along with
the corresponding mask. For example, Figure 4.4 (a) COVID-36 corresponding
annotation is Figure 4.4 (e) and its mask Figure 4.4 (i). All discriminant regional
features were independently labeled and trained using the similar CNN architecture.

Phase three is extracting global and local features, as shown in the Figure 4.3
from the flattened layer separately; aggregated features are trained further on densely
connected layers of 512, 256 neurons with an intermediate dropout rate of 0.2 and
50 epochs. This model has achieved mean accuracy of 99.29%, 97.81% across all
resolutions on trian and test data respectively. Further, PCA was applied, and a
DT was built to extract rules. All the experiments were conducted in python using
google colab! by saving intermediate results between the phases.

We have conducted experiments with varying image resolutions from 120*120,150*150,

180*180, and 224*224. The predictions on global data were shown in confusion

Thttps://colab.research.google.com/
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Figure 5.2: Accuracy and loss curves for various image resolutions trained on COVID-19
data set used from table 3.1.
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Figure 5.3: Confusion matrices for various resolution images - global data ((a) to (d) are
train, (e) to (h) are test), COVID-19 data set used from Table 3.1.
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matrices in the Figure 5.3 and the the detailed results are shown for global and fu-
sion features in the Table 5.1. When compared to state-of-the-art approaches as
show in the Table 5.2, the suggested method yielded considerably improved results.
All the authors listed in the Table 5.1 have used TL models except [105] Masud.
This author has used a lightweight CNN model, which is an appropriate comparison

to the proposed method.

S.No | Model traindata | Resolution | Data size | TP TN | FP | FN | Accuracy
1 1 120%120 3437 2388 | 1030 | 8 11 99.45
2 0 120%120 800 499 | 298 2 1 99.63
3 Extract global features 1 150*150 3437 2384 | 1017 | 24 | 12 98.95
4 using CNN network, 0 150*150 800 491 | 299 1 9 98.76
5 sigmoid at the end- 1 180*180 3437 2391 | 1024 | 5 17 99.36
6 Adam optimizer. 0 180*180 800 499 | 295 5 1 99.25
7 1 224%224 3437 2396 | 1041 | O 0 100.00
8 0 224%224 800 500 | 297 3 0 99.63
9 1 120*120 3004 2161 | 765 | 78 | 0O 97.40
10 Local 0 120%120 800 499 | 255 | 45 1 94.25
11 descriminant 1 150*150 2639 1891 | 748 0 0 100.00
12 features+t 0 150*150 800 497 | 292 3 8 98.63
13 Global 1 180*180 3004 2175 | 823 3 3 99.80
14 features 0 180*180 800 493 | 297 3 7 98.75
15 1 224%224 3004 2177 | 826 1 0 99.97
16 0 224%224 800 500 | 297 3 0 99.63

Table 5.1: Predictions for various resolution images- TP-True Positive, TN-True Nega-
tive, FP-False Positive, FN-False Negative, Acc-Accuracy(%), in train data column: 1-train
data,0-test data (Data used: COVID-19,Normal).

Author No.of classes Acc | Recall | Spec
[44] 2 (COVID-19,NORMAL) | 98.08 | 95.13 | 95.30
[46] 2 (COVID-19,NORMAL) | 90.00 | 100.00 | 83.00
[119] 2 (COVID-19,NORMAL) | 96.83 | 96.26 | 95.54
[
[

105] 2 (COVID-19,NORMAL) | 98.78 - -
190] 2 (COVID-19,NORMAL) | 80.28 - -

Table 5.2: Metrics from state-of-the-art methods,Acc-Accuracy,Spec-Specificity

5.2  ENSEMBLE METHODS, HANDLING CLASS IMBALANCE

In the proposed method COVID-19 and normal CXR images of 224*224 size have
been taken as input. In all the experiments DCNN architecture as shown in Figure
5.4 was used, where the input layer has a dimension of 224*224.

Once the DCNN model is trained on COVID-19 and normal classes, images and
model were fed to the XAl technique for eg. GradCAM, through which annotated
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Figure 5.4: Layer-wise detail of DCNN model
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images were generated. The annotated images generated through GradCAM and
saliency maps are preprocessed further with Otsu’s thresholding method to get the
segments. Otsu is a segmentation algorithm that generates lower and upper thresh-
olds to segment the image based on the continuity of pixels 2. Similarly, LIME is
another XAl model applied to this problem [191]. When we use LIME the feature
weights will vary between 0.0001 to 0.00000001

Fusion is a simple process of the addition of pixels, which intuitively gives more
weight to the important regions though it does not show much interpretation when
we plot the fusion image. Of course, it can be done through normalization but it
does not convey anything to the human eye. Three XAl techniques GradCAM,
LIME, and saliency maps were used during experimentation to generate critical
regions. Each generates local discriminant regions which are nothing but masked

images and were used further to train a model along with original data.

XAI method | train | Acc Recall Prc F1
GradCam 1 99.44 | 9945 99.80 | 1.00
0 98.79 | 99.23 99.10 | 0.99
Saliency 1 99.24 | 99.47 99.1 0.99
0 98.05 | 98.22 98.20 | 0.98
1 99.96 | 100.00 | 100.00 | 1.00
LIME 0 99.62 | 100.00 | 99.40 | 1.00
Ensembles 0 98.85 | 97.88 100.0 | 0.99

Table 5.3: Metrics captured from the models built on XAI generated annotations when
combined with original data(COVID-19); In train column, one indicates train data, zero
indicates test data,Acc-Accuracy,Prc-Precision

The results reported in the Table 5.3 for an ensemble of XAl is predicting all
positive cases correctly without missing anything although the proposed method is
on par with individual models in other metrics. Since the final output is voting from
three models, it is much more reliable.

Handling class imbalance: The images are sampled to create class imbalance data
with 100 images from COVID-19 and 900 from normal class with the intention
of creating a 90:10 ratio. Here the minority class samples are from the COVID-

19 class. In general, positive samples are rare for any disease due to lack of data

Zhttps://learnopencv.com/otsu-thresholding-with-opencv/
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collection. The experiments are conducted in the following way.

* a customized CNN model has been trained on the sample data set.

* mutual disjoint datasets(MDS) were created with repeated sampling from the

majority class while combining with minority class samples.
* a CNN model has been trained on each MDS and saved the predictions.

* predictions were consolidated from all MDS with two-stage voting for mi-

nority class samples.

* results were compared before and after applying the method.

The experiments have a choice of choosing models between customized mod-

els and TL methods. However, TL methods are a good choice as there are fewer
images. The results were recorded during the training original dataset and MDS
are given in Table 5.4. While creating MDS, COVID-19 class has been brought to
40% of the total with the undersampling method since these samples are less than
10% in the dataset. The experiments were conducted on the original dataset before
creating MDS and can be compared with the results generated from MDS. We can
observe that all methods gave results on par with the base metric. Among TL meth-
ods, VGG16 has received low scores. However, it has performed well on test data
using the proposed method.
Correlation analysis with transfer learning techniques: In this work, we have
used some of the TL methods by restricting to one version from every family of TL
methods. The experiments were conducted on the FD. A TL method is trained on
FD with binary cross-entropy loss, Adam optimizer for 50 epochs on every XAl-
generated output. The results are shown in the Table 5.5.

TL methods have been applied to the original dataset and the metrics are re-
ported in the Table 5.6. One can compare these results with the average metric
computed across all the TL methods built on fusion datasets is slightly higher than

the individual models on the original data. It will be efficient if we compare at the
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S.NO | Model Data train | Accuracy | Recall | Precision | F1 score

DS 1 98.17 99.88 98.10 0.99

0 99.04 98.91 100.00 0.99

1 97.86 94.44 100.00 0.97

MDSI 0 96.15 90.00 100.00 0.95

. 1 99.15 100.00 98.59 0.99

I | Customized Model | MDS2 0 96.15 | 100.00 | 94.44 0.97
1 99.15 100.00 98.62 0.99

MDS3 0 96.15 100.00 93.33 0.97

Testdata - proposed method 0 97.61 98.13 98.50 0.98

Test data - vanila model 0 98.14 98.88 98.51 0.99

DS 1 99.68 99.84 99.84 1.00

0 99.71 99.67 100.00 1.00

1 99.43 98.99 100.00 0.99

MDSI 0 100.00 100.00 100.00 1.00

1 97.70 96.36 100.00 0.98

2| DenseNet MDS2 0 97.67 | 9643 | 10000 | 098
1 99.43 99.12 100.00 1.00

MDS3 0 95.35 93.88 97.87 0.96

Testdata - proposedmethod 1 96.28 89.83 98.15 0.94

Testdata - vanila model 0 96.54 89.26 100.00 0.94

DS 1 100.00 100.00 100.00 1.00

0 99.71 99.67 100.00 1.00

1 100.00 100.00 100.00 1.00

MDSI 0 100.00 100.00 100.00 1.00

1 99.42 99.07 100.00 1.00

3 | ResNet MDS2 0 100.00 | 100.00 | 100.00 1.00
1 99.43 99.05 100.00 1.00

MDS3 0 97.67 96.55 100.00 0.98

Testdata - proposedmethod 0 97.91 93.86 99.07 0.96

Testdata - vanila model 0 94.72 85.71 100.00 0.92

DS 1 94.80 94.62 100.00 0.97

0 92.96 92.59 100.00 0.96

1 85.63 81.62 100.00 0.90

MDSI 0 83.72 77.78 100.00 0.88

1 87.93 83.33 100.00 0.91

4 VGGI6 MDS2 0 86.05 82.09 100.00 0.90
1 84.48 80.58 100.00 0.89

MDS3 0 76.74 70.59 100.00 0.83

Testdata - proposedmethod 0 73.94 52.43 100.00 0.69

Testdata - vanila model 0 59.31 41.38 100.00 0.59

Table 5.4: Comparison of metrics - handling class imbalance through an ensemble method
which includes customized model and TL methods;In train column one indicates train data,
zero indicates test data,(COVID-19 data).

individual model level. However, the panel of the TL model’s decisions is much
more reliable than the base one. This analysis can be done by comparing with the
results from the Table 5.3 and claim that the ensemble of customized models results
are consistent.

Some assumptions were made while training all the networks for standardiza-
tion purposes. Each network was trained for 50 epochs with a learning rate of

0.001, using the Adam optimizer and a patience of five epochs. No other parameter
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S.NO | XAI method | Transfer learning method | train | Accuracy | Recall | Precision | F1 score
ResNets0v2 0 | 923 | 082 | 61 | 098
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Table 5.5: Metrics recorded after applying various TL methods on different XAl gener-
ated fusion datasets; In train column one indicates train data, zero indicates test data - An
ensemble model(COVID19 data).

tuning was done to improve the results in order to avoid overfitting. With the ap-

proach adopted, we claim that some of the networks are weak classifiers that may

perform well on a few data points compared to others, which is actually the concept

of ensembles. Some of the error curves are shown in Figure 5.5.

Further the experimentation was done on identifying Lung nodules from CXR
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S.NO | Transfer learning method | train | Accuracy | Recall | Precision | F1 score
o | ] ]
||
3 Xeeption 1 99.92 99.89 100.00 1.00

0 99.44 99.55 99.66 1.00
s | comnexTing o | o3 | ora1 | o9 | 0o
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Table 5.6: Metrics generated from TL methods- on original images of 224%224 resolution;
In the train column, one indicates train data, and zero indicates test data(COVID-19 data.
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Figure 5.5: Error curves-a,b,c are generated while training on the GradCAM fusion dataset;
d,e.f are generated while training on the Saliency fusion dataset.

images by sampling from JSRT Dataset >, NIH Chest X-ray 14 dataset *. The

dataset used in the experiments consists of 318 nodule images sampled from the

NIH Chest X-ray dataset and 1041 normal images sampled from the Kaggle pneu-

monia dataset.

3https://www.kaggle.com/datasets/raddar/nodules-in-chest-xrays-jsrt
“https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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Fusion dataset :
S.No composition of train-1 Accuracy | Recall | Precision | Flscore
features test -0
weight of | weight of
global local
features | features

1 0.5 0.5 1 99.63 98.41 100.00 99.20
' ’ 0 99.25 97.26 100.00 98.61

1 99.91 99.59 100.00 99.79

2 0.6 0.4 0 99.63 100.00 98.67 99.33
1 99.91 99.61 100.00 99.80

3 0.7 0.3 0 99.63 100.0 98.41 99.20
1 98.43 97.29 95.80 96.54

4 0.8 0.2 0 99.26 98.33 98.33 98.33
5 0.9 0.1 1 99.17 96.60 100.00 98.27
' ) 0 98.16 95.24 96.77 96.00

1 98.71 96.03 98.37 97.19

6 0.1 0.9 0 98.16 94.67 98.61 96.60
1 99.36 97.77 99.62 98.69

7 0.2 0.8 0 97.06 91.07 94.44 92.73
1 92.53 50.00 52.38 51.16

8 0.3 0.7 0 98.90 100.00 94.92 97.39
1 100.00 100.00 100.00 100.00

? 0.4 0.6 0 99.63 98.57 100.00 99.28

Table 5.7: Metrics recorded on fusion dataset with various weight compositions of local
and global features trained with deep learning model to predict lung nodules.

Similar CNN model trained for 50 epochs by setting parameter patience of ten
with early stopping criteria. The weights vary from 0.1 to 0.9 for local and global
features. The corresponding results are shown in the Table 5.7. The second and
third columns show the feature’s contribution to the final data. The local features
are observed in small sizes in many images however in a few cases they can be
seen on the sides of the lungs as shown in the Figure 5.6. Some of the error curves
captured for the different models are shown in the 5.7 all the experiments were
conducted in Google Collab’ running in a local machine with 8 GB RAM.

Inaddition, Vision Transformers are used to extract features from the local fea-
tures and classified COVID-19 from normal images. Images are trained with cus-

tom CNN with Adam optimizer and a learning rate of 0.001. The network is trained

Shttps://colab.research.google.com/
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Figure 5.6: Local features observed from CXR images of Nodule class.

for 50 epochs with a patience parameter set to 10. The deep learning model has been
saved in the h5 object. This makes the user load the model and image to get predic-
tions. This model and each image have been passed to LIME to get the region of
interest features. The region of interest features are combined with original images.
Now each image has been divided into 64 patches with a patch of size 8*8. Each
patch gets converted into a vector. Each vector will be passed to the transformer
for further training. The model was trained for 100 epochs and the correpsonding
error curves has been show in the Figure 5.8. Adam optimizer was used to optimize
the weights. The experiment has shown an accuracy of 98.08% on test data when
compared to the existing CNN performance [46, 192]. Corresponding confusion

matrix on test data is shown in the Figure 5.9. We have used Google Colab free
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Figure 5.7: Error curves observed during training lung nodule detection.
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Chapter 6

DISCUSSION

6.1 INTRODUCTION

In this work, CXR images of different resolutions have been taken to produce the
discriminative features through the XAI method in order to generalize the solu-
tion. XAI method LIME focuses on a part of the image(local features) to produce
discriminative regions. Disease classification through local features has achieved
convincing results. Several investigations [193, 194] have revealed that CXR im-
ages contain abnormalities that are consolidations that largely affect the perimeter
of the contralateral lower lobes. The most common extrapulmonary findings were
increased resistance to flow in the kidneys, thickness of arterial walls, fatty liver,
pancreas, and heart inflammation. L ocalization results e mphasized the region of
the lower lobes; nevertheless, some of the upper lobes still displayed anomalies.
Some of them are denoted at airways near the throat area in bubble size, which
determines the starting stage of the disease. However, these are to be confirmed
by an expert radiologist. Some standard images did not find discriminant features
as part of the lungs—for example, the arm area and outside of the lobes. The pro-
posed method has shown significant improvement over the base and state-of-the-art
models. Images misclassified with the base model are correctly classified with
local discriminative feature training. It is because of the following reasons. The
local discriminant features learned through the XAI method on the base model im-
pact other misclassified samples while training. It could happen by identifying the
correct patterns, sometimes when a learned pattern is not similar to one class but is

classified to another. When we did the sample-wise analysis, many images belong-
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Figure 6.1: NORMAL images and their corresponding localization maps along with masks

ing to the normal class showed features outside of the lung regions, as shown in the
Figure 6.1. A DT was built on the quadrant information to draw rules to classify im-
ages; and when we applied PCA to resultant features, it showed promising results.
A sample tree is shown in the Figure 6.2 on the resolution of 150,150 images.
Since images are trained with varying resolutions, we are in a position to com-
pare the local discriminant features. It helps to show consistency in the results when
we see the exact location the majority time. However, there are cases where spa-
tial information has changed from one to another. Sometimes, no local features
were learned, leading to dropping of those images during training; however, the
number of such images is less. To overcome this problem, we have done a fu-
sion of features. Fusion is to combine local and global features and trains a
classifier. Local discriminant features are generated from various other XAl

methods such as GradCAM, LIME, and saliency maps, and comparisons are
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Figure 6.2: Decision tree built on top of three PCA components with a depth of three

made among these. In addition, an ensemble of these models was built.

The annotations produced by XAI methods like GradCAM, LIME, and saliency
maps are subject to the base model built on the data, so it’s critical to produce trust-
worthy interpretations based on a fixed model. Especially in contrast to individual
models, Ensemble XAI has the benefit of stable interpretation because it simply
applies weights to the appropriate pixel attributes by studying a limited number
of annotations. By extracting the highly contributed pixel features through LIME
and GradCAM, Ensemble XAl produces stable interpretation when combined with
original data. Additionally, due to the presence of text, catheters, or lines in the X-
ray image, the base heat maps produced by GradCAM and LIME rarely highlight
the regions outside the lungs. Even though this distinct and interrupting area may be
a sign of a serious lung condition, it is not useful for making decisions. In such im-

ages, the ensemble XAl performs better than the individual XAI by assigning less
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importance. Both, the original data and the annotated data, produced better out-
comes when TL techniques were used. The topic of whether it is wise to rely on the
transfer learning approach or the customized method has been raised, and the solu-
tion may lie in a combination of the two. It requires a great deal of experimentation
and takes quite a while making predictions based on actual facts. However, if one
has sufficient computing power can overcome the impediment. One can observe
the variation between different XAI methods as show in the Figure 6.3.

The findings demonstrate that integrating local and global features through XAI
methods, such as LIME and GradCAM, improves disease classification accuracy
in CXR images and provides more interpretable model outputs. This approach en-
hances our understanding of Al interpretability by showing how localized feature
analysis can identify clinically relevant regions, facilitating better transparency and
trust in Al-assisted diagnostics. The ensemble XAl methods used offer stable, con-
sistent interpretations, mitigating issues caused by artifacts and external factors.
These insights suggest that XAl not only aids in explaining model decisions but
also helps bridge the gap between Al and clinical expertise, promoting broader ac-
ceptance of Al tools in medical practice. This work is intended solely for academic
and research purposes. It is generalized and can be applied across various levels by
training the models on larger datasets. This approach could be further extended by

collaborating with expert radiologists for real-time usage.

6.2 TIME COMPLEXITY ANALYSIS

The time complexity for the proposed approach is estimated in a model-specific

way [195] as per the architecture in a total of three parts.
* one is training the base model before applying XAl methods.

* second, time taken to generate rois from model and XAI methods,say ’x’ is

the number of XAI methods.

* third, training fusion datasets.
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Figure 6.3: XAI generated images - a,b,c are original images; d,e,f are saliency maps g,h,i
are LIME generated masks;j.k,1 are GradCAM output

The first and third uses the same architecture with the goal of capturing the fea-
tures that are not captured before fusion. It has been defined [196] in the following
way: Zle f(mi,n;, ki, s;). Here, 'm’ and ’'n’ denote the size of features, 'k’ is
the number of kernels, ’s’ is the size of the kernel, and ’d’ denotes the depth of the

network. The second part again consists of three parts since we have different XAI

92



methods. For simplification ¢; is the time taken by an XAI method. It defined as:
t = f(XAlImethod, Model) , here the "Model’ is one of the components, because
the image and model will be passed to the XAI method. Then the total time calcu-
lated as: Y., f(t;). XAI method time depends on the architecture of the model
as well. Finally the total time is 2% S0 | f(m;,n;, ki, s5) + 3., f(t:). We have
also measured the time for an epoch in each of these XAl methods. It excludes

read/write intermediate results.

6.3 LIMITATIONS OF THE STUDY

The study faces several limitations, including its restricted focus on specific dis-
eases, image quality variability, potential data biases, and dependency on particular
model architectures, which can hinder its generalizability. The high computational
complexity of the proposed methods also poses challenges for real-time clinical
use. Moreover, interpreting XAl outputs without expert medical input can be prob-
lematic, as radiologists’ insights are crucial for accurately correlating Al-generated
visual explanations with clinical findings. Collaboration with radiologists could
significantly improve the reliability of these interpretations, helping to bridge the
gap between Al and clinical practice. While XAl-generated annotations offer a
level of automation, they still require refinement to ensure clinical validity. Future
research should focus on expanding disease coverage, standardizing datasets, op-
timizing computational efficiency, and integrating multi-modal data sources to en-
hance the model’s clinical applicability, interpretability, and impact on healthcare

workflows.
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Chapter 7

CONCLUSION AND FUTURE SCOPE

7.1 CONCLUSION

This work investigates the finding of Lung disease that is COVID-19 with the help
of localization approach, which is similar to radiologist way of looking at the im-
age. It has been achieved through Ensemble of LIME, GradCAM and Saliency
maps. Original image features and XAl generated features are combined with the
fusion of local and global models. Specifically LIME, for the purpose of extracting
local features from images, with a specific focus on C OVID-19. The LIME algo-
rithm generates features in a random manner, occasionally obscuring the identity
of the rightsholder. Consequently, further evidence is necessary to identify these
features accurately. The findings exhibit promise; nonetheless, additional research
on more extensive datasets is necessary. As the field of XAl continues to progress,
the LIME technique will be subject to comparative analysis with more sophisticated
methodologies in order to validate its outcomes. These attributes can be certified
by radiologists based on their expertise and professional experience. On the other
hand, GradCAM and saliency maps are also used to generate region of interest fea-
tures which helped to assess LIME method annotations. In addition class imbalance
is handled through a multi stage approach of undersampling.

This method is an versatile approach to computing local features through XAI
methods and shown better accuracy of 98.85% and 99.62% for ensemble XAl and
LIME respectively. With the transfer learning approaches X AI-Xception net gave
the best test result of 99.84% and while handling class imbalance custom network

gave 97.61% on test data. As the number of options are increasing as technology
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progresses, one can choose heterogeneous approaches to build systems to predict
lung disease in the near future. As the research grows, these XAI method-generated
images to be inspected by radiologists and come up with the right annotations may
increase the trust in the patients and healthcare community to make use of the au-
tomation process. The proposed approach may be extended to other disease im-
ages and in other modalities like CT scans, magnetic resonance imaging(MRI),
etc. There is a possibility of building a segmentation model on each XAI method-
generated output. Further ensemble of segmentation may provide the right annota-
tions instead of depending on XAI methods once there is a well-trained segmenta-
tion model similar to [100]. Unet architecture is a network and a training strategy
that has a contracting path to capture context and a symmetric expanding path that
enables precise localization. Training such a network requires image masks along
with images that need to be verified by experts. Here an attempt is made to build
Ensemble XAI methods to predict lung disease (COVID-19 vs Normal) and it has
produced sustainable results.

The dataset presented here is the initial outcome of feature extraction using
a binary masking approach applied to the COVID illness. So far, it is the first
data set produced by extracting features through a binary masking mechanism on
COVID-19 disease as per the author’s knowledge. The dataset( for more sample
images, refer the Figure 7.1) will be shared on a special request. The dataset will
be disseminated to other individuals and contributed to the research community for

subsequent investigation.

7.2 FUTURE SCOPE

The authors have future plans to expand the application of the pipeline to encom-
pass multiple lung illnesses by employing various XAl techniques. The proposed
strategy has not yet been subjected to experimentation using transfer learning meth-
ods. The utilization of binary masks generated by the proposed methodology con-
tributes to the development of an exemplary classifier. However, it is important to

note that the determination of the disease’s severity ultimately relies on the exper-
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Figure 7.1: COVID images and their corresponding localization maps along with masks

tise and judgment of a skilled radiologist. The dataset pertaining to illness masks
can effectively train segmentation networks and accurately detect local segments.
As the field of study expands, the utilization of XAl holds potential for radiologists
to examine and annotate them, thereby fostering enhanced confidence among pa-
tients and healthcare communities. The proposed methodology has the potential to
be applied to a broader range of medical conditions and imaging techniques, such
as CT scans and MRI. A segmentation model that has undergone extensive training,
such as the Unet architecture, has the potential to accurately generate annotations

without the need of XAI techniques.
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