## Name:

## **Enrolment No:**



## **UPES**

## **End Semester Examination, December 2024**

Course: Molecular Biology and Genetics Semester:3<sup>rd</sup>
Program: BT-BIOMEDICAL & BT-BIOTECHNOLOGY Duration: 3 Hours

Course Code: HSBE2005 Max. Marks: 100

**Instructions: Attempt all questions** 

| S. No. | Section A                                                        | Marks | COs |
|--------|------------------------------------------------------------------|-------|-----|
|        | Short answer questions/ MCQ/T&F                                  |       |     |
|        | (20Qx1.5M= 30 Marks)                                             |       |     |
| Q 1    | The number of replicons is found in E. coli?                     |       |     |
|        | A. Five replicon                                                 |       |     |
|        | B. Two replicon                                                  | 1.5   | CO2 |
|        | C. Single replicon                                               |       |     |
|        | D. Multiple replicon                                             |       |     |
| Q 2    | What is the structural unit of chromatin?                        | 1.5   | CO1 |
| Q 3    | Supercoiling of DNA helps in compacting the chromosome. (True    | 1.5   | CO1 |
|        | or False)                                                        |       |     |
| Q 4    | Which enzyme removes RNA primers during DNA replication?         | 1.5   | CO2 |
|        | A. DNA helicase                                                  |       |     |
|        | B. DNA polymerase I                                              |       |     |
|        | C. DNA polymerase III                                            |       |     |
|        | D. DNA ligase                                                    |       |     |
| Q 5    | The sigma factor of RNA polymerase in prokaryotes is responsible | 1.5   | CO2 |
|        | for:                                                             |       |     |
|        | A. Elongation                                                    |       |     |
|        | B. Promoter recognition                                          |       |     |
|        | C. Termination                                                   |       |     |
|        | D. Proofreading                                                  |       |     |
| Q 6    | Name one post-translational modification.                        | 1.5   | CO1 |
| Q 7    | What triggers the termination of translation?                    | 1.5   | CO2 |
|        | A. Stop codon                                                    |       |     |
|        | B. Poly-A tail                                                   |       |     |
|        | C. Start codon                                                   |       |     |
|        | D. Promoter sequence                                             |       |     |
| Q 8    | What is codominance?                                             | 1.5   | CO3 |
| Q 9    | Methylation of DNA typically leads to gene activation. (True or  | 1.5   | CO3 |
|        | False)                                                           |       |     |
| Q 10   | Alternative splicing can produce multiple proteins from a single | 1.5   | CO2 |
|        | gene. (True or False)                                            |       |     |

| Q 11 | In rho-independent termination, the RNA transcript forms a:      | 1.5 | CO1 |
|------|------------------------------------------------------------------|-----|-----|
|      | A. Stem-loop structure                                           |     |     |
|      | B. Promoter complex                                              |     |     |
|      | C. Poly-A tail                                                   |     |     |
|      | D. Sigma factor                                                  |     |     |
| Q 12 | What is the first amino acid incorporated during translation in  | 1.5 | CO2 |
|      | prokaryotes?                                                     |     |     |
|      | A. Methionine                                                    |     |     |
|      | B. Formyl-methionine                                             |     |     |
|      | C. Serine                                                        |     |     |
|      | D. Glycine                                                       |     |     |
| Q 13 | Aminoacyl-tRNA synthetase charges tRNA with the correct amino    | 1.5 | CO1 |
|      | acid. (True or False)                                            |     |     |
| Q 14 | A cross between a tall pea plant (TT) and a dwarf pea plant (tt) | 1.5 | CO4 |
|      | results in:                                                      |     |     |
|      | A. All tall offspring                                            |     |     |
|      | B. All dwarf offspring                                           |     |     |
|      | C. A 3:1 tall to dwarf ratio                                     |     |     |
|      | D. A 1:1 tall to dwarf ratio                                     |     |     |
| Q 15 | DNA methylation typically occurs at which nucleotide sequence?   | 1.5 | CO1 |
|      | A. GC                                                            |     |     |
|      | B. AT                                                            |     |     |
|      | C. CpG                                                           |     |     |
|      | D. TA                                                            |     |     |
| Q 16 | Name one epigenetic mechanism that can silence gene expression.  | 1.5 | CO2 |
|      | (True or False)                                                  |     |     |
| Q 17 | If the DNA strand has nitrogenous base sequence 3'ATTGCC5',      | 1.5 | CO3 |
|      | will the mRNA have?                                              |     |     |
|      | A. 5'ATTGCA3' B. 3'UAACGG5'                                      |     |     |
|      | C. 5'UAACGG3'                                                    |     |     |
|      | 3'ATCGCC5'                                                       |     |     |
| Q 18 | DNA replication is                                               |     |     |
| -    | A. conservative                                                  |     |     |
|      | B. conservative and semi-discontinuous                           | 1.5 | CO1 |
|      | C. semi-conservative and discontinuous                           |     |     |
|      | semi-conservative and semi-discontinuous                         |     |     |
| Q 19 | An enzyme performs decatenation?                                 |     |     |
|      | A. Polymerase                                                    |     |     |
|      | B. Topoisomerase                                                 | 1.5 | CO2 |
|      | C. Telomerase                                                    |     |     |
|      | Decatenase                                                       |     |     |
| Q 20 | Who discovered the structure of DNA?                             | 1.5 | CO1 |
| -    | A. Meischer                                                      |     |     |
|      | B. Avery                                                         |     |     |

|     | C. Watson and Crick                                                                                                                    |    |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|     | D. Franklin                                                                                                                            |    |     |
|     | Section B                                                                                                                              |    | ·   |
|     | (4Qx5M=20 Marks)                                                                                                                       |    |     |
| Q 1 | Differentiate between the leading and lagging strands during DNA replication.                                                          | 5  | CO3 |
| Q 2 | How does histone acetylation affect gene expression?                                                                                   | 5  | CO2 |
| Q 3 | Describe the process of DNA replication in prokaryotes, emphasizing the role of key enzymes.                                           | 5  | CO2 |
| Q 4 | What is dosage compensation. Give one example.                                                                                         | 5  | CO3 |
|     | Section C                                                                                                                              |    |     |
|     | (2Qx15M=30 Marks)                                                                                                                      |    |     |
| Q 1 | Discuss the mechanisms of epigenetic regulation, focusing on DNA methylation, histone modifications, and non-coding RNAs.              | 15 | CO2 |
|     | (10 Marks)  Explain their role in gene expression and their implications in health and disease. (5 Marks)                              |    |     |
| Q2  | Describe the process of protein synthesis (translation) in eukaryotes, including the roles of ribosomes, tRNA, and associated factors. | 15 | CO2 |
|     | Section D                                                                                                                              |    | ı   |
|     | (2Qx10M=20 Marks)                                                                                                                      |    |     |
| Q 1 | Compare and contrast the mechanisms of DNA replication in                                                                              | 10 | CO3 |
|     | prokaryotes and eukaryotes. (5 Marks)                                                                                                  |    |     |
|     | Highlight the key similarities and differences. (5 Marks)                                                                              |    |     |
| Q2  | Discuss the molecular mechanisms of DNA methylation and its role in gene expression regulation. (5 Marks)                              | 10 | CO3 |
|     | How does DNA methylation contribute to human diseases such as cancer? (5 Marks)                                                        |    |     |