Name:	MIDEC.
Enrolment No:	WOI LO
	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2023

Semester: IV

Course: Sedimentary and Petroleum Geology

Program: B.Tech APE-UP Time 03 hrs.
Course Code: PEGS 2002 Max. Marks: 100

Instructions:

HISTI	actions:								
	SECTION A (5Q x 4	$\mathbf{M} = 20 \ \mathbf{M}$	larks)						
S. N.		Marks	CO						
Q1	Define arenaceous sedimentary rock and provide two examples.	4	CO1						
Q2	2 Describe Porosity (ø) and Permeability (k).								
Q3	Q3 Describe the formation process of two different types of graded bedding.								
Q4	Explain the process of dolomitization.								
Q5	 Identify <u>True or False</u> from the given statements- a) Three-way closure of depth contours at the reservoir top indicates a stratigraphic trap. b) Herring-bone cross-bedding is formed in the deep marine environment due to the bimodally dipping foresets. c) Lithification is a tendency to segregate sediments based on uniformity. d) Onlap is the termination of seismic reflections in a landward direction against a steeply inclined underlying reflection. 	1x4= 4	CO1						
	SECTION B (4Q x 10)	M = 40 M	arks)						
Q6	Explain the fluvial depositional environment. Draw a longitudinal river profile, mark three distinct stages of a river and describe/compare the reservoir characters of any three fluvial landforms.	10	CO4						
Q7	a) Describe in detail about formation process of Turbidite deposits.b) Isopach and Isochore maps	5+5	CO2						
Q8	Illustrate Walther's law of facies correlation and its importance in sequence stratigraphy and petroleum system analysis.	10	CO4						
Q9	Explain the composition of carbonate rocks. Illustrate in detail about Limestone rocks classifications given by Folk.								
	OR	10	CO3						
	Explain the composition of carbonate rocks. Illustrate in detail about Limestone rocks classifications given by Dunham.								

				SECTION-C		$(2Q \times 20M =$	40 Marks	s)
Q10	b) c)	Explain production Draw and raccompakey rishinghes	5+5+10	CO6				
				Prospect SP-1	Prospect SP-2	Prospect SP-3		
			Elements	Probability	Probability	Probability		
			RP	0.90	0.95	0.89		
			SP	0.90	0.90	0.82		
			SC	1	0.95	0.75		
			A	0.89	0.83	0.89		
			T	0.78	0.88	1		
			RD	0.95	0.98	0.80		
Q11	a) b)	10+10						
				OR				
	c) d)	7+7+6 =20	CO5					
	e)			iagram starting from		ems tracts.		

										E	no	1													
--	--	--	--	--	--	--	--	--	--	---	----	---	--	--	--	--	--	--	--	--	--	--	--	--	--