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A B S T R A C T   

The Convolutional Neural Network (CNN) is a complex architecture that performs magnificently in image 
classification and segmentation problems. Still, selecting an effective architecture is typically hindered by several 
parameters. Empirically, evolutionary algorithms (EA) have been found adequate in parameter selection and 
automated neural network search. However, the huge computational requirements imposed by evolutionary 
search make its applicability unexplored. Consequently, the idea of a CNN architecture selection based on EA is 
challenging as comparing complex candidate architectures towards their fitness would involve massive com-
putations. In this work, we propose a novel framework using an adapted Genetic Algorithm (GA) that auto-
matically evolves an effective CNN architecture. We rectify the GA by devising an effective encoding scheme, an 
approach to initialize the input population, and a diversified offspring generation method. We also suggest an 
optimized fitness function that makes the convergence faster, avoiding the local optima. The method is validated 
with the benchmark MNIST, Fashion_MNIST, and CIFAR-10 datasets. The results are comparable to the best 
manual and automatic state-of-the-art architectures regarding accuracy, convergence rate, and consumed 
computation resources.   

1. Introduction 

Convolutional Neural Networks (CNN)’s performance has proven to 
be outstanding in computer vision and image classification problems 
(Krizhevsky, Sutskever, & Hinton, 2017); nevertheless, the performance 
of a CNN architecture largely depends on the complexity of the archi-
tecture, training data, and the hyperparameter selection technique 
(Simonyan & Zisserman, 2014). For comparative analysis, several 
manually designed state-of-the-art architectures, such as ResNet (Wu, 
Zhong, & Liu, 2018), DenseNet (Huang, Liu, Van Der Maaten, & Wein-
berger, 2017), and GoogleNet (Szegedy et al., 2015), have been tested 
on real-time image datasets. Although the performances of the said ar-
chitectures are outstanding on the target datasets, a generic architecture 
that adapts to a new dataset is still awaited. Today, CNN architectures 
are being used in a variety of domains, including image processing (Ren, 
He, Girshick, & Sun, 2015), healthcare (Joshi, & Singh, 2020), agri-
culture (Joshi, Mishra, Srivastav, & Goel, 2021), cyber security (Ghil-
lani, 2022), and automatic vehicle routing (Kuo, Lu, Lai, & Mara, 2022). 
Therefore, developing a novel, adaptable framework that can generate 
the desired CNN architecture with the minimum expert intervention is 

desirable. 
Furthermore, parameter tuning in the CNN model is difficult for 

experts because of its complex architecture, numerous parameters, and 
datasets. To solve the above problems, a few recent articles based on 
Recurrent Neural Networks (RNN), such as Neural Architecture Search 
(NAS) (Zoph & Le, 2016), NasNet (Zoph, Vasudevan, Shlens, & Le, 
2018), MetaQNN (Baker, Gupta, Naik, & Raskar, 2016), and BlockQNS 
(Zhong, Yan, & Liu, 2017), are introduced. Nevertheless, experimental 
evidence shows that RNN based model requires huge computational 
resources to train the model (Mishra & Kane, 2022), which restricts its 
popularity. For instance, to perform at a level comparable to the NAS 
approach, which required 800 GPUs over 28 days to find the most po-
tential CNN design on the CIFAR10 dataset, the Genetic CNN (Xie & 
Yuille, 2017) required approximately 17 GPUs per day in the CIFAR-10 
dataset. There is a strong preference for CNN architectural designs based 
on evolutionary algorithms because not all interested users can access 
expensive computational resources. Evolutionary Algorithm (EA) based 
methods such as Genetic CNN, AE-CNN (Sun, Xue, Zhang, & Yen, 2019), 
CGP-CNN (Suganuma, Kobayashi, Shirakawa, & Nagao, 2020), and 
several other recent methods are also used to design a suitable 
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architecture with reduced training parameters and resources. EAs are 
metaheuristic algorithms that work on the concept of survival of the 
fittest. Some EA algorithms, such as Genetic Algorithm (GA) (Mirjalili & 
Mirjalili, 2019), genetic programming (Shirani Faradonbeh, Monjezi, & 
Armaghani, 2016), evolutionary strategy (Hansen, Arnold, & Auger, 
2015), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), 
and many more, are used to optimize the parameters as well as archi-
tecture selection. Out of which GA is most suitable in the architecture 
selection problems (Vargas-Hakim, Mezura-Montes, & Acosta-Mesa, 
2021). Additionally, due to the lesser number of parameters in genetic 
algorithms, it results in convolving and locating the ideal solution more 
quickly in search space. 

In this article, we propose a GA-based framework to design CNN 
architectures automatically. We present a GA-based approach to archi-
tecture discovery in which learning hyperparameters such as kernel 
number, kernel size, learning rate, activation function, dropout rate, 
batch size, and others are manually initialized. However, the number of 
pooling and convolutional layers and their interconnections, skip con-
nections, depth, and width are chosen automatically. We used this 
approach to reduce the computation cost and minimize the search space. 
As parameter initialization is an important part of EA for a faster 
convergence rate, we employ a random initialization approach. A 
random approach will help initialize in the different positions and is 
more likely to convolve in global optima. In the proposed architecture, a 
dynamic encoding technique (Jiang et al., 2020) is used to initialize the 
population and to represent the CNN architecture in the form of 
chromosomes. 

We define genetic operators compatible with the encoding scheme to 
repopulate the new generation. After selecting the architecture, we used 
backpropagation for training the dataset. The conceptual model is 
examined with the current state of the art regarding the faster conver-
gence rate in early stages optimized to find closer to global optima. 
Additionally, we inspect the diversity of CNN algorithms in simple and 
complex datasets such as MNIST (Deng, 2012), Fashion_MNIST (Xiao, 
Rasul, & Vollgraf, 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009), 
respectively. 

The novelty of the proposed framework is its intuitive nature, which 
means users can use domain knowledge of CNNs to utilize it while still 
acquiring a good perspective CNN design for image input. 

Here is a summary of the contributions made by the suggested 
algorithm:  

1. GA frequently adopt fixed-length encoding because crossover and 
mutation operators are primitively built for chromosomes of similar 
lengths. As a result, the desired depth of the CNN architectures can 
be inaccurately computed. We presented an elementary variable- 
length encoding approach, which is simple to implement and has a 
rapid convergence rate by efficiently exploring the search space. 

2. Most present methods available extensively use computational re-
sources to expedite the automation of CNN architectures and give 
users a better experience in designing an ideal CNN architecture 
within a reasonable amount of time. In the proposed algorithm, we 
used an adaptive mechanism to identify and eliminate the non- 
performing architectures in a few epochs instead of complete 
training.  

3. The experiments compare the proposed methodology’s accuracy, 
convergence rate, and computation cost with several state-of-the-art 
architectures. We tested the model over benchmark datasets, 
including MNIST, Fashion_MNIST, and CIFAR-10. The adaptability 
of an algorithm is also analyzed based on different epoch sizes and 
generations. 

The article is organized as follows: The second section describes the 
literature review. The suggested methodology and framework are dis-
cussed in the third part. Section 4 discusses the experimental design, 
Section 5 addresses the results and analysis, Section 6 discussions, and 

section seven concludes with recommendations for further research. 

2. Literature work 

The convolutional neural network’s layered structure consists of a 
convolutional layer, a pooling layer, and a fully connected layer. We 
transmit raw pixel data from the input image to CNN, which enables 
feature extraction at various levels to aid in model learning. Weighted 
filters are used in the convolutional layer to extract the features from the 
input data, and the activation function is used to introduce nonlinearity. 
In the pooling layer, the redundant features of the convolutional layer 
are removed using min, max, or average operations. The output matrix is 
transformed into a one-dimensional vector and trained as a neural 
network in a fully connected layer. 

Numerous hyperparameters must be altered and enhanced to 
improve the CNN model. The filter size, the number of filters, pooling 
function, learning rate, activation function, stride size, and many more 
hyperparameters were among them. Due to huge parameters, re-
searchers working on generating a CNN architectural design need help 
choosing appropriate hyperparameters. The complexity of the CNN ar-
chitecture is a critical factor while learning complicated features from 
training datasets. As an architecture’s depth and interconnections in-
crease, so does its parameters and complexity. We need methods to 
automatically discover the hyperparameters and CNN architecture to 
solve the problem. 

The performance of CNN architecture is determined by accuracy, 
training cost, and parameter count. The accuracy is mostly determined 
by the training dataset (image size, quality, and distribution) and the 
complexity of the architecture. However, the training cost is mostly 
associated with parameters such as depth of architecture, size of kernels, 
number of kernels, learning rate, epoch, activation function and many 
more. Hence, selecting an accurate architecture is tedious, as it takes 
knowledge of the CNN domain and several trial-and-error combinations 
for hyperparameter tuning (Li, Zhan, Xu, Kwong, & Zhang, 2021). It also 
increases the computation cost. Most of the CNN architecture, such as 
VGG net (Simonyan & Zisserman, 2014), Resnet, and DenseNet, was 
initially developed manually to solve image classification tasks. How-
ever, its effectiveness is restricted due to complex architecture and huge 
parameters (depth till 1052 layers in ResNet and 22 M parameter in 
DenseNet). 

In recent years, automatic architecture selection and parameter 
optimization algorithms have evolved to overcome the problem of 
choosing a complex CNN architecture with minimal experience. In 
addition, the evolution of CNN architecture designs can be subdivided 
into two distinct types: reinforcement learning-based (Sutton & Barto, 
1998) and evolutionary algorithm-based (Sun, Xue, Zhang, & Yen, 
2019). Reinforcement learning-based architectural selection demands 
expensive computations (22400 in NAS), limiting its usefulness. 
Accuracy-wise, the performance of existing RL-based architectures is 
commendable, but they incur massive computing costs. Existing 
methods require extensive training time and epochs to achieve equiva-
lent accuracy. In contrast, evolutionary algorithm-based approaches 
(GA, PSO, GP) are gaining popularity due to their performance with a 
substantial reduction in compute resources while maintaining compa-
rable accuracy. Among different EA methods, GA is most popular in the 
neuro-evolution domain because of its fewer variables and faster 
convergence rate (Vargas-Hakim, Mezura-Montes, & Acosta-Mesa, 
2021). 

GA is a metaheuristic algorithm that draws inspiration from bio-
logical evolution based on the crossover, mutation, and selection tech-
niques. Choosing a group based on fitness values is more likely to choose 
fit chromosomes is referred to as a selection operation. Recombining two 
or more chromosomes to produce a new chromosome is called crossover. 
By creating a set of values around the chosen point, the mutation process 
adds diversity to the solution set. GA creates new solutions by making 
“random” modifications to existing ones. A fitness function determines 
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the optimal parameters; the best solutions are those with the highest 
fitness values. 

In addition, finding the best structures requires careful consideration 
of hyper-parameter selection and weight initialization (Sun, Xue, Zhang, 
Yen, & Lv, 2020). As a result, the training expense is decreased, and the 
convergence rate to the global optimum is rapid. Complex topologies 
contain many hyper-parameters. Therefore manually initializing them is 
difficult. Talathi (2015) developed a sequential model-based optimiza-
tion technique (SMBO) for selecting deep CNN hyperparameters, 
wherein only a few factors were considered, such as the range of con-
volutional layers, number of kernels per layer, size and stride of the 
kernels, the pooling layer (max/min/avg- size, and stride), and their 
interconnections. 

The researchers employed the PSO method for hyperparameter 
optimization with a given architecture but still needs to develop the 
architecture from scratch (Serizawa & Fujita, 2020; Wang, Zhang, & 
Zhang, 2019; Dufourq & Bassett, 2017). PSO’s modest convergence rate 
makes it more ideal for tuning hyperparameters than for building CNN 
architecture. With equivalent outcomes, our algorithms construct ar-
chitecture from scratch utilizing GA with no human interaction. 

Automatically examining the CNN structure has been done previ-
ously using a few state-of-the-art methods. A Genetic CNN technique 
describes the architecture using a fixed-length binary encoding strategy. 
A fixed architecture is represented by encoded methods and is tested on 
CIFAR-10 and MNIST datasets for 50 generations. Similarly, GA is used 
to develop a CNN architecture autonomously in AE-CNN (Sun, Xue, 
Zhang, & Yen, 2019). The underlying components used in this approach 
are ResNet and DenseNet blocks. 

Cartesian genetic programming (CGP-CNN) (Suganuma, Kobayashi, 
Shirakawa, & Nagao, 2020) is a concept that automatically designs CNN 
architecture using genetic programming. CGP-CNN uses direct encoding 
to represent CNN blocks and their connectivity. The flexibility in 
choosing the depth of architecture and ease of skip connection imple-
mentation are two advantages of this format. CGP-CNN optimized the 
CNN architecture (ResSet) in around 14 days. Similarly, the Evolving 
Convolutional Neural Network (EvoCNN) (Sun, Xue, Zhang, & Yen, 
2019) creates an effective algorithm using genetic encoding. The com-
parison of this suggested method, EvoCNN, with the top 10 peer rivals 
reveals that it outperforms them all. The CNN-GA technique uses a 
variable-length encoding scheme to evaluate the complexity of the CNN 
topology (Bakhshi et al., 2019; Sun, Xue, Zhang, Yen, & Lv, 2020). But, 
the predetermined blocks limit the ability to investigate multiple pos-
sibilities. Using a skip link also increases the computation cost as 
possible possibilities grow exponentially. Using a transformed crossover 
operator is also advised to explore the search space and describe the 
encoding scheme efficiently. The CNN-GA was used to identify archi-
tecture, automatically increasing the computation cost. Using fixed 
length encoding in (Xie & Yuille, 2017; Sun, Xue, Zhang, & Yen, 2019) 
reduces the flexibility to explore the optimal depth, whereas using fixed 
block size as a building block in (Suganuma, Kobayashi, Shirakawa, & 
Nagao, 2020; Esfahanian & Akhavan, 2019) suffers from a restricted 
search space. In addition to being straightforward to implement, it has a 
quick convergence rate, effectively explores the search space, is less 
likely to get stuck in local optima, is easy to create genetic operators, and 
minimizes computation costs. Using the mutation operator, it can also 
automatically expand and contract the layers, allowing it to investigate 
the depth of architecture. Additionally, we eliminated the fully con-
nected layer, drastically reducing the parameter and computational cost. 

3. Methodology 

In this section, we describe the framework of the proposed algorithm 
in Subsection 3.1, followed by its critical points in Subsections 3.2 
through 3.4. In order to assist the reader in comprehending the proposed 
algorithm, we will not only record the specifics of each major step but 
also provide analysis for certain architectural-level designs. 

3.1. Algorithm overview 

The proposed algorithm’s framework is shown in Algorithm 1, and 
the flow chart of the proposed framework is depicted in Fig. 1. 

In this algorithm, we pass input datasets, and after a sequence of 
evolution, the framework automatically evolves to a suitable CNN ar-
chitecture. A random population is initialized using a predetermined 
encoding and population size throughout evolution. Fig. 2 depicts an 
example of the variable length encoding system employed in the pro-
posed study. This representation uses a 32 × 32 dimension colour image 
as the input to the convolutional layer. The number of filters in a con-
volutional layer is randomly selected using population initialization 
methods. The dimension of a filter is fixed to 3 × 3, and a stride of 1 × 1 
is used to make it homogenous and reduce the computational cost. 

In the pooling layer, the algorithm automatically selects avg pool or 
max pool operation with equal probability having kernel size of 2 × 2 
and stride 2 × 2. The concatenated string of different layers represents 
the encoded representation of CNN architecture, as shown in Fig. 2. In 
pooling layer representation, it shows with the pooling operation either 
min, max, or average pooling along with kernel size 2 × 2 and stride 2 ×
2. The concatenated string represents the encoded representation of 
CNN architecture. 

The hyperparameters are manually chosen using the existing state- 
of-the-art model. Each individual’s fitness, which encodes a specific 
CNN architecture, is assessed throughout evolution using the provided 
dataset. In the subsequent generation, parent individuals are selected 
according to their fitness, and new offspring are generated utilising 
genetic operators such as crossover and mutation. The newly created 
population is combined with the existing population to create a new list 
of offspring. The evolution proceeds until the counter exceeds the 
maximum generation, increasing the counter by one. Most existing 
frameworks are developed using fixed maximal generation, which could 
restrict resource management. This paper employed adaptive exit con-
ditions that terminate automatically when the convergence rate is slow 
or near zero.  

Algorithm 1 Framework of the proposed algorithm using EA 

Input: A dataset of a set of CNN architectures represented by the variable length 
encoding technique. 

Output: Identifies the best CNN architecture. 
1. Propose an encoding scheme to represent CNN architecture. 

(continued on next page) 

Fig. 1. Flow chart of evolutionary algorithms.  
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(continued ) 

2. Initialize the population of N CNN architectures with the help of the proposed 
encoding method. Initialize max iteration G, the number of epochs for the fitness 
function, and the input dataset. 

3. Initialize the hyperparameter kernel size, loss function, learning rate, and stride 
size. 

4. While (G > 0)  
4.1 Calculate the fitness of each architecture.  
4.2. Select N/2 best architectures for reproduction using GA operators.  
4.3 Apply crossover and mutation operators to generate new offspring.  
4.4 Concatenate the new population with the existing best population to 

create a new pool of N architectures. 
5. G ← G-1 
6 End 
7. Return the best CNN architecture  

3.2. Population initialization 

The basic components of a CNN are convolutional layers, pooling 
layers, and sometimes fully linked layers. The CNN’s performance 
heavily depends on its parameters, which depend on the connection 
depth and width. The fully connected layer is discarded in this encoding 
as many parameters make it computationally inefficient. Initially, the 
number of population and the depth of each population is selected 
randomly. In the selected population, the first layer is fixed as a con-
volutional layer; then, convolutional and pooling layers are determined 
randomly with equal probability. The convolutional layer’s filter count 
is randomly chosen in the range of [25 − 29]. All the selected population 
is organized in a list to evaluate the fitness value after initialization. The 
filter size and pooling operation range are selected manually based on a 
few standard architectures. The algorithm for population initialization is 
mentioned in Algorithm 2.  

Algorithm 2 Population Initialization 

Input: The number of initial population N. 
Output: The list of N initialized architecture using encoding representation. 
1. P ← Ø 
2. While |P| < N 
3. Choose random integer D as depth. 
4. Generate a convolutional layer with the number of filters between [25 − 29] and 

filter size is 3 × 3. 
5. While (D > 0)  

5.1. Choose a random number between (0-1)  
5.2. If number <0.5  

5.2.1 Generate a convolutional layer with the number of filters are between 
[25 − 29] and a filter size is 3×3.  

5.3. Else  
5.3.1. Choose between max pool and avg pool randomly.  
5.3.2. Concatenate the selected layer with the existing architecture Pi.  

5.4. D–; 
6. P = P U Pi 
7. End 
8. Return P.  

3.3. Fitness function 

Algorithm 3 evaluates the fitness of all input populations using a 
given dataset. An individual’s CNN is initially decoded using a pre-
determined set of hyperparameter parameters. CNN decoding is trained 
with training data, and accuracy is used to determine fitness. Because 
the training of CNN is a time-taking task, we used half of the dataset for 
initial training to make it efficient. After training the population, half of 
the population is eliminated based on fitness score. The best population 

is chosen for reproduction in the following offspring generation. If the 
model is showing good training accuracy, but validation accuracy is not 
increasing in respective of training in a few successive epochs, then 
architecture may suffer from overfitting (Gavrilov, Jordache, Vasdani, & 
Deng, 2018). We can eliminate the overfitted model to reduce the 
computation cost in the early stages.  

Algorithm 3 Fitness function 

Input: The selected population list of CNN architecture, input dataset, range of 
hyperparameters, optimizer, loss function, epoch, train data, and test data. 

Output: Best CNN architecture with fitness value 
1. Divide the dataset into train and test data. 
2. Fbest ← 0 
3. For each population Pi in population pool P do: 
4. Decode the architecture and calculate fitness accuracy using half of the 

population using backpropagation methods. 
5. Eliminate the architecture based on overfitting. 
6. Choose P best population, train using the complete dataset, and calculate fitness 

value F for each.  
6.1 If F > Fbest  
6.2 Fbest = F  
6.3 End 

7. End  

3.4. Offspring generation 

Algorithm 4, consisting of two parts, illustrates the specifics of pro-
ducing the offspring. Crossover is the first, and mutation is the second. 
Specifically, two parents are selected based on which of two randomly 
selected individuals is more suitable. We build a new set of populations 
with equal probability by utilising mutation and crossover processes. In 
a crossover operation, each parent is arbitrarily divided into two pieces, 
and the two pieces from each parent are exchanged to generate two 
offspring. We have chosen crossover probability 0.8 and mutation 
probability 0.2. Mutation operation helps define the architecture’s exact 
depth, whereas the crossover operation increases the convergence rate. 
Both operations must be compatible with the encoding scheme. Newly 
generated offspring will be combined with the previous best architecture 
to create a new population pool.  

Algorithm 4 Offspring generation 

Input: Input population list P, with its fitness value, mutation, and crossover 
operation with their probability value. 

Output: Newly generated population list Q. 
1. Q ← Ø 
2. While |Qt |〈|P| do  

2.1. p1,p2 ← randomly select two population values from P  
2.2. r ←randomly generate number in range [0, 1].  
2.3. If (r < 0.5)  

2.3.1. Select mutation operations [add conv layer, add skip layer, add pool 
layer, remove layer of filters], change the value, and position (index value in 
offspring) randomly  

2.4. Else  
2.4.1. Choose the crossover point in p1 and p2.  
2.4.2. Apply crossover operation  

2.5. End 
3. Return Qt 

4. End  

4. Experiment design 

Several tests have been done on image classification tasks to assess 
the performance of the proposed algorithm. The experiments are per-
formed on A-100 Tensor Core GPU. In particular, Subsection 4.1 

Fig. 2. Decoded architecture of encoding representation “256-512-max-max-512-256”.  
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introduces the peer competitors identified to compare with the sug-
gested solution. Following that, Subsection 4.2 describes the benchmark 
datasets that were employed. Finally, Subsection 4.3 displays the sug-
gested algorithm’s parameter settings.  

A. Peer Competitors: To demonstrate the efficiency and effectiveness 
of the proposed algorithm among all currently available state-of-the- 
art CNNs, we present extensive comparisons to CNN architectures 
designed with various evolutionary algorithms, including encoding 
scheme, manual intervention required, and hyperparameter opti-
mization. First, we select state-of-the-art where fixed architecture is 
selected, and hyperparameters are tuned with the help of EA. Spe-
cifically, Eden (Dufourq & Bassett, 2017), C-PSO-CNN (Wang, 
Zhang, & Zhang, 2019), and LDPSO (Serizawa & Fujita, 2020) are 
compared over the CIFAR-10 dataset regarding the accuracy and 
Epoch size. We also compared our methods with RL-based archi-
tecture, such as NAS (Zoph & Le, 2016), and EAS (Cai, Chen, Zhang, 
Yu, & Wang, 2018), regarding computation cost and epoch size. 
Genetic algorithm-based state-of-the-art such as Genetic CNN (Xie & 
Yuille, 2017), CGP-CNN (Suganuma, Kobayashi, Shirakawa, & 
Nagao, 2020), E-CNN-MP (Loussaief & Abdelkrim, 2018), CNN-GA 
(Bakhshi, Noman, Chen, Zamani, & Chalup, 2019), and DCNN (Ma, 
Li, Xia, & Zhang, 2020) is also used to show the effectiveness in 
computation power, accuracy and convergence rate. For a fair 
comparison, we used the same data set, CIFAR-10, MNIST, and 
Fashion_MNIST without any preprocessing techniques.  

B. Dataset: The CIFAR10 dataset depicted in Fig. 3, in particular, serves 
as a benchmark for image classification, classifying ten different 
types of natural objects, including birds, horses, ships, deer, frogs, 
dogs, trucks, cats, vehicles, and aeroplanes. It comprises 60,000 RGB 
images, each 32 × 32 pixels in size. Furthermore, there are 50,000 
images in the training set and 10,000 in the testing set. There are the 
same amount of images in every category. Similarly, the MNIST 
dataset, shown in Fig. 4 is a benchmark for image classification for 
identifying digits. It has 70,000 grayscale pictures in total, each 
measuring 28 × 28 pixels. Furthermore, the training set consists of 
60,000 images, and the testing set contains 10,000 images. The 
amount of data in each category is the same. Also, we used Fash-
ion_MNIST dataset (Fig. 5) as a benchmark for fashion image clas-
sification. It has 70,000 grayscale pictures in total, each measuring 
28 × 28 pixels. It was created in 2017 and had ten classes. 
Furthermore, the training set consists of 60,000 images, and the 
testing set contains 10,000 images. The amount of data in each 
category is the same.  

C. Hyperparameter Tuning: We used a 3 × 3 filter and a 1 × 1 stride 
throughout all convolutional layers for simplicity and homogeneity. 
Stride size is fixed at 2 × 2 in the pooling layer, where the max or 
average pooling operation is chosen randomly. We used the back-
propagation method for training the architecture. Adam optimizer 
(Bock, Goppold, & Weiß, 2018) and sparse- categorical-cross-entropy 
(Zhang & Sabuncu, 2018) are used to calculate the loss function. We 
used TensorFlow deep learning framework and MNIST, Fashion_-
MNIST, and CIFAR-10 datasets to assess its performance. The input 
data is split into 80% train and 20% test sets. In training, the MNIST 
and Fashion_MNIST datasets use the value of epochs, and the pop-
ulation size is set to 10 and 5, respectively. At the same time, the 
number of generations is kept 10. In the CIFAR-10 dataset, we used 
ten generations and 40 epochs to train the model. 

5. Experimental results and analysis 

This section summarises the contrast between the suggested method 
and the findings of peer competitors. We compared our results to the 
most advanced approaches regarding classification precision, GPU days 
utilized, and architectural aspects. Specifically, the unit GPU day in-
dicates that the algorithm has executed for one day on a single GPU, 
which measures the number of computational resources spent by these 
methods. Table 1 displays the outcomes of a comparison between the 
suggested algorithm and its peer rivals. The first column displays the list 

Fig. 3. Examples from CIFAR-10 data sets.  

Fig. 4. Examples from MNIST data sets.  
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of architecture classifications. The second column contains the names of 
the architectures. The third column represents the encoding methods; 
the fourth column represents the evolutionary algorithm used; the fifth 
column represents the datasets used; the sixth column represents the 
classification accuracy; the seventh column represents the number of 
generations; the eighth column represents training epochs, and ninth 
column represents the parameter count for the relevant CNN. Further-
more, the tenth column displays the number of GPU days utilized. All 
competitors’ results in the table are extracted from the related publi-
cations; “–” denotes that the results have not been published. 

6. Discussion 

Table 1 displays the results of a comparison between the proposed 
algorithm and its peer competitors. Table 1 groups the peer competitors 
into two categories. In the first group, we compared architectures 

requiring manual aid in design selection or parameter adjustment. In 
this category, the computation cost is lower because half of the work is 
performed by professionals. In the second group, we compared archi-
tectures that evolved without human involvement. For the first category 
of peer competitors, our technique improves classification accuracy on 
the CIFAR10 dataset by 16.8 % for the Eden architecture and 25.4 % for 
the LDPSO design. In the second category, our technique improves 
classification accuracy on the CIFAR10 dataset by 2.46% for CNN-GA 
architecture and 12.8% for Genetic-CNN architecture. It also exhibits 
a 1.06% and 0.45% improvement on the MNIST dataset over the Eden 
and E-CNN-MP architectures, respectively. We further tested the effi-
cacy of our approach using the Fashion_MNIST dataset, which demon-
strates a 3.37% improvement over the capsuleNet (Sabour, Frosst, & 
Hinton, 2017) architecture. The classification accuracy is slightly less for 
EAS, CGP-CNN, NAS, CNN-GA, and DCNN architecture. However, in 
addition to classification, we also compare the effectiveness based on the 

Fig. 5. Examples from Fashion_MNIST data sets.  

Table 1 
The classification accuracy comparison on the CIFAR-10 datasets between the proposed algorithm and the state-of-the-art peer competitors.  

Reference Architecture Encoding EA Data set Accuracy Gen Epoch Para 
meters 

GPU Manual 
Assistance 

(Dufourq & Bassett, 2017) Eden Fixed Length PSO CIFAR10  74.5% 10 13 1.8 M 12 h Partially 
Required MNIST  98.4% 

(Wang, Zhang, & Zhang, 2019) C-PSO-CNN 
(AlexNet) 

Fixed Length PSO CIFAR10  89.99% 40 10 – – Partially 
Required 

(Wang, Zhang, & Zhang, 2019) C-PSO-CNN (VGG 
Net-16) 

Fixed Length PSO CIFAR10  91.02% 40 10 – – Partially 
Required 

(Serizawa & Fujita, 2020) LDPSO Fixed Length PSO CIFAR10  69.37% – 10 – 2.37 h Partially 
Required 

(Xie & Yuille, 2017) Genetic CNN Fixed Length GA CIFAR10  77.06% 50 – – 17 days Partially 
Required 

(Cai, Chen, Zhang, Yu, & Wang, 
2018) 

EAS – RL CIFAR10  95.77% – 300 23.4 M 10 days Partially 
Required 

(Suganuma, Kobayashi, 
Shirakawa, & Nagao, 2020) 

CGP-CNN Variable 
Length 

GP CIFAR10  94.02% 50 500 1.68 M 27 days Not Required 

(Zoph & Le, 2016) NAS – LSTM CIFAR10  93.99% – 50 2.5 M 22,400 
days 

Not Required 

(Loussaief & Abdelkrim, 2018) E-CNN-MP Variable 
Length 

GA MNIST  98.94% 5 – – – Not Required 

(Sun, Xue, Zhang, Yen, & Lv 
2020) 

CNN-GA Variable 
Length 

GA CIFAR10  77.50% 5 350 – – Not Required  
95.22 20 2.9 M 30 days 

(Ma, Li, Xia, & Zhang, 2020) DCNN Variable 
Length 

GA CIFAR10  89.32 10 100 – 12 days Not Required 
MNIST  99.64 10 100 3 days 
Fashion_MNIST  94.60 10 100 5 days  

Proposed 
Methods 

Variable 
Length 

GA CIFAR10  79.41% 5 40 1.2 M 2.47 h Not Required  
87.02% 10 40 1.6 M 6.38 h 

MNIST  99.39% 10 10 2.7 M 3.12 h 
Fashion_MNIST  93.07% 10 10 1.4 M 3.27 h  
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number of parameters, epoch, and computation required in GPU. DCNN 
requires 100 epochs and 12 GPU days to train CIFAR-10 datasets, CNN- 
GA requires 30 GPU days and up to 350 epochs, CGP-CNN is trained in 
500 epochs and requires 27 GPU days, EAS requires 10 GPU days with 
300 epochs, and NAS requires 50 epoch and 22,400 GPU days. Our al-
gorithm was trained in 10 generations, 10 epochs, and 6.38 h using the 
Nvidia A100 GPU configuration on the CIFAR 10 dataset, demonstrating 
significant improvement and a faster convergence rate. Our techniques 
provide competitive performance in terms of precision and the number 
of parameters while requiring less calculation time. 

To demonstrate the efficacy of the proposed method for discovering 
the CNN architecture using the MNIST, and Fashion_MNIST datasets, we 
have displayed the evolution in Tables 2 and 3, respectively. We 
randomly chose the N population and initialized the value using the 
recommended encoding approach. In this experiment, the population 
size is N = 5, the number of epochs is 40, and the number of generations 
is 10. The architectures are trained using the backpropagation technique 
for forty epochs. In the training and validation sets, we utilized an 80/20 
ratio. After training, the validation accuracy applied in the fitness 
function for decision-making of the proposed method is calculated. We 
eliminated weaker populations for the next generation using mode ac-
curacy. The fitness function eliminates 50 % of the population in each 
generation, and the best 50 % are employed as parents. The selected 

population is repopulated using the genetic operator’s mutation and 
crossover with probabilities of 0.2 for mutation and 0.80 for crossover. 
The existing fittest population is merged with the new population. Thus, 
using this method, the same number of chromosomes is available in each 
generation. We have described the efficacy of the proposed algorithm by 
using the minimum, mean, maximum, mode, standard deviation, and 
standard error of the mean (SEM). The standard error of the mean (SEM) 
measures how much discrepancy is likely in a sample’s mean compared 
with the population mean. For each iteration, we have selected the most 
improved CNN architecture, which is represented in the final column of 
tables 2 and 3. The maximum accuracy indicates the best accuracy ob-
tained by any CNN architecture at that generation. The standard devi-
ation demonstrates the genetic algorithm’s efficacy in terms of a quicker 
convergence rate. Initial standard deviation values are largely due to the 
random initialization of the population. However, its value decreases 
over successive generations, and the top accuracy rises, bringing the 
outcome close to the global optimum. If the standard deviation con-
tinues to decline, the subsequent few generations will see greater 
convergence. With this strategy, we reached a standard near the 
benchmark accuracy in 10 epochs and 10 generations, demonstrating a 
faster convergence rate with equivalent precision and less computa-
tional power. This technique yielded 99.39% top accuracy on the MNIST 
datasets and 93.07% on the Fashion_MNIST dataset, equivalent to the 
benchmark accuracy without user intervention and requiring less GPU 
days. 

The proposed algorithm demonstrated an increase in convergence 
rate using the defined techniques. We have displayed the evolution in 
Tables 2 and 3 to help understand the efficacy of the suggested approach 

Table 2 
Evolution of CNN model using MNIST dataset with population size = 5, epoch 
40, and generation = 10.  

Generation Min 
% 

Avg 
% 

Max 
% 

Med 
% 

Std- 
D 

SME Best CNN 
model 

Gen 1  87.15  95.84  99.15  97.46  4.39  1.96 256-512- 
max-max- 
512-256 

Gen 2  97.46  98.34  99.15  98.01  0.68  0.30 256-512- 
max-max- 
512-256 

Gen 3  97.49  98.69  99.15  99.15  0.66  0.29 256-512- 
max-max- 
512-256 

Gen 4  98.57  99.01  99.23  99.15  0.24  0.10 256-512- 
max-512- 
256-max- 
512-256 

Gen 5  98.62  99.04  99.23  99.15  0.21  0.09 256-512- 
max-512- 
256-max- 
512-256 

Gen 6  99.15  99.21  99.33  99.23  0.06  0.04 256-512- 
max-max- 
256-512- 
max-512- 
256-max- 
512-256 

Gen 7  99.23  99.27  99.33  99.23  0.05  0.02 256-512- 
max-max- 
256-512- 
max-512- 
256-max- 
512-256 

Gen 8  99.04  99.26  99.36  99.33  0.11  0.05 256-512- 
max-max- 
512-256- 
max-512- 
256 

Gen 9  99.10  99.29  99.36  99.36  0.04  0.10 256-512- 
max-max- 
512-256- 
max-512- 
256 

Gen 10  99.29  99.34  99.39  99.36  0.02  0.01 256-512- 
512-256- 
max-512- 
256-max- 
512-256  

Table 3 
Evolution of CNN model using Fashion_MNIST dataset with population size = 5, 
epoch 10, and generation = 10.  

Generation Min 
% 

Avg 
% 

Max 
% 

Med 
% 

Std- 
D 

SME Best CNN 
model 

Gen 1  88.20  89.25  91.01  88.69  0.99  0.44 128-256- 
512-256- 
mean-mean 

Gen 2  88.69  89.44  91.01  89.12  0.86  0.38 128-256- 
512-256- 
mean-mean 

Gen 3  89.12  89.77  91.01  89.64  0.67  0.29 128-256- 
512-256- 
mean-mean 

Gen 4  89.59  90.70  91.43  91.01  0.70  0.31 128-256- 
512-256- 
mean-mean- 
mean 

Gen 5  91.01  91.35  91.60  91.40  0.19  0.08 128-256- 
512-256- 
512-256- 
mean-mean 

Gen 6  91.01  91.35  91.60  91.40  0.19  0.08 128-256- 
512-256- 
512-256- 
mean-mean 

Gen 7  91.40  91.86  93.07  91.60  0.24  0.11 128-256- 
128-256- 
mean-mean- 
mean 

Gen 8  91.41  91.94  93.07  91.79  0.58  0.26 128-256- 
128-256- 
mean-mean- 
mean 

Gen 9  91.60  91.98  93.07  91.79  0.55  0.24 128-256- 
128-256- 
mean-mean- 
mean 

Gen 10  91.64  92.11  93.07  91.82  0.51  0.23 128-256- 
128-256- 
mean-mean- 
mean  
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for discovering CNN designs. We used the MNIST and Fashion_MNIST 
datasets with a population size of 5, where each architecture is trained 
for 40 and 10 epochs, respectively. The evolution of each generation is 
expressed using standard deviation and top accuracy. It shows the 
effectiveness of the proposed algorithm with its faster convergence rate 
in the initial iteration reaching toward global optima without being 
stuck in the local one. Additionally, it offers the diversity of the algo-
rithm that works suitably in different datasets. 

7. Conclusion and future work 

This research aims to provide an automatic architecture design 
technique for CNNs based on the GA, which can identify the optimal 
CNN architecture for solving image classification tasks for users who 
lack knowledge in adjusting CNN structures. This objective was 
accomplished by proposing a novel encoding approach for the GA to 
encode arbitrary CNN depths. The proposed technique is evaluated and 
compared against 11 state-of-the-art peer competitors, including four 
partial tuning and seven automatic algorithms determining the archi-
tectures of CNNs. The experimental results on the MNIST, Fashion_-
MNIST, and CIFAR10 datasets indicate that the proposed technique can 
automatically generate DCNN structures comparable to or even exceed 
state-of-the-art models. Further research could investigate the tech-
nique’s efficacy in various evolutionary algorithms that can accelerate 
the CNN fitness measurement. A further attractive path for future 
research is the pursuit of lightweight CNN models with real-world re-
strictions using more efficient techniques. 
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