
Expert Systems With Applications 224 (2023) 120032

Available online 5 April 2023
0957-4174/© 2023 Elsevier Ltd. All rights reserved.

An evolutionary framework for designing adaptive convolutional
neural network

Vidyanand Mishra *, Lalit Kane
School of Computer Science, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Dehradun 248007, Uttarakhand, India

A R T I C L E I N F O

Keywords:
Convolutional neural networks
Evolutionary algorithms
Deep learning
Genetic algorithm
Particle swarm optimization
Convolutional neural network optimization

A B S T R A C T

The Convolutional Neural Network (CNN) is a complex architecture that performs magnificently in image
classification and segmentation problems. Still, selecting an effective architecture is typically hindered by several
parameters. Empirically, evolutionary algorithms (EA) have been found adequate in parameter selection and
automated neural network search. However, the huge computational requirements imposed by evolutionary
search make its applicability unexplored. Consequently, the idea of a CNN architecture selection based on EA is
challenging as comparing complex candidate architectures towards their fitness would involve massive com-
putations. In this work, we propose a novel framework using an adapted Genetic Algorithm (GA) that auto-
matically evolves an effective CNN architecture. We rectify the GA by devising an effective encoding scheme, an
approach to initialize the input population, and a diversified offspring generation method. We also suggest an
optimized fitness function that makes the convergence faster, avoiding the local optima. The method is validated
with the benchmark MNIST, Fashion_MNIST, and CIFAR-10 datasets. The results are comparable to the best
manual and automatic state-of-the-art architectures regarding accuracy, convergence rate, and consumed
computation resources.

1. Introduction

Convolutional Neural Networks (CNN)’s performance has proven to
be outstanding in computer vision and image classification problems
(Krizhevsky, Sutskever, & Hinton, 2017); nevertheless, the performance
of a CNN architecture largely depends on the complexity of the archi-
tecture, training data, and the hyperparameter selection technique
(Simonyan & Zisserman, 2014). For comparative analysis, several
manually designed state-of-the-art architectures, such as ResNet (Wu,
Zhong, & Liu, 2018), DenseNet (Huang, Liu, Van Der Maaten, & Wein-
berger, 2017), and GoogleNet (Szegedy et al., 2015), have been tested
on real-time image datasets. Although the performances of the said ar-
chitectures are outstanding on the target datasets, a generic architecture
that adapts to a new dataset is still awaited. Today, CNN architectures
are being used in a variety of domains, including image processing (Ren,
He, Girshick, & Sun, 2015), healthcare (Joshi, & Singh, 2020), agri-
culture (Joshi, Mishra, Srivastav, & Goel, 2021), cyber security (Ghil-
lani, 2022), and automatic vehicle routing (Kuo, Lu, Lai, & Mara, 2022).
Therefore, developing a novel, adaptable framework that can generate
the desired CNN architecture with the minimum expert intervention is

desirable.
Furthermore, parameter tuning in the CNN model is difficult for

experts because of its complex architecture, numerous parameters, and
datasets. To solve the above problems, a few recent articles based on
Recurrent Neural Networks (RNN), such as Neural Architecture Search
(NAS) (Zoph & Le, 2016), NasNet (Zoph, Vasudevan, Shlens, & Le,
2018), MetaQNN (Baker, Gupta, Naik, & Raskar, 2016), and BlockQNS
(Zhong, Yan, & Liu, 2017), are introduced. Nevertheless, experimental
evidence shows that RNN based model requires huge computational
resources to train the model (Mishra & Kane, 2022), which restricts its
popularity. For instance, to perform at a level comparable to the NAS
approach, which required 800 GPUs over 28 days to find the most po-
tential CNN design on the CIFAR10 dataset, the Genetic CNN (Xie &
Yuille, 2017) required approximately 17 GPUs per day in the CIFAR-10
dataset. There is a strong preference for CNN architectural designs based
on evolutionary algorithms because not all interested users can access
expensive computational resources. Evolutionary Algorithm (EA) based
methods such as Genetic CNN, AE-CNN (Sun, Xue, Zhang, & Yen, 2019),
CGP-CNN (Suganuma, Kobayashi, Shirakawa, & Nagao, 2020), and
several other recent methods are also used to design a suitable

* Corresponding author.
E-mail addresses: mishra.vidyanand28@gmail.com (V. Mishra), lalit.kane@ddn.upes.ac.in (L. Kane).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.120032
Received 25 January 2023; Received in revised form 1 April 2023; Accepted 1 April 2023

mailto:mishra.vidyanand28@gmail.com
mailto:lalit.kane@ddn.upes.ac.in
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120032
https://doi.org/10.1016/j.eswa.2023.120032
https://doi.org/10.1016/j.eswa.2023.120032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120032&domain=pdf

Expert Systems With Applications 224 (2023) 120032

2

architecture with reduced training parameters and resources. EAs are
metaheuristic algorithms that work on the concept of survival of the
fittest. Some EA algorithms, such as Genetic Algorithm (GA) (Mirjalili &
Mirjalili, 2019), genetic programming (Shirani Faradonbeh, Monjezi, &
Armaghani, 2016), evolutionary strategy (Hansen, Arnold, & Auger,
2015), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995),
and many more, are used to optimize the parameters as well as archi-
tecture selection. Out of which GA is most suitable in the architecture
selection problems (Vargas-Hakim, Mezura-Montes, & Acosta-Mesa,
2021). Additionally, due to the lesser number of parameters in genetic
algorithms, it results in convolving and locating the ideal solution more
quickly in search space.

In this article, we propose a GA-based framework to design CNN
architectures automatically. We present a GA-based approach to archi-
tecture discovery in which learning hyperparameters such as kernel
number, kernel size, learning rate, activation function, dropout rate,
batch size, and others are manually initialized. However, the number of
pooling and convolutional layers and their interconnections, skip con-
nections, depth, and width are chosen automatically. We used this
approach to reduce the computation cost and minimize the search space.
As parameter initialization is an important part of EA for a faster
convergence rate, we employ a random initialization approach. A
random approach will help initialize in the different positions and is
more likely to convolve in global optima. In the proposed architecture, a
dynamic encoding technique (Jiang et al., 2020) is used to initialize the
population and to represent the CNN architecture in the form of
chromosomes.

We define genetic operators compatible with the encoding scheme to
repopulate the new generation. After selecting the architecture, we used
backpropagation for training the dataset. The conceptual model is
examined with the current state of the art regarding the faster conver-
gence rate in early stages optimized to find closer to global optima.
Additionally, we inspect the diversity of CNN algorithms in simple and
complex datasets such as MNIST (Deng, 2012), Fashion_MNIST (Xiao,
Rasul, & Vollgraf, 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009),
respectively.

The novelty of the proposed framework is its intuitive nature, which
means users can use domain knowledge of CNNs to utilize it while still
acquiring a good perspective CNN design for image input.

Here is a summary of the contributions made by the suggested
algorithm:

1. GA frequently adopt fixed-length encoding because crossover and
mutation operators are primitively built for chromosomes of similar
lengths. As a result, the desired depth of the CNN architectures can
be inaccurately computed. We presented an elementary variable-
length encoding approach, which is simple to implement and has a
rapid convergence rate by efficiently exploring the search space.

2. Most present methods available extensively use computational re-
sources to expedite the automation of CNN architectures and give
users a better experience in designing an ideal CNN architecture
within a reasonable amount of time. In the proposed algorithm, we
used an adaptive mechanism to identify and eliminate the non-
performing architectures in a few epochs instead of complete
training.

3. The experiments compare the proposed methodology’s accuracy,
convergence rate, and computation cost with several state-of-the-art
architectures. We tested the model over benchmark datasets,
including MNIST, Fashion_MNIST, and CIFAR-10. The adaptability
of an algorithm is also analyzed based on different epoch sizes and
generations.

The article is organized as follows: The second section describes the
literature review. The suggested methodology and framework are dis-
cussed in the third part. Section 4 discusses the experimental design,
Section 5 addresses the results and analysis, Section 6 discussions, and

section seven concludes with recommendations for further research.

2. Literature work

The convolutional neural network’s layered structure consists of a
convolutional layer, a pooling layer, and a fully connected layer. We
transmit raw pixel data from the input image to CNN, which enables
feature extraction at various levels to aid in model learning. Weighted
filters are used in the convolutional layer to extract the features from the
input data, and the activation function is used to introduce nonlinearity.
In the pooling layer, the redundant features of the convolutional layer
are removed using min, max, or average operations. The output matrix is
transformed into a one-dimensional vector and trained as a neural
network in a fully connected layer.

Numerous hyperparameters must be altered and enhanced to
improve the CNN model. The filter size, the number of filters, pooling
function, learning rate, activation function, stride size, and many more
hyperparameters were among them. Due to huge parameters, re-
searchers working on generating a CNN architectural design need help
choosing appropriate hyperparameters. The complexity of the CNN ar-
chitecture is a critical factor while learning complicated features from
training datasets. As an architecture’s depth and interconnections in-
crease, so does its parameters and complexity. We need methods to
automatically discover the hyperparameters and CNN architecture to
solve the problem.

The performance of CNN architecture is determined by accuracy,
training cost, and parameter count. The accuracy is mostly determined
by the training dataset (image size, quality, and distribution) and the
complexity of the architecture. However, the training cost is mostly
associated with parameters such as depth of architecture, size of kernels,
number of kernels, learning rate, epoch, activation function and many
more. Hence, selecting an accurate architecture is tedious, as it takes
knowledge of the CNN domain and several trial-and-error combinations
for hyperparameter tuning (Li, Zhan, Xu, Kwong, & Zhang, 2021). It also
increases the computation cost. Most of the CNN architecture, such as
VGG net (Simonyan & Zisserman, 2014), Resnet, and DenseNet, was
initially developed manually to solve image classification tasks. How-
ever, its effectiveness is restricted due to complex architecture and huge
parameters (depth till 1052 layers in ResNet and 22 M parameter in
DenseNet).

In recent years, automatic architecture selection and parameter
optimization algorithms have evolved to overcome the problem of
choosing a complex CNN architecture with minimal experience. In
addition, the evolution of CNN architecture designs can be subdivided
into two distinct types: reinforcement learning-based (Sutton & Barto,
1998) and evolutionary algorithm-based (Sun, Xue, Zhang, & Yen,
2019). Reinforcement learning-based architectural selection demands
expensive computations (22400 in NAS), limiting its usefulness.
Accuracy-wise, the performance of existing RL-based architectures is
commendable, but they incur massive computing costs. Existing
methods require extensive training time and epochs to achieve equiva-
lent accuracy. In contrast, evolutionary algorithm-based approaches
(GA, PSO, GP) are gaining popularity due to their performance with a
substantial reduction in compute resources while maintaining compa-
rable accuracy. Among different EA methods, GA is most popular in the
neuro-evolution domain because of its fewer variables and faster
convergence rate (Vargas-Hakim, Mezura-Montes, & Acosta-Mesa,
2021).

GA is a metaheuristic algorithm that draws inspiration from bio-
logical evolution based on the crossover, mutation, and selection tech-
niques. Choosing a group based on fitness values is more likely to choose
fit chromosomes is referred to as a selection operation. Recombining two
or more chromosomes to produce a new chromosome is called crossover.
By creating a set of values around the chosen point, the mutation process
adds diversity to the solution set. GA creates new solutions by making
“random” modifications to existing ones. A fitness function determines

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

3

the optimal parameters; the best solutions are those with the highest
fitness values.

In addition, finding the best structures requires careful consideration
of hyper-parameter selection and weight initialization (Sun, Xue, Zhang,
Yen, & Lv, 2020). As a result, the training expense is decreased, and the
convergence rate to the global optimum is rapid. Complex topologies
contain many hyper-parameters. Therefore manually initializing them is
difficult. Talathi (2015) developed a sequential model-based optimiza-
tion technique (SMBO) for selecting deep CNN hyperparameters,
wherein only a few factors were considered, such as the range of con-
volutional layers, number of kernels per layer, size and stride of the
kernels, the pooling layer (max/min/avg- size, and stride), and their
interconnections.

The researchers employed the PSO method for hyperparameter
optimization with a given architecture but still needs to develop the
architecture from scratch (Serizawa & Fujita, 2020; Wang, Zhang, &
Zhang, 2019; Dufourq & Bassett, 2017). PSO’s modest convergence rate
makes it more ideal for tuning hyperparameters than for building CNN
architecture. With equivalent outcomes, our algorithms construct ar-
chitecture from scratch utilizing GA with no human interaction.

Automatically examining the CNN structure has been done previ-
ously using a few state-of-the-art methods. A Genetic CNN technique
describes the architecture using a fixed-length binary encoding strategy.
A fixed architecture is represented by encoded methods and is tested on
CIFAR-10 and MNIST datasets for 50 generations. Similarly, GA is used
to develop a CNN architecture autonomously in AE-CNN (Sun, Xue,
Zhang, & Yen, 2019). The underlying components used in this approach
are ResNet and DenseNet blocks.

Cartesian genetic programming (CGP-CNN) (Suganuma, Kobayashi,
Shirakawa, & Nagao, 2020) is a concept that automatically designs CNN
architecture using genetic programming. CGP-CNN uses direct encoding
to represent CNN blocks and their connectivity. The flexibility in
choosing the depth of architecture and ease of skip connection imple-
mentation are two advantages of this format. CGP-CNN optimized the
CNN architecture (ResSet) in around 14 days. Similarly, the Evolving
Convolutional Neural Network (EvoCNN) (Sun, Xue, Zhang, & Yen,
2019) creates an effective algorithm using genetic encoding. The com-
parison of this suggested method, EvoCNN, with the top 10 peer rivals
reveals that it outperforms them all. The CNN-GA technique uses a
variable-length encoding scheme to evaluate the complexity of the CNN
topology (Bakhshi et al., 2019; Sun, Xue, Zhang, Yen, & Lv, 2020). But,
the predetermined blocks limit the ability to investigate multiple pos-
sibilities. Using a skip link also increases the computation cost as
possible possibilities grow exponentially. Using a transformed crossover
operator is also advised to explore the search space and describe the
encoding scheme efficiently. The CNN-GA was used to identify archi-
tecture, automatically increasing the computation cost. Using fixed
length encoding in (Xie & Yuille, 2017; Sun, Xue, Zhang, & Yen, 2019)
reduces the flexibility to explore the optimal depth, whereas using fixed
block size as a building block in (Suganuma, Kobayashi, Shirakawa, &
Nagao, 2020; Esfahanian & Akhavan, 2019) suffers from a restricted
search space. In addition to being straightforward to implement, it has a
quick convergence rate, effectively explores the search space, is less
likely to get stuck in local optima, is easy to create genetic operators, and
minimizes computation costs. Using the mutation operator, it can also
automatically expand and contract the layers, allowing it to investigate
the depth of architecture. Additionally, we eliminated the fully con-
nected layer, drastically reducing the parameter and computational cost.

3. Methodology

In this section, we describe the framework of the proposed algorithm
in Subsection 3.1, followed by its critical points in Subsections 3.2
through 3.4. In order to assist the reader in comprehending the proposed
algorithm, we will not only record the specifics of each major step but
also provide analysis for certain architectural-level designs.

3.1. Algorithm overview

The proposed algorithm’s framework is shown in Algorithm 1, and
the flow chart of the proposed framework is depicted in Fig. 1.

In this algorithm, we pass input datasets, and after a sequence of
evolution, the framework automatically evolves to a suitable CNN ar-
chitecture. A random population is initialized using a predetermined
encoding and population size throughout evolution. Fig. 2 depicts an
example of the variable length encoding system employed in the pro-
posed study. This representation uses a 32 × 32 dimension colour image
as the input to the convolutional layer. The number of filters in a con-
volutional layer is randomly selected using population initialization
methods. The dimension of a filter is fixed to 3 × 3, and a stride of 1 × 1
is used to make it homogenous and reduce the computational cost.

In the pooling layer, the algorithm automatically selects avg pool or
max pool operation with equal probability having kernel size of 2 × 2
and stride 2 × 2. The concatenated string of different layers represents
the encoded representation of CNN architecture, as shown in Fig. 2. In
pooling layer representation, it shows with the pooling operation either
min, max, or average pooling along with kernel size 2 × 2 and stride 2 ×
2. The concatenated string represents the encoded representation of
CNN architecture.

The hyperparameters are manually chosen using the existing state-
of-the-art model. Each individual’s fitness, which encodes a specific
CNN architecture, is assessed throughout evolution using the provided
dataset. In the subsequent generation, parent individuals are selected
according to their fitness, and new offspring are generated utilising
genetic operators such as crossover and mutation. The newly created
population is combined with the existing population to create a new list
of offspring. The evolution proceeds until the counter exceeds the
maximum generation, increasing the counter by one. Most existing
frameworks are developed using fixed maximal generation, which could
restrict resource management. This paper employed adaptive exit con-
ditions that terminate automatically when the convergence rate is slow
or near zero.

Algorithm 1 Framework of the proposed algorithm using EA

Input: A dataset of a set of CNN architectures represented by the variable length
encoding technique.

Output: Identifies the best CNN architecture.
1. Propose an encoding scheme to represent CNN architecture.

(continued on next page)

Fig. 1. Flow chart of evolutionary algorithms.

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

4

(continued)

2. Initialize the population of N CNN architectures with the help of the proposed
encoding method. Initialize max iteration G, the number of epochs for the fitness
function, and the input dataset.

3. Initialize the hyperparameter kernel size, loss function, learning rate, and stride
size.

4. While (G > 0)
4.1 Calculate the fitness of each architecture.
4.2. Select N/2 best architectures for reproduction using GA operators.
4.3 Apply crossover and mutation operators to generate new offspring.
4.4 Concatenate the new population with the existing best population to

create a new pool of N architectures.
5. G ← G-1
6 End
7. Return the best CNN architecture

3.2. Population initialization

The basic components of a CNN are convolutional layers, pooling
layers, and sometimes fully linked layers. The CNN’s performance
heavily depends on its parameters, which depend on the connection
depth and width. The fully connected layer is discarded in this encoding
as many parameters make it computationally inefficient. Initially, the
number of population and the depth of each population is selected
randomly. In the selected population, the first layer is fixed as a con-
volutional layer; then, convolutional and pooling layers are determined
randomly with equal probability. The convolutional layer’s filter count
is randomly chosen in the range of [25 − 29]. All the selected population
is organized in a list to evaluate the fitness value after initialization. The
filter size and pooling operation range are selected manually based on a
few standard architectures. The algorithm for population initialization is
mentioned in Algorithm 2.

Algorithm 2 Population Initialization

Input: The number of initial population N.
Output: The list of N initialized architecture using encoding representation.
1. P ← Ø
2. While |P| < N
3. Choose random integer D as depth.
4. Generate a convolutional layer with the number of filters between [25 − 29] and

filter size is 3 × 3.
5. While (D > 0)

5.1. Choose a random number between (0-1)
5.2. If number <0.5

5.2.1 Generate a convolutional layer with the number of filters are between
[25 − 29] and a filter size is 3×3.

5.3. Else
5.3.1. Choose between max pool and avg pool randomly.
5.3.2. Concatenate the selected layer with the existing architecture Pi.

5.4. D–;
6. P = P U Pi
7. End
8. Return P.

3.3. Fitness function

Algorithm 3 evaluates the fitness of all input populations using a
given dataset. An individual’s CNN is initially decoded using a pre-
determined set of hyperparameter parameters. CNN decoding is trained
with training data, and accuracy is used to determine fitness. Because
the training of CNN is a time-taking task, we used half of the dataset for
initial training to make it efficient. After training the population, half of
the population is eliminated based on fitness score. The best population

is chosen for reproduction in the following offspring generation. If the
model is showing good training accuracy, but validation accuracy is not
increasing in respective of training in a few successive epochs, then
architecture may suffer from overfitting (Gavrilov, Jordache, Vasdani, &
Deng, 2018). We can eliminate the overfitted model to reduce the
computation cost in the early stages.

Algorithm 3 Fitness function

Input: The selected population list of CNN architecture, input dataset, range of
hyperparameters, optimizer, loss function, epoch, train data, and test data.

Output: Best CNN architecture with fitness value
1. Divide the dataset into train and test data.
2. Fbest ← 0
3. For each population Pi in population pool P do:
4. Decode the architecture and calculate fitness accuracy using half of the

population using backpropagation methods.
5. Eliminate the architecture based on overfitting.
6. Choose P best population, train using the complete dataset, and calculate fitness

value F for each.
6.1 If F > Fbest
6.2 Fbest = F
6.3 End

7. End

3.4. Offspring generation

Algorithm 4, consisting of two parts, illustrates the specifics of pro-
ducing the offspring. Crossover is the first, and mutation is the second.
Specifically, two parents are selected based on which of two randomly
selected individuals is more suitable. We build a new set of populations
with equal probability by utilising mutation and crossover processes. In
a crossover operation, each parent is arbitrarily divided into two pieces,
and the two pieces from each parent are exchanged to generate two
offspring. We have chosen crossover probability 0.8 and mutation
probability 0.2. Mutation operation helps define the architecture’s exact
depth, whereas the crossover operation increases the convergence rate.
Both operations must be compatible with the encoding scheme. Newly
generated offspring will be combined with the previous best architecture
to create a new population pool.

Algorithm 4 Offspring generation

Input: Input population list P, with its fitness value, mutation, and crossover
operation with their probability value.

Output: Newly generated population list Q.
1. Q ← Ø
2. While |Qt |〈|P| do

2.1. p1,p2 ← randomly select two population values from P
2.2. r ←randomly generate number in range [0, 1].
2.3. If (r < 0.5)

2.3.1. Select mutation operations [add conv layer, add skip layer, add pool
layer, remove layer of filters], change the value, and position (index value in
offspring) randomly

2.4. Else
2.4.1. Choose the crossover point in p1 and p2.
2.4.2. Apply crossover operation

2.5. End
3. Return Qt

4. End

4. Experiment design

Several tests have been done on image classification tasks to assess
the performance of the proposed algorithm. The experiments are per-
formed on A-100 Tensor Core GPU. In particular, Subsection 4.1

Fig. 2. Decoded architecture of encoding representation “256-512-max-max-512-256”.

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

5

introduces the peer competitors identified to compare with the sug-
gested solution. Following that, Subsection 4.2 describes the benchmark
datasets that were employed. Finally, Subsection 4.3 displays the sug-
gested algorithm’s parameter settings.

A. Peer Competitors: To demonstrate the efficiency and effectiveness
of the proposed algorithm among all currently available state-of-the-
art CNNs, we present extensive comparisons to CNN architectures
designed with various evolutionary algorithms, including encoding
scheme, manual intervention required, and hyperparameter opti-
mization. First, we select state-of-the-art where fixed architecture is
selected, and hyperparameters are tuned with the help of EA. Spe-
cifically, Eden (Dufourq & Bassett, 2017), C-PSO-CNN (Wang,
Zhang, & Zhang, 2019), and LDPSO (Serizawa & Fujita, 2020) are
compared over the CIFAR-10 dataset regarding the accuracy and
Epoch size. We also compared our methods with RL-based archi-
tecture, such as NAS (Zoph & Le, 2016), and EAS (Cai, Chen, Zhang,
Yu, & Wang, 2018), regarding computation cost and epoch size.
Genetic algorithm-based state-of-the-art such as Genetic CNN (Xie &
Yuille, 2017), CGP-CNN (Suganuma, Kobayashi, Shirakawa, &
Nagao, 2020), E-CNN-MP (Loussaief & Abdelkrim, 2018), CNN-GA
(Bakhshi, Noman, Chen, Zamani, & Chalup, 2019), and DCNN (Ma,
Li, Xia, & Zhang, 2020) is also used to show the effectiveness in
computation power, accuracy and convergence rate. For a fair
comparison, we used the same data set, CIFAR-10, MNIST, and
Fashion_MNIST without any preprocessing techniques.

B. Dataset: The CIFAR10 dataset depicted in Fig. 3, in particular, serves
as a benchmark for image classification, classifying ten different
types of natural objects, including birds, horses, ships, deer, frogs,
dogs, trucks, cats, vehicles, and aeroplanes. It comprises 60,000 RGB
images, each 32 × 32 pixels in size. Furthermore, there are 50,000
images in the training set and 10,000 in the testing set. There are the
same amount of images in every category. Similarly, the MNIST
dataset, shown in Fig. 4 is a benchmark for image classification for
identifying digits. It has 70,000 grayscale pictures in total, each
measuring 28 × 28 pixels. Furthermore, the training set consists of
60,000 images, and the testing set contains 10,000 images. The
amount of data in each category is the same. Also, we used Fash-
ion_MNIST dataset (Fig. 5) as a benchmark for fashion image clas-
sification. It has 70,000 grayscale pictures in total, each measuring
28 × 28 pixels. It was created in 2017 and had ten classes.
Furthermore, the training set consists of 60,000 images, and the
testing set contains 10,000 images. The amount of data in each
category is the same.

C. Hyperparameter Tuning: We used a 3 × 3 filter and a 1 × 1 stride
throughout all convolutional layers for simplicity and homogeneity.
Stride size is fixed at 2 × 2 in the pooling layer, where the max or
average pooling operation is chosen randomly. We used the back-
propagation method for training the architecture. Adam optimizer
(Bock, Goppold, & Weiß, 2018) and sparse- categorical-cross-entropy
(Zhang & Sabuncu, 2018) are used to calculate the loss function. We
used TensorFlow deep learning framework and MNIST, Fashion_-
MNIST, and CIFAR-10 datasets to assess its performance. The input
data is split into 80% train and 20% test sets. In training, the MNIST
and Fashion_MNIST datasets use the value of epochs, and the pop-
ulation size is set to 10 and 5, respectively. At the same time, the
number of generations is kept 10. In the CIFAR-10 dataset, we used
ten generations and 40 epochs to train the model.

5. Experimental results and analysis

This section summarises the contrast between the suggested method
and the findings of peer competitors. We compared our results to the
most advanced approaches regarding classification precision, GPU days
utilized, and architectural aspects. Specifically, the unit GPU day in-
dicates that the algorithm has executed for one day on a single GPU,
which measures the number of computational resources spent by these
methods. Table 1 displays the outcomes of a comparison between the
suggested algorithm and its peer rivals. The first column displays the list

Fig. 3. Examples from CIFAR-10 data sets.

Fig. 4. Examples from MNIST data sets.

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

6

of architecture classifications. The second column contains the names of
the architectures. The third column represents the encoding methods;
the fourth column represents the evolutionary algorithm used; the fifth
column represents the datasets used; the sixth column represents the
classification accuracy; the seventh column represents the number of
generations; the eighth column represents training epochs, and ninth
column represents the parameter count for the relevant CNN. Further-
more, the tenth column displays the number of GPU days utilized. All
competitors’ results in the table are extracted from the related publi-
cations; “–” denotes that the results have not been published.

6. Discussion

Table 1 displays the results of a comparison between the proposed
algorithm and its peer competitors. Table 1 groups the peer competitors
into two categories. In the first group, we compared architectures

requiring manual aid in design selection or parameter adjustment. In
this category, the computation cost is lower because half of the work is
performed by professionals. In the second group, we compared archi-
tectures that evolved without human involvement. For the first category
of peer competitors, our technique improves classification accuracy on
the CIFAR10 dataset by 16.8 % for the Eden architecture and 25.4 % for
the LDPSO design. In the second category, our technique improves
classification accuracy on the CIFAR10 dataset by 2.46% for CNN-GA
architecture and 12.8% for Genetic-CNN architecture. It also exhibits
a 1.06% and 0.45% improvement on the MNIST dataset over the Eden
and E-CNN-MP architectures, respectively. We further tested the effi-
cacy of our approach using the Fashion_MNIST dataset, which demon-
strates a 3.37% improvement over the capsuleNet (Sabour, Frosst, &
Hinton, 2017) architecture. The classification accuracy is slightly less for
EAS, CGP-CNN, NAS, CNN-GA, and DCNN architecture. However, in
addition to classification, we also compare the effectiveness based on the

Fig. 5. Examples from Fashion_MNIST data sets.

Table 1
The classification accuracy comparison on the CIFAR-10 datasets between the proposed algorithm and the state-of-the-art peer competitors.

Reference Architecture Encoding EA Data set Accuracy Gen Epoch Para
meters

GPU Manual
Assistance

(Dufourq & Bassett, 2017) Eden Fixed Length PSO CIFAR10 74.5% 10 13 1.8 M 12 h Partially
Required MNIST 98.4%

(Wang, Zhang, & Zhang, 2019) C-PSO-CNN
(AlexNet)

Fixed Length PSO CIFAR10 89.99% 40 10 – – Partially
Required

(Wang, Zhang, & Zhang, 2019) C-PSO-CNN (VGG
Net-16)

Fixed Length PSO CIFAR10 91.02% 40 10 – – Partially
Required

(Serizawa & Fujita, 2020) LDPSO Fixed Length PSO CIFAR10 69.37% – 10 – 2.37 h Partially
Required

(Xie & Yuille, 2017) Genetic CNN Fixed Length GA CIFAR10 77.06% 50 – – 17 days Partially
Required

(Cai, Chen, Zhang, Yu, & Wang,
2018)

EAS – RL CIFAR10 95.77% – 300 23.4 M 10 days Partially
Required

(Suganuma, Kobayashi,
Shirakawa, & Nagao, 2020)

CGP-CNN Variable
Length

GP CIFAR10 94.02% 50 500 1.68 M 27 days Not Required

(Zoph & Le, 2016) NAS – LSTM CIFAR10 93.99% – 50 2.5 M 22,400
days

Not Required

(Loussaief & Abdelkrim, 2018) E-CNN-MP Variable
Length

GA MNIST 98.94% 5 – – – Not Required

(Sun, Xue, Zhang, Yen, & Lv
2020)

CNN-GA Variable
Length

GA CIFAR10 77.50% 5 350 – – Not Required
95.22 20 2.9 M 30 days

(Ma, Li, Xia, & Zhang, 2020) DCNN Variable
Length

GA CIFAR10 89.32 10 100 – 12 days Not Required
MNIST 99.64 10 100 3 days
Fashion_MNIST 94.60 10 100 5 days

Proposed
Methods

Variable
Length

GA CIFAR10 79.41% 5 40 1.2 M 2.47 h Not Required
87.02% 10 40 1.6 M 6.38 h

MNIST 99.39% 10 10 2.7 M 3.12 h
Fashion_MNIST 93.07% 10 10 1.4 M 3.27 h

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

7

number of parameters, epoch, and computation required in GPU. DCNN
requires 100 epochs and 12 GPU days to train CIFAR-10 datasets, CNN-
GA requires 30 GPU days and up to 350 epochs, CGP-CNN is trained in
500 epochs and requires 27 GPU days, EAS requires 10 GPU days with
300 epochs, and NAS requires 50 epoch and 22,400 GPU days. Our al-
gorithm was trained in 10 generations, 10 epochs, and 6.38 h using the
Nvidia A100 GPU configuration on the CIFAR 10 dataset, demonstrating
significant improvement and a faster convergence rate. Our techniques
provide competitive performance in terms of precision and the number
of parameters while requiring less calculation time.

To demonstrate the efficacy of the proposed method for discovering
the CNN architecture using the MNIST, and Fashion_MNIST datasets, we
have displayed the evolution in Tables 2 and 3, respectively. We
randomly chose the N population and initialized the value using the
recommended encoding approach. In this experiment, the population
size is N = 5, the number of epochs is 40, and the number of generations
is 10. The architectures are trained using the backpropagation technique
for forty epochs. In the training and validation sets, we utilized an 80/20
ratio. After training, the validation accuracy applied in the fitness
function for decision-making of the proposed method is calculated. We
eliminated weaker populations for the next generation using mode ac-
curacy. The fitness function eliminates 50 % of the population in each
generation, and the best 50 % are employed as parents. The selected

population is repopulated using the genetic operator’s mutation and
crossover with probabilities of 0.2 for mutation and 0.80 for crossover.
The existing fittest population is merged with the new population. Thus,
using this method, the same number of chromosomes is available in each
generation. We have described the efficacy of the proposed algorithm by
using the minimum, mean, maximum, mode, standard deviation, and
standard error of the mean (SEM). The standard error of the mean (SEM)
measures how much discrepancy is likely in a sample’s mean compared
with the population mean. For each iteration, we have selected the most
improved CNN architecture, which is represented in the final column of
tables 2 and 3. The maximum accuracy indicates the best accuracy ob-
tained by any CNN architecture at that generation. The standard devi-
ation demonstrates the genetic algorithm’s efficacy in terms of a quicker
convergence rate. Initial standard deviation values are largely due to the
random initialization of the population. However, its value decreases
over successive generations, and the top accuracy rises, bringing the
outcome close to the global optimum. If the standard deviation con-
tinues to decline, the subsequent few generations will see greater
convergence. With this strategy, we reached a standard near the
benchmark accuracy in 10 epochs and 10 generations, demonstrating a
faster convergence rate with equivalent precision and less computa-
tional power. This technique yielded 99.39% top accuracy on the MNIST
datasets and 93.07% on the Fashion_MNIST dataset, equivalent to the
benchmark accuracy without user intervention and requiring less GPU
days.

The proposed algorithm demonstrated an increase in convergence
rate using the defined techniques. We have displayed the evolution in
Tables 2 and 3 to help understand the efficacy of the suggested approach

Table 2
Evolution of CNN model using MNIST dataset with population size = 5, epoch
40, and generation = 10.

Generation Min
%

Avg
%

Max
%

Med
%

Std-
D

SME Best CNN
model

Gen 1 87.15 95.84 99.15 97.46 4.39 1.96 256-512-
max-max-
512-256

Gen 2 97.46 98.34 99.15 98.01 0.68 0.30 256-512-
max-max-
512-256

Gen 3 97.49 98.69 99.15 99.15 0.66 0.29 256-512-
max-max-
512-256

Gen 4 98.57 99.01 99.23 99.15 0.24 0.10 256-512-
max-512-
256-max-
512-256

Gen 5 98.62 99.04 99.23 99.15 0.21 0.09 256-512-
max-512-
256-max-
512-256

Gen 6 99.15 99.21 99.33 99.23 0.06 0.04 256-512-
max-max-
256-512-
max-512-
256-max-
512-256

Gen 7 99.23 99.27 99.33 99.23 0.05 0.02 256-512-
max-max-
256-512-
max-512-
256-max-
512-256

Gen 8 99.04 99.26 99.36 99.33 0.11 0.05 256-512-
max-max-
512-256-
max-512-
256

Gen 9 99.10 99.29 99.36 99.36 0.04 0.10 256-512-
max-max-
512-256-
max-512-
256

Gen 10 99.29 99.34 99.39 99.36 0.02 0.01 256-512-
512-256-
max-512-
256-max-
512-256

Table 3
Evolution of CNN model using Fashion_MNIST dataset with population size = 5,
epoch 10, and generation = 10.

Generation Min
%

Avg
%

Max
%

Med
%

Std-
D

SME Best CNN
model

Gen 1 88.20 89.25 91.01 88.69 0.99 0.44 128-256-
512-256-
mean-mean

Gen 2 88.69 89.44 91.01 89.12 0.86 0.38 128-256-
512-256-
mean-mean

Gen 3 89.12 89.77 91.01 89.64 0.67 0.29 128-256-
512-256-
mean-mean

Gen 4 89.59 90.70 91.43 91.01 0.70 0.31 128-256-
512-256-
mean-mean-
mean

Gen 5 91.01 91.35 91.60 91.40 0.19 0.08 128-256-
512-256-
512-256-
mean-mean

Gen 6 91.01 91.35 91.60 91.40 0.19 0.08 128-256-
512-256-
512-256-
mean-mean

Gen 7 91.40 91.86 93.07 91.60 0.24 0.11 128-256-
128-256-
mean-mean-
mean

Gen 8 91.41 91.94 93.07 91.79 0.58 0.26 128-256-
128-256-
mean-mean-
mean

Gen 9 91.60 91.98 93.07 91.79 0.55 0.24 128-256-
128-256-
mean-mean-
mean

Gen 10 91.64 92.11 93.07 91.82 0.51 0.23 128-256-
128-256-
mean-mean-
mean

V. Mishra and L. Kane

Expert Systems With Applications 224 (2023) 120032

8

for discovering CNN designs. We used the MNIST and Fashion_MNIST
datasets with a population size of 5, where each architecture is trained
for 40 and 10 epochs, respectively. The evolution of each generation is
expressed using standard deviation and top accuracy. It shows the
effectiveness of the proposed algorithm with its faster convergence rate
in the initial iteration reaching toward global optima without being
stuck in the local one. Additionally, it offers the diversity of the algo-
rithm that works suitably in different datasets.

7. Conclusion and future work

This research aims to provide an automatic architecture design
technique for CNNs based on the GA, which can identify the optimal
CNN architecture for solving image classification tasks for users who
lack knowledge in adjusting CNN structures. This objective was
accomplished by proposing a novel encoding approach for the GA to
encode arbitrary CNN depths. The proposed technique is evaluated and
compared against 11 state-of-the-art peer competitors, including four
partial tuning and seven automatic algorithms determining the archi-
tectures of CNNs. The experimental results on the MNIST, Fashion_-
MNIST, and CIFAR10 datasets indicate that the proposed technique can
automatically generate DCNN structures comparable to or even exceed
state-of-the-art models. Further research could investigate the tech-
nique’s efficacy in various evolutionary algorithms that can accelerate
the CNN fitness measurement. A further attractive path for future
research is the pursuit of lightweight CNN models with real-world re-
strictions using more efficient techniques.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://
doi.org/10.1145/3065386

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/
arXiv.1409.1556.

Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual learning for image steganalysis.
Multimedia Tools and Applications, 77, 10437–10453. https://doi.org/10.1007/
s11042-017-4440-4

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4700–4708).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A.
(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1–9).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in Neural Information Processing
Systems, 28.

Joshi, D., & Singh, T. P. (2020). A survey of fracture detection techniques in bone X-ray
images. Artificial Intelligence Review, 53(6), 4475–4517. https://doi.org/10.1007/
s10462-019-09799-0

Joshi, D., Mishra, V., Srivastav, H., & Goel, D. (2021). Progressive transfer learning
approach for identifying the leaf type by optimizing network parameters. Neural
Processing Letters, 53(5), 3653–3676. https://doi.org/10.1007/s11063-021-10521-x

Ghillani, D. (2022). Deep learning and artificial intelligence framework to improve the
cyber security. Authorea Preprints.

Kuo, R. J., Lu, S. H., Lai, P. Y., & Mara, S. T. W. (2022). Vehicle routing problem with
drones considering time windows. Expert Systems with Applications, 191, Article
116264. https://doi.org/10.1016/j.eswa.2021.116264

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 8697–8710).

Baker, B., Gupta, O., Naik, N., & Raskar, R. (2016). Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167.

Zhong, Z., Yan, J., & Liu, C. L. (2017). Practical network blocks design with q-learning.
arXiv preprint arXiv:1708.05552, 6.

Mishra, V., & Kane, L. (2022). A survey of designing convolutional neural network using
evolutionary algorithms. Artificial Intelligence Review, 1–38. https://doi.org/
10.1007/s10462-022-10303-4

Xie, L., & Yuille, A. (2017). Genetic cnn. In Proceedings of the IEEE international conference
on computer vision (pp. 1379–1388).

Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019a). Completely automated CNN
architecture design based on blocks. IEEE Transactions on Neural Networks and
Learning Systems, 31(4), 1242–1254. https://doi.org/10.1109/
TNNLS.2019.2919608

Suganuma, M., Kobayashi, M., Shirakawa, S., & Nagao, T. (2020). Evolution of deep
convolutional neural networks using Cartesian genetic programming. Evolutionary
Computation, 28(1), 141–163. https://doi.org/10.1162/evco_a_00253

Mirjalili, S., & Mirjalili, S. (2019). Genetic algorithm. Evolutionary Algorithms and Neural
Networks: Theory and Applications, 43–55. https://doi.org/10.1007/978-3-319-
93025-1_4

Shirani Faradonbeh, R., Monjezi, M., & Jahed Armaghani, D. (2016). Genetic programing
and non-linear multiple regression techniques to predict backbreak in blasting
operation. Engineering with Computers, 32, 123–133. https://doi.org/10.1007/
s00366-015-0404-3

Hansen, N., Arnold, D. V., & Auger, A. (2015). Evolution strategies. Springer Handbook of
Computational Intelligence, 871–898.

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942-
1948). IEEE.

Vargas-Hakim, G. A., Mezura-Montes, E., & Acosta-Mesa, H. G. (2021). A review on
convolutional neural network encodings for neuroevolution. IEEE Transactions on
Evolutionary Computation, 26(1), 12–27. https://doi.org/10.1109/
TEVC.2021.3088631

Jiang, J., Han, F., Ling, Q., Wang, J., Li, T., & Han, H. (2020). Efficient network
architecture search via multiobjective particle swarm optimization based on
decomposition. Neural Networks, 123, 305–316. https://doi.org/10.1016/j.
neunet.2019.12.005

[MNIST] Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research. IEEE signal processing magazine, 29(6), 141–142. https://doi.org/
10.1109/MSP.2012.2211477

[Fashion-mnist] Xiao, H., Rasul, K., & Vollgraf, R. (2017). A novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.
https://doi.org/10.48550/arXiv.1708.07747.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images. http://www.cs.toronto.edu/kriz/cifar.html, 2009.

Li, J. Y., Zhan, Z. H., Xu, J., Kwong, S., & Zhang, J. (2021). Surrogate-assisted hybrid-
model estimation of distribution algorithm for mixed-variable hyperparameters
optimization in convolutional neural networks. IEEE Transactions on Neural Networks
and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3106399

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction (3rd éd.).
Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019b). Evolving deep convolutional neural

networks for image classification. IEEE Transactions on Evolutionary Computation, 24
(2), 394–407. https://doi.org/10.1109/TEVC.2019.2916183

Bakhshi, A., Noman, N., Chen, Z., Zamani, M., & Chalup, S. (2019, June). Fast automatic
optimisation of CNN architectures for image classification using genetic algorithm.
In 2019 IEEE congress on evolutionary computation (CEC) (pp. 1283-1290). IEEE.

Talathi, S. S. (2015, September). Hyper-parameter optimization of deep convolutional
networks for object recognition. In 2015 IEEE international conference on image
processing (ICIP) (pp. 3982-3986). IEEE.

Serizawa, T., & Fujita, H. (2020). Optimization of convolutional neural network using
the linearly decreasing weight particle swarm optimization. arXiv preprint arXiv:
2001.05670.

Wang, Y., Zhang, H., & Zhang, G. (2019). cPSO-CNN: An efficient PSO-based algorithm
for fine-tuning hyper-parameters of convolutional neural networks. Swarm and
Evolutionary Computation, 49, 114–123. https://doi.org/10.1016/j.
swevo.2019.06.002

Dufourq, E., & Bassett, B. A. (2017, November). Eden: Evolutionary deep networks for
efficient machine learning. In 2017 Pattern Recognition Association of South Africa and
Robotics and Mechatronics (PRASA-RobMech) (pp. 110-115). IEEE.

Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020). Automatically designing CNN
architectures using the genetic algorithm for image classification. IEEE Transactions
on Cybernetics, 50(9), 3840–3854. https://doi.org/10.1109/TCYB.2020.2983860

Esfahanian, P., & Akhavan, M. (2019). Gacnn: Training deep convolutional neural
networks with genetic algorithm. arXiv preprint arXiv:1909.13354.

Gavrilov, A. D., Jordache, A., Vasdani, M., & Deng, J. (2018). Preventing model
overfitting and underfitting in convolutional neural networks. International Journal of
Software Science and Computational Intelligence (IJSSCI), 10(4), 19–28. https://doi.
org/10.4018/IJSSCI.2018100102

Cai, H., Chen, T., Zhang, W., Yu, Y., & Wang, J. (2018, April). Efficient architecture
search by network transformation. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 32, No. 1).

Loussaief, S., & Abdelkrim, A. (2018). Convolutional neural network hyper-parameters
optimization based on genetic algorithms. International Journal of Advanced Computer
Science and Applications, 9(10).

V. Mishra and L. Kane

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11042-017-4440-4
https://doi.org/10.1007/s11042-017-4440-4
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0020
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0025
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0025
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0025
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0030
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0030
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0030
https://doi.org/10.1007/s10462-019-09799-0
https://doi.org/10.1007/s10462-019-09799-0
https://doi.org/10.1007/s11063-021-10521-x
https://doi.org/10.1016/j.eswa.2021.116264
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0060
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0060
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0060
https://doi.org/10.1007/s10462-022-10303-4
https://doi.org/10.1007/s10462-022-10303-4
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0080
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0080
https://doi.org/10.1109/TNNLS.2019.2919608
https://doi.org/10.1109/TNNLS.2019.2919608
https://doi.org/10.1162/evco_a_00253
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/s00366-015-0404-3
https://doi.org/10.1007/s00366-015-0404-3
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0105
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0105
https://doi.org/10.1109/TEVC.2021.3088631
https://doi.org/10.1109/TEVC.2021.3088631
https://doi.org/10.1016/j.neunet.2019.12.005
https://doi.org/10.1016/j.neunet.2019.12.005
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
http://www.cs.toronto.edu/kriz/cifar.html%2c+2009
https://doi.org/10.1109/TNNLS.2021.3106399
https://doi.org/10.1109/TEVC.2019.2916183
https://doi.org/10.1016/j.swevo.2019.06.002
https://doi.org/10.1016/j.swevo.2019.06.002
https://doi.org/10.1109/TCYB.2020.2983860
https://doi.org/10.4018/IJSSCI.2018100102
https://doi.org/10.4018/IJSSCI.2018100102
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0205
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0205
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0205

Expert Systems With Applications 224 (2023) 120032

9

Ma, B., Li, X., Xia, Y., & Zhang, Y. (2020). Autonomous deep learning: A genetic DCNN
designer for image classification. Neurocomputing, 379, 152–161. https://doi.org/
10.1016/j.neucom.2019.10.007

Bock, S., Goppold, J., & Weiß, M. (2018). An improvement of the convergence proof of
the ADAM-Optimizer. arXiv preprint arXiv:1804.10587.

Zhang, Z., & Sabuncu, M. (2018). Generalized cross entropy loss for training deep neural
networks with noisy labels. Advances in Neural Information Processing Systems, 31.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules.
Advances in Neural Information Processing Systems, 30.

V. Mishra and L. Kane

https://doi.org/10.1016/j.neucom.2019.10.007
https://doi.org/10.1016/j.neucom.2019.10.007
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0220
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0220
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0225
http://refhub.elsevier.com/S0957-4174(23)00534-1/h0225

	An evolutionary framework for designing adaptive convolutional neural network
	1 Introduction
	2 Literature work
	3 Methodology
	3.1 Algorithm overview
	3.2 Population initialization
	3.3 Fitness function
	3.4 Offspring generation

	4 Experiment design
	5 Experimental results and analysis
	6 Discussion
	7 Conclusion and future work
	Declaration of Competing Interest
	Data availability
	References

