Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Non Ferrous Metals Program: B.Tech Mechanical Course Code: MEMA4002P

Semester: VIII Time : 03 hrs. Max. Marks: 100

SECTION A					
(4Qx5M=20Marks)					
S. No.		Mark s	CO		
Q 1	Molybdenum at 20° C is BCC and has an atomic Radius of 0.140 nm. Calculate a value for its lattice constant a in nanometers.	5	CO1		
Q 2	Classify the wrought copper alloys according to a designation system administered by the CDA.	5	CO2		
Q 3	Describe the properties of Titanium and its biomedical applications.	5	CO3		
Q 4	Mention the basic composition of most nickel-base super alloys.	5	CO4		
	SECTION B				
	(4Qx10M= 40 Marks)				
Q 5	Discuss the refractory materials and their applications. How is glass				
	distinguished from other ceramic materials?				
	OR	10	CO4		
	Compare the metals & ceramics in terms of their properties. Name the				
	various types of ceramics & explain the processing of ceramics.				
Q 6	Describe the precipitation hardening mechanism in context with Al-Cu phase	10			
	diagram. Also, explain the overaging with the help of microstructure		CO2		
	evolution.				
Q 7	Explain the processing methods of super alloys. Over the years, super alloys	10	CO 2		
	have moved from being equiaxed to single crystals. Why?		003		
Q 8	Explain the complete pyro-metallurgical extraction process of copper from its	10	CO4		
	ore with the help of a flow chart.		C04		
SECTION-C					
(2Qx20M=40 Marks)					
Q 9	Draw and label the phase diagram for the given data	20	CO2		

	Melting temp of Pb	=	327 ⁰ C			
	Melting temp of Sn	=	232 ⁰ C			
	Eutectic temp	=	183 ⁰ C			
	Eutectic Composition	=	61.9% Sn			
	Max ^m solubility of Sn in Pb i.e., in α- 19.2%	on (at eutectic temp) =				
	Max ^m solubility of Pb in Sn i.e., in β- 2.5%	on (at eutectic temp) =				
	The solubility's of both Sn in Pb and	reases with decreasing				
	Make the phase analysis for the follow Phases Present, ccomposition of phase the microstructure at each point.					
	a) At eutectic composition just bb) The point c at 40% Sn and 230					
	c) The point d at 40% Sn and 183d) The point e at 40% Sn and 183	3ºC +ΔT 3ºC -ΔT				
Q 10	a) For BCC, compute (a) the inte	erplanar spac	ing (b) the diffraction angle			
	for the (220) set of planes. The lattice parameter for the element is					
	0.2866 nm. Also, assume th	omatic radiation having a				
	wavelength of 0.179 nm is use	der of reflection is 1.				
	b) The metal niobium has a E	structure. If the angle of				
	diffraction for the (211) set	occurs at 75.99 ⁰ (first order				
	reflection) with 0.1659 nm wavelength used, compute (a) interplanar					
	spacing for this set of planes	and (b) atom	mic radius for the niobium	20	CO1	
	atom.					
		OR				
	a) For which set of crystallograph	hic planes wi	ll a first order diffraction			
	peak occur at a diffraction ang	10° (le of 44.53°)	for FCC nickel when			
	monochromatic radiation havi	ng a waveler	gth of 0.1542 nm is used?			
	A.W= 58.69g/mol density= 8	8.9 g/cc				
	b) Draw the planes for following	Miller indic	es			

(a) (101)	
(b) (221)	
(c) (632)	
(d) (100)	