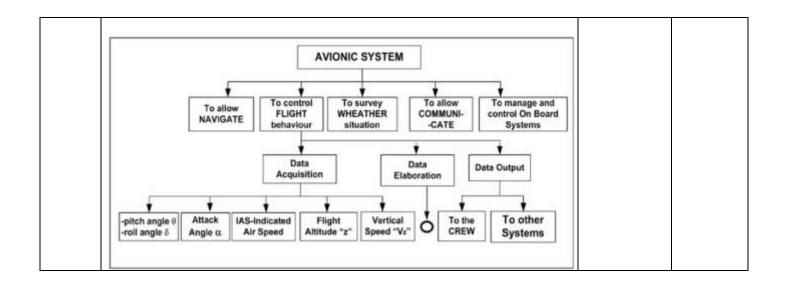
Name:

Enrolment No:



UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Avionics System Design Program: ASE+AVE Course Code: AVEG 4007 Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Define the term sampler in Avionics system design	4	CO1
Q 2	Discuss order of the system used for design problems	4	CO2
Q 3	List out the factors affecting the system design operations	4	CO3
Q 4	How to check system stability on S-plane	4	CO4
Q 5	Importance of Root Locus and Polar diagram for system modelling	4	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	What are the various Mathematical models used for system design. Describe in detail.	10	CO2
Q 7	A unity feedback system has a open loop transfer function of $(s) = \frac{10}{(s+1)(s+2)}$. Determine the steady state error for unit step input.	10	CO3
Q 8	The characteristic polynomial of the system is , $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$, Determine the location of the roots on s- plane and hence the stability of the system.	10	CO 4
Q 9	A unity feedback system has a open loop transfer function of $G(s) = \frac{20(s+3)}{s(s+0.1)(s+3)}$. Determine the steady state error for parabolic input.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Consider Routh array and determine the stability of the system represented by the characteristic equation $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5$. Comment on the location of roots of the characteristic equation.	20	CO1
Q 11	Describe each blocks mentioned in the Figure below	20	CO 3

