Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Robotics & Mechatronics Program: B.Tech ADE Course Code: MEPD4013 Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	List the design and control issues in the robotics system.	4	CO1	
Q 2	Define the term work envelope.	4	CO1	
Q 3	Identify the parameters in Denavit-Hartenberg notation scheme.	4	CO2	
Q 4	Define the term interior singularity and boundary singularity.	4	CO2	
Q 5	Discuss the integrated issues in mechatronics.	4	CO2	
SECTION B (4Qx10M= 40 Marks)				
Q 6	An articulated arm is a 3-DOF manipulator with three revolute joints that is an RRR arm configuration as shown in figure 1. Determine the arm point transformation matrix.	10	CO3	

Q 7	Explain the mechatronics key elements.	10	CO3
Q 8	Determine the transformation matrix T that represents a translation of <i>a</i> unit along <i>x-axis</i> , followed by a rotation of an angle <i>a</i> about <i>x-axis</i> followed by a rotation of θ about the rotated <i>z-axis</i> . <i>OR</i> Frame {2} is rotated with respect to frame {1} about the x-axis by an angle of 45 °. The position of the origin of frame {2} as seen from frame {1} is ${}^{1}D_{2} = [7 \ 5 \ 7]^{T}$. Obtain the transformation matrix ${}^{1}T_{2}$, which describes frame {2} relative to frame {1}. Also find the descriptions of point P in frame {1}, if ${}^{2}P = [2 \ 5 \ 6]^{T}$.	10	CO3
Q 9	Explain the function of a sensor and actuator in a mechatronic system. List the different types of sensor and actuator.	10	CO4
	SECTION-C		
0.10	(2Qx20M=40 Marks)		
	$H_{1} = \begin{bmatrix} 0.354 & 0.866 & 0.354 & 0.106 \\ 0.612 & 0.500 & -0.612 & -0.184 \\ 0.707 & 0 & 0.707 & 0.212 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Determine all values of all joint variables that is, all solutions to the inverse kinematic problem.	20	CO4
Q 11	Determine the manipulator Jacobian matrix for the 3-DOF articulated arm shown in figure 2.	20	CO4

