Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Linear Programming and Theory of Games Program: BSc(H) Mathematics Course Code: MATH 3016

Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

	SECTION A (50x4M=20Marks)		
S. No.		Marks	СО
Q 1	Find the range of values of p and q that will render the entransdele point for the gamePlayer BPlayer A B_1 B_2 B_3 A_1 245 A_2 107 q A_3 4 p 6	ry (2,2) a 4 M	CO5
Q 2	Write the dual to the following LP problem. Maximize $Z = x_1 - x_2 + 3x_3$ subject to the constraints $x_1 + x_2 + x_3 \le 10,$ $2x_1 - x_2 - x_3 \le 2,$ $2x_1 - 2x_2 - 3x_3 \le 6,$ And $x_1, x_2, x_3 \ge 0$	4M	CO2
Q 3	A manufacturer produces two types of models M_1 and M_2 , of type M_1 requires 4 hours for grinding and 2 hours for po- model of M_2 requires 2 hours of grinding and 5 hours of po- The manufacturer has 2 grinders and 3 polishers, each gri hours a week and polisher 60 hour a week. Profit on M_1 is model M_2 is Rs4. Formulate Linear Programming Problem	each model of Dishing. Each Dishing. nder work 40 is Rs3 and on t.	CO1

Q 4	Determine an initial basic feasible solution to the following transportation problem using North West Corner Rule														
	Destination $D_1 D_2 D_3 D_4 Supply$														
														COA	GO 4
		<i>S</i> 1	21		16	15		3	11				4191	04	04
	Source	S2	17		18	14	2	3	13						
		03 Demano	1 6	:	6	8	4	3	19						
0.5	For what	value o	f λ th	e gai	me w	vith fo		ving r	nav-off	matrix	ic ctri	otly			
Q J	For what value of λ , the game with following pay-off matrix is strictly determinable.														
		Р	laver E	3											
	Player A	<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃											
	A ₁	λ	6	2									4M	CO5	CO5
	A ₂	-1	λ	-7											
	A ₃	-2	4	λ											
							SE(CTIC)N B						
						(4Q	x10N	/I= 4	0 Marl	ks)					
Q 6	Use the Simplex method to solve the following LP Problem Maximize $7 = 2x + 2x$														
	Subject to	the co	onstrai	nts									10M	CO2	2
					x_1 x_1	$+ x_2 - x_2$	$\frac{1}{2} \le 4$	} 2							
	And x	$x_1, x_2 \ge$	0.		1		. — -								
Q 7	A departr	nent of	t a continue (i	mpai n ho	ny ha urs) i	as fiv that e	e en each i	nploy man	yees wi takes to	th five perfo	e jobs rm eac	to be h iob			
	is given in	n the ef	fective	eness	s mat	rix.	uon i		unos e	, perio		njee			
			E	Emplo	oyees										
			I	II	III	IV	V								
		A	10	5	13	15	16								
	Job	S B	3	9	18	13	6						10M	CO3	•
			10	7	2	2	2								
			10	/	2	2	2 10								
		D	/	11	9	/	12								
		E	7	9	10	4	12								

	How th	e jobs shoul	ze the								
	total ma	an-hours.									
Q 8	ABC Id Part I for located have to the dist	ce Cream C or distribution in different be supplied ances (in kil	Cailash endors D) who splays prs.								
			Depot	Ve	endor A	Vendor B	Vendor C	Vendor D			CO4
	From	Depot	∞		3.3	3	4	2		10M	
		Vendor A	3.5		8	4	2.5	3			
		Vendor B	3		4	∞	4.5	3.5			
		Vendor C	4		2.5	4.5	∞	4			
		Vendor D	2		3	3.5	4	∞			
	What ro travelle	oute should d is minimiz	ce								
Q 9	A comyear set i. ii. iii. iv. The cos	pany manag ttlement. Ea Hard an Reasoni Legalist Concilia sts to the con									
	Union	Strategies↓	I	II	III	IV					
		Ι	20	15	12	35				10M	CO5
		II	25	14	8	10					
		III	40	2	10	5					
		IV	-5	4	11	0					
	Which	strategy will	f game								
					0	R					

			Plav	er B						
	Player A A_1 A_2 A_3	$ B_1 3 3 4 $	$ \frac{B_2}{2} 4 2 $	$ \begin{array}{c} B_3 \\ 4 \\ 2 \\ 4 \end{array} $	$ \begin{array}{c} B_4 \\ 0 \\ 4 \\ 0 \\ \overline{} $					
	A	0	4	0	8 SEC	TION-C				
10 A c a r t t i t	A company has capacity of 7,9 are to be sl requirement ransportation n the table be ransportation	as three 9 and 18 hipped of 5,8 costs 1 low. Fi	e prod 8 units to f ,7 ar per ur nd the m by	uction s per we our wa nd 14 nit betw initial Vogel'	factories. eek of pro arehouses units p een facto basic fea s Approx	F_1 , F_2 and oduct responses W_1, W_2 , er week, pries to weights solution n	I F_3 with produce ectively. These W_3 and W_4 respectively. varehouses are g tion of the follo- nethod	ction units with The given wing		
	Ware house→ Factory↓		<i>W</i> ₁	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₄	Factory Capacity			
	<i>F</i> ₁	1	9	30	50	10	7			
	F ₂ F ₃	4	0	30 8	70	20	9		20M	CO
	Warehous	se 5 ient		8	7	14	34			
I s	s the above solution.	solutio	n an	optima	l solution	1 n? If not,	obtain the opt	timal		

Q 11	Use two-phase simplex method to solve the following LP problem $Minimize Z = x_1 + x_2$ Subject to the constraints		
	$2x_1 + x_2 \ge 4 x_1 + 7x_2 \ge 7$ And $x_1, x_2 \ge 0$		
	OR		
	Use Big M method to solve the following LP problem <i>Minimize</i> $Z = 5x_1 + 3x_2$ Subject to the constraints	20M	CO2
	$2x_1 + 4x_2 \le 12$ $2x_1 + 2x_2 = 10$ $5x_1 + 2x_2 \ge 10$		
	And $x_1, x_2 \ge 0$.		