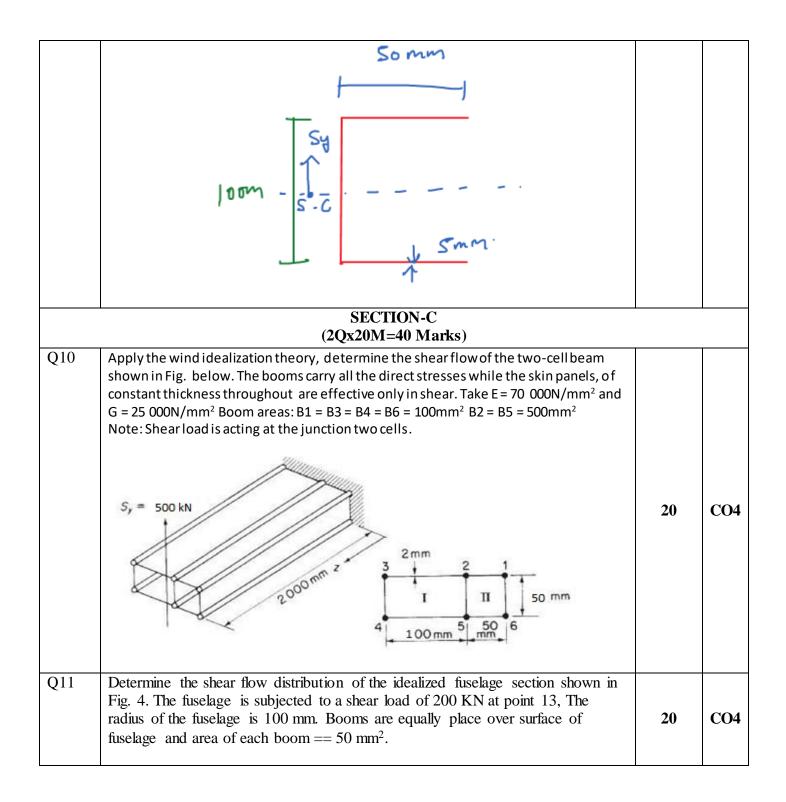
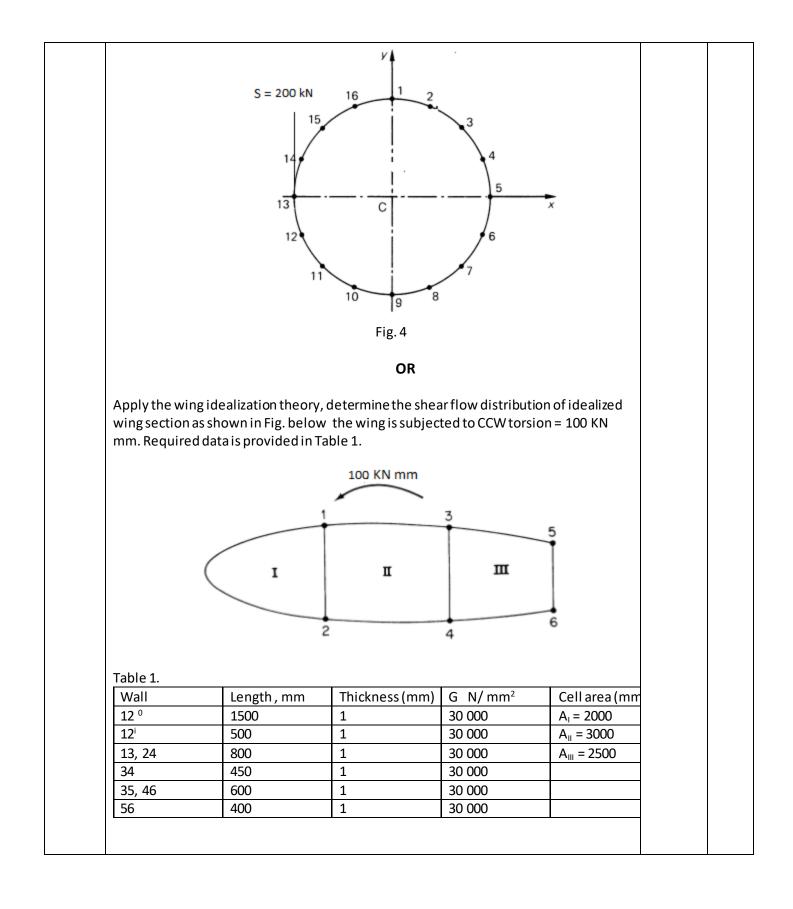
Name:

Enrolment No:


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022


Course: Aircraft Structures-II Program: B. Tech ASE + AVE Course Code: ASEG 3017 Semester: VI Time : 03 hrs. Max. Marks: 100

Instructions: i) Assume any suitable value for missing data. ii) Q1-Q3 are True/False

	SECTION A				
(5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	 a) For any arbitrary body undergoing mechanical deformation there 15 unknowns. (2 M) b) In case of pure torsion, shear stress is maximum for maximum thickness in thin walled open section beam. (2 M) 	4	CO1		
Q2	 a) Bredt – Batho formula is applicable for only of open section beam. (2M) b) Moment of inertia of beam depends on the length of the beam(2M) 	4	CO1		
Q3	a) The spar of wing carry both bending and shear stress.b) Neutral axis is coincide with centroid for symmetric and unsymmetrical beam under bending.	4	CO1		
Q4	A torque of 8 Nm is applied in clockwise (CW) direction to the bar cross section shown in, Fig. 1. Determine the maximum shear stress and the angle of twist per unit length. Take $G = 80$ GPa.	4	CO2		
Q5	A square beam cross-section of side = 10 cm and thickness = 0.5 mm is subjected to torque T = 100 kNm , the value of maximum shear stress is?	4	CO2		

	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Determine the maximum shear stress in the channel section when it is subjected to a counterclockwise torque of 50 kNm. G= 25,000 N/mm ²	10	CO3
Q7	Find the angle of twist per unit length in the wing whose cross-section is shown in fig. below, when it is subjected to a torque of 10 kN m. Find also the maximum shear stress in the section. $G = 25,000 \text{ N/mm}^2$, Wall 12 length = 900 mm; nose cell area = 20000 mm Hint: Assume torsional rigidity (GJ) combined section is equal to the sum of torsional rigidity of open and closed section and torque is equal on both open and closed	10	CO3
Q8	600mm Derive the formula to determin ethe shear stress distribution in thin wallled section. OR Diffrenece between symmetric and unsymmetric beam. Derive the formula to obtain bending stress in unsymmetric beam.	10	CO3
Q9	Determine the shear flow and shear center of the channel section shown below, let $S_y = 100$ kN.	10	CO2

