Name:

Enrolment No:

Semester: IV

Duration: 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

End Semester Examination, May 20

Course: Signals and Systems Program: B Tech Aerospace Engg. Spl Avionics

Course Code: ECEG2010

Instructions:

- Attempt all questions as per the instruction.
- Assume any data if required and indicate the same clearly.
- Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A (5Qx4 = 20 Marks)

S. No.		Mark	CO		
		S			
Q 1	Define convolution integral and convolution sum. Also mention the properties	4	CO1		
	of the convolution integral.				
Q 2	Sketch the waveforms of the following signals:	4	CO1		
	(a) $x(t) = u(t + 3) + 2u(t + 1) - 2u(t - 1) + u(t - 3)$				
	(b) $y(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$				
Q 3	Find the Fourier transform of the signal $x(t) = e^{-a t }$; $a > 0$	4	CO2		
Q 4	Find the energy of a signal $x(t) = e^{-2t}u(t)$. Determine the frequency W	4	CO2		
	(rad/sec) so that the energy contributed by the spectral components of				
	all the frequencies below W is 90% of the signal energy.				
Q 5	Consider the signal $x(t) = e^{-5t}u(t-1)$. Evaluate the Laplace transform	4	CO3		
	X(s) of x(t) using the integral formula and specify its region of convergence				
SECTION B (4Qx10 = 40 Marks)					
Q 6	Consider a linear time invariant (LTI) system with the output response y(t) as	10	CO1		
	shown in Fig. 1 to the input signal $x(t) = u(t) - u(t-2)$. Determine and				
	sketch the output response of the system to the following inputs:				
	(a) $x_1(t) = x(t) - x(t-4)$				
	(b) $x_2(t) = x(t) - x(t+4)$				

	A			
	y(t)			
	$2 \sim \cdots \sim $			
	2 5 t			
	Fig. 1			
Q 7	(a) State at least four properties of the Fourier transform.	10	CO2	
	(b) Determine the inverse Fourier transform of the following function:			
	(i) $X(\omega) = \frac{j\omega}{(\omega+1)^2}$			
	$(3+j\omega)^2$ (1. $ \omega < 2$			
	(ii) $X(\omega) = \begin{cases} 1, & \omega < 2 \\ 0, & elsewhere \end{cases}$			
	(iii) $\frac{6}{\omega^2 + 2}$			
Q 8	Suppose the following facts are given about the signal $x(t)$ with Laplace	10	CO3	
	transform X(s):			
	1. x(t) is real and even;			
	2. X(s) has four poles and no zeros in the finite s-plane;			
	3. X(s) has a pole at $s = \frac{1}{2}e^{j\pi/4}$;			
	$4. \int_{-\infty}^{+\infty} x(t) dt = 4.$			
	Determine $X(s)$ and its regions of convergence (ROC).			
	Solve the second-order linear differential equation			
	solve the second-order linear differential equation $d^2 u(t) = du(t) = dr$			
	$\frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6y(t) = \frac{dx}{dt} + x(t)$			
	for the initial conditions $y(0^-) = 2$ and $\dot{y}(0^-) = 1$ and the input $x(t) = 1$			
	$e^{-4t}u(t)$			
Q 9	Suppose that the algebraic expression for the z-transform of $x[n]$ is	10	CO4	
	1 -			
	$1 - \frac{1}{4}z^{-2}$			
	$X(z) = \frac{1}{(1+\frac{1}{z-2})(1+\frac{5}{z-1}+\frac{3}{z-2})}$			
	$\left(1 + \frac{1}{4}z^{2}\right)\left(1 + \frac{1}{4}z^{2} + \frac{1}{8}z^{2}\right)$			
	How many different ROCs could correspond to $X(z)$? also determine the			
	corresponding inverse z-transform of $X(z)$			
SECTION C (2Qx20 = 40 Marks)				
0.10	The switch in the circuit shown in Fig 2 is in the closed position for a long	20	CO3	
V IU	time before $t = 0$ when it is opened instantaneously	20	005	
	Find the currents $y_1(t)$ and $y_2(t)$ for $t \ge 0$			

