Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Ring Theory and Linear Algebra I Program: B.Sc. (H) Mathematics Course Code: MATH 2031 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Let <i>a</i> and <i>b</i> be arbitrary elements of a ring <i>R</i> whose characteristic is two and $ab = ba$. Then show that $(a + b)^2 = a^2 + b^2$.	4	CO1	
Q2	If S is an ideal of a ring R with unity and $1 \in S$ then show that $S = R$.	4	CO2	
Q3	Define ring homomorphism and kernel of a ring homomorphism.	4	CO3	
Q4	For what value of m , the vector $(m, 3, 1)$ is a linear combination of vectors $e_1 = (3, 2, 1), e_2 = (2, 1, 0)$.	4	CO4	
Q5	Determine whether or not the following vectors form a basis of R^3 : (1,1,2), (1,2,5), (5,3,4).	4	CO4	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Prove that the set of matrices $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with <i>a</i> , <i>b</i> , <i>c</i> integers, is a subring of the ring of 2 × 2 matrices having elements as integers.	10	CO1	
Q7	If S_1 and S_2 are two ideals of a ring R , then show the set S_1S_2 , of all elements of the form $b_1b_2 + c_1c_2 + \dots + l_1l_2$, where $b_1, c_1, \dots, l_1 \in S_1$ and $b_2, c_2, \dots, l_2 \in S_2$, is an ideal of R .	10	CO2	
Q8	Let <i>R</i> be the ring of integers. Let <i>R'</i> be the set of even integers. Then show that <i>R'</i> is commutative ring with respect to ordinary addition and another operation * in place of multiplication defined as $a * b = \frac{ab}{2} \forall a, b \in R'$ <i>ab</i> being the product of <i>a</i> and <i>b</i> under ordinary multiplication. Also, show that $R \cong R'$.	10	CO3	

Q9	Prove that the union of two subspaces W_1 and W_2 is a subspace if and only if one is contained in the other. OR Suppose <i>V</i> is the vector space of all functions from <i>R</i> into <i>R</i> and V_e is the subset of all even integers $f(x)$ i.e. $f(-x) = f(x)$. Also suppose that V_o is the subset of all odd integers $f(x)$ i.e. $f(-x) = -f(x)$. Then prove that	10	CO4
	(i) V_e and V_o are subspaces of V (ii) $V_e \cap V_o = \{0\}, 0$ denotes zero function. SECTION-C		
Q10	$(2Qx20M=40 \text{ Marks})$ Let U and V be vector spaces over the field F. Let T_1 and T_2 be linear transformations from U into V. The function $T_1 + T_2$ is defined by $(T_1 + T_2)(\alpha) = T_1(\alpha) + T_2(\alpha)$ for every $\alpha \in U$ is a linear transformation from U into V. If c is any element of F, the function (cT) defined by $(cT)(\alpha) = cT(\alpha)$ for every $\alpha \in U$ is a linear transformation from U into V. Prove that, the set $L(U, V)$ of all linear transformations from U into V, together with the addition and scalar multiplication defined above is a vector space over the field F.	20	CO5
Q11	If <i>S</i> is an ideal of a ring <i>R</i> , then the set $\frac{R}{s} = \{S + a : a \in R\}$ is a ring for the two operations in $\frac{R}{s}$ defined as (S + a) + (S + b) = S + (a + b) $(S + a)(S + b) = S + ab \forall a, b \in R.$ OR Two finite dimensional vector spaces over the same field are isomorphic iff they are of the same dimensions.	20	CO6