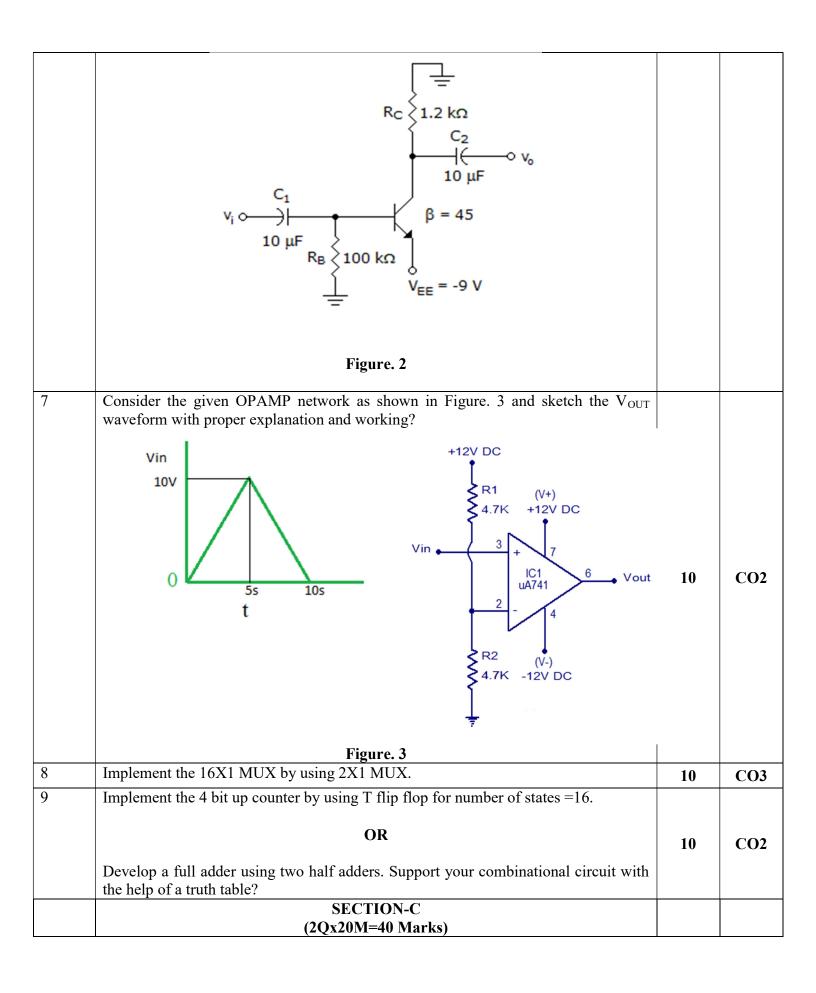
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Programme Name: B.Tech Mechatronics Course Name: Analog & Digital Electronics


Course Code: ECEG 2030

Nos. of page(s): 3

Time: 03 hrs Max. Marks: 100

Semester: IV

	SECTION A			
(5Qx4M=20Marks)				
S. No.		Marks	CO	
1	Evaluat the expression of the output voltage Vo for the given OPAMP circuit shown in Figure 1? $ \begin{array}{c} C \\ \hline \\ Vin \\ \hline \\ $	4	CO3	
2	Convert the following numbers into the corresponding number system . A. $(88)_{10} = (?)_{16}$ B. $(1101.101100)_2 = (?)_{16}$ C. $(162)_8 = 10$	4	CO1	
3	The overall gain of a multistage amplifier is 140. When negative voltage feedback is applied, the gain is reduced to 17.5. Find the fraction of the output that is fedback to the input (feedback gain).	4	CO1	
4	Illustrate the applications of the oscillators?	4	CO2	
5	Define the "Barkhausen criterion" for sustained oscillations?	4	CO2	
	SECTION B	I		
	(4Qx10M= 40 Marks)			
6	For the given CE BJT configuration as shown in Figure 2, evaluate the DC operating Points (I_{CQ} , V_{CEQ}) and also comment on its operating region?	10	CO1	

10	Implement the following Boolean function: $F(A, B, C) = A'B'C + AB + AB'C$ by using only one MUX with suitable number of inputs.	20	CO4
11	Derive the relation for frequency of sustained oscillations to design the Wien bridge oscillator for figure 6 Illustrate the nature of oscillations if $R_2 = 4R_1$ and $R_2 = 0.5$ R_1 . Draw neat sketch of the waveform for all the cases. R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_3 R_2 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_5 R_4 R_4 R_4 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_7 R_8 R_9 $R_$		
	OR	20	CO3
	Evaluate the following for the given schematic below (Figure .5) (assume hie = $20k$) (a) Calculate Zi and Zo. (b) Find Av and Ai. (c) For Vi = 500 mV.sin250t plot the output voltage waveform Vo? $V_{CC} = 16 \text{ V}$		
	Figure. 5		