Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: RADAR Technology Program: ASE+AVE Course Code: AVEG 4009 Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A						
(5Qx4M=20Marks)						
S. No.		Marks	CO			
Q 1	Define the various RADAR Bands	4	CO1			
Q 2	Differentiate Mono-static and Bi-static RADAR system	4	CO2			
Q 3	List out ten factors affecting the RADAR operations	4	CO3			
Q 4	Discuss the principle of operation of SAR	4	CO4			
Q 5	Discuss the fundamentals of Ground Controlled Approach RADAR and Its operation	4	CO4			
	SECTION B		1			
(40x10M = 40 Marks)						
Q 6	How the Minimum Detectable Signals could be calculated? Derive the relationship for Range equation with the consideration of Noise Figure/factors.	10	CO2			
Q 7	Discuss the basic principle of Doppler's effect. Write down the various cases for the Electromagnetic/speech signal transmissions from the source to observer. Derive the relative velocity for the moving target under radial manner. Develop the algorithms for the same under the various categories.	10	CO3			
Q 8	If the power transmitted from a transmitter is 10kW and gains of transmitting and receiving antennas are 30dB and 20dB respectively then calculate the maximum power received at a distance of 10km over free space for 2GHz transmission frequency.	10	CO 4			
Q 9	What are the various types of RADAR displays? Discuss five important displays for the obtained data receptions	10	CO4			
SECTION-C						
(2Qx20M=40 Marks)						

Q 10	The radar parameters for the biostatic	: radar syste	em is a	as shown	L	
	in Table 1. The range parameters are defined in Table 2.					
	Calculate SNR for the RADAR receiver.					
	Table 1 – Radar Parameters					
	RADAR PARAMETER		VALU	JE		
	Peak Transmit Power @ Power T	Tube, P_T	1 Mv	v		
	Transmit Losses, L_t		2 dB			
	Pulse Width, $ au_p$		0.4 μs			
	Antenna Gain, G_T, G_R		38 d	В		
	Operating Frequency, f_c	;	8 GH	Iz		
	Receive Losses, L_{R}		3 dB			
	Noise Figure F_n		8 dB			
	Other Losses, L_{other}		2 dB		20	CO1
	Table 2 – Radar Range Equa	ation Param	eters			
	DAR RANGE EQUATION PARAMETER	VALUE (N	IKS)	VALUE		
	P_T	10 ⁶ w		60 dBw		
	G_{T}	6309.6 w/	w	38 dB		
	G_{R}	6309.6 w/	w	38 dB	_	
	$\lambda = c/f_c$	0.0375 m		-14.26	dl	
	σ	3.98 m ²		6 dBsm	L	
	R	60×10 ³ m		47.78 d	В	
	kT_0	4×10 ⁻²¹ w-s	S	-204 dE	3(

		$B = 1/\tau_p$	2.5×10 ⁶ Hz	64 dB(Hz)		
		F_n	6.31 w/w	8 dB		
		$L = L_t L_r L_{other}$	5.01 w/w	7 dB		
Q	11	A CW radar is illuminating at 10 GHz frequency towards the automobiles and a car is found to move towards the radar with a speed of 200km/hr. Find the Doppler shift and the frequency of received echo signal. Also, find the frequency of the echo signal if the car moves away from the radar with the same speed. Describe what principle its operates, Also derive the system equation for target velocity measurement			20	CO 3