Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

SECTION A

Course: Reservoir Engineering I Program: B.Tech APE GAS Course Code: PEAU 2010 Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions:

All Questions are Compulsory.

(5Qx4M=20Marks) S. No. Marks CO Q 1 Classify the rock types and explain their relevance to petroleum? 4 **CO1** Q 2 Recognize various factors that have a major role in understanding the hydrocarbon reservoir? Also, the parameters that are effected by 4 CO₂ reservoir fluid properties. Describe the causes for oil to flow from reservoirs? Q 3 **CO3** 4 State the three basic steps involved for fluid evaluations? Q4 4 **CO3** Q 5 Explain the purpose of developing a material balance equation for a 4 **CO4** reservoir? **SECTION B** (4Qx10M= 40 Marks) Q 1 a) The pore compressibility of a reservoir rock has been determined to be $3 * 10^{-6}$ psi⁻¹. The porosity measured at ambient conditions is 15% and the bulk volume of 100 cm³. Calculate the porosity of the reservoir at a depth of 10000 ft TVD. The overburden pressure is 1 psi/ft. Comment on the validity of the approach. (5 Marks) b) A laboratory capillary pressure test was conducted on a core sample .The core has a porosity and permeability of 16% and 80 md, respectively. The capillary pressure-saturation data are given 10 **CO1** as follows: Capillary Pressure (psi) Sw 1.0 0.50 0.8 0.60 0.6 0.75 0.4 1.05 0.2 1.75

	The interfacial tension is measured at 50 dynes/cm. Further reservoir engineering analysis indicated that the reservoir is better described at a porosity value of 19% and an absolute permeability of 120 md. Generate the capillary pressure data for the reservoir. (5 Marks)						
Q 2	a) A layer Layer 1 2 3 4 Calculate the a b) Analyze	ed reservoir h Width (m) 1000 1000 1000 verage perme e the relation	as the followin Thickness (m) 83 146 275 32 ability of the re between Darcy	g properties Length (m) 5000 5000 5000 5000 servoir? 's Law and C	Permeability (mD) 132 62 27 425 (5 Marks) Ohm's Law? (5 Marks)	10	CO2
Q 3	Discuss the applicability of different reservoir estimation techniques at different stages in life cycle of oil and gas field.					10	CO4
Q 4	Differentiate between the types of recovery methods and formulate a procedure in identifying the implementation of these stages during the lifetime of reservoir?					10	CO3
			SECT (2Qx20M	TION-C =40 Marks)			
Q 1	Classify different types of oil reservoirs and illustrate the phase behaviour change for each types of oil reservoir with diagram?					20	CO3
Q 2	Formulate a pictorial representation of volumetric changes that occurs during the natural productive life of an oil reservoir and develop a material balance equation that includes all PVT and Rock properties?					20	CO4