Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course:Inorganic Chemistry-IIIProgram:B.Sc ChemistryCourse Code:CHEM2004

Semester : IVth Time : 03 hrs. Max. Marks: 100

Instructions: Complete the statements

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Calculate the CFSE value for the following systems: (i) d^5 low spin octahedral (ii) d^5 high spin octahedral (iii) d^6 high spin octahedral (iv) d^4 low spin octahedral.	4	CO1	
Q 2	 (a) In which of the following species does the transition metal ion have <i>d</i>⁵ electronic configuration? (i) [Cr(NH₃)₆]³⁺ (ii) [Co(H₂O)₆]²⁺ (iii) [CoF₆]³⁻ (iv) [Fe(CN)₆]³⁻ (b) Which one of the following statements is FALSE? (i) In an octahedral crystal field, the d electrons on a metal ion occupy the <i>e</i>_g set of orbitals before they occupy the <i>t</i>_{2g} set of orbitals. (ii) Diamagnetic metal ions cannot have an odd number of electrons. (iii) Low spin complexes can be paramagnetic. (iv) Low spin complexes contain strong field ligands. 	2+2	CO1 CO2	
Q 3	Give the general electronic configuration of lanthanides. Explain the anomalous oxidation states of 2+ and 4+ shown by some elements in the series.	4	CO1	

Q 4	 (a) Which ordering correctly describes the tendency of a ligand to direct ligand substitution in a square planar complex to a position opposite to itself? (i) [CN]⁻ > [NO₂]⁻ > Br⁻ > NH₃ (ii) [CN]⁻ > Br⁻ > NH₃ > [NO₂]⁻ (iii) [NO₂]⁻ > [CN]⁻ > NH₃ > Br⁻ (iv) Br⁻ > [CN]⁻ > NH₃ > [NO₂]⁻ (b) Which statement is correct? (i) A dissociative mechanism is a 2-step mechanism with the leaving group departing in the second step (ii) An associative mechanism is a 2-step mechanism; the intermediate has a lower coordination number than the starting complex (iii) In a dissociative interchange mechanism, bond breaking dominates over bond formation (iv) In an associative interchange mechanism, the entering group associates with the substrate after the leaving group has departed. 	2+2	CO3
Q 5	The complex ion $[Co(NH_3)_6]^{3+}$ is octahedral and diamagnetic, $[CoF_6]^{3-}$ is also octahedral but paramagnetic in nature. How does valence bond theory (VBT) account for this observation?	4	
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Discuss three important factors influencing the magnitude of crystal field stabilization energy (CFSE) in octahedral complexes.	10	CO2
Q 7	 (a) Explain Jahn-Teller distortion present in case of d⁹ and d⁸ low spin systems. (b) d⁸ low spin metals never form octahedral complexes. Why it is so? 	5+5	C01
Q 8	What is lanthanide contraction? What are its important consequences?	10	CO1
Q 9	Define Trans Effect. Write down the reactions involved in the preparation of <i>cis</i> - and <i>trans</i> -[Pt(NH ₃) ₂ Cl ₂] by following Trans Effect.	10	CO2

	SECTION-C (2Qx20M=40 Marks)				
Q 10	 What are inert and labile complexes? How will you explain the lability or inertness in case of following complex ions using Valence bond Theory? (i) [MnCl₆]³⁻ (ii) [Co(CN)₆]³⁻ 	20	CO1 CO3		
Q 11	(i) What are nucleophilic substitution reactions in coordination compounds?(ii) Discuss the dissociative and association mechanism for octahedral complexes.	20	CO3		