Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: PDE and System of ODE

Program: B.Sc. (Hons.) Mathematics

Course Code: MATH 2030

Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Check the linearity of the PDE $u_x + 5u = x^2y$ by using linear transformation	4	CO1	
Q 2	For what regions in xy -plane the second order PDE $xu_{xx} + 2xyu_{xy} + yu_{yy} + xu_x + yu_y = 0$ is hyperbolic?	4	CO2	
Q 3	Find the characteristic curves for the PDE $x^2u_{xx} - y^2u_{yy} - y^2\cos x + x^2 = 0$; $x > 0$.	4	CO2	
Q 4	Find the solution for the infinite string problem $u_{tt} = 9u_{xx}$, $t > 0, -\infty < x < \infty$ satisfying the conditions $u(x, 0) = x^2, u_t(x, 0) = 0$.	4	CO3	
Q 5	Show that $X(t) = \begin{bmatrix} e^{3t} \\ -e^{3t} \end{bmatrix}$ is a solution of homogeneous system $\frac{dX(t)}{dt} = \begin{bmatrix} 2 & -1 \\ 3 & 6 \end{bmatrix} X(t).$	4	CO4	
SECTION B				
Q 1	Find the solution of the IVP $(x - y)u_x + (y - x - u)u_y = u$ with $u(x, 0) = 1$.	10	CO1	
Q2	Prove that the solution of the Cauchy's Problem $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$ on $D = \{(x, y, u): x^2 + y^2 \neq 0, z > 0\}$ subject to the Cauchy data $x^2 + y^2 = 1$, $u = 1$ is $u = \sqrt{x^2 + y^2}$.	10	CO1	
Q3	Find the solution of $u_{xx} = h^2 u_t$, with $u(0,t) = u(1,t) = 0$ and $u(x,0) = sin \frac{\pi x}{l}$	10	CO3	
Q4	Find the solution $X(t) = [x \ y]^T$ of the non-homogeneous system: $\frac{dX}{dt} = \begin{bmatrix} 1 & 2\\ -1 & -1 \end{bmatrix} X + \begin{bmatrix} e^t\\ 0 \end{bmatrix}$ <i>OR</i>	10	CO4	

	Consider the system of ODE $\frac{dX}{dt} = AX$, where $X(t) = [x \ y]^T$ and A is a			
	square matrix of order 3 with an eigen value of algebraic multiplicity 3. Find			
	all linearly independent solutions and hence write the complete solution of			
	given system of ODE.			
SECTION-C				
(2Qx20M=40 Marks)				
Q 1	Transform the second order initial value problem:			
	y'' + y = 0 with $y(0) = 1, y'(0) = 0$	20	CO4	
	into a system of first order initial value problem, and use the Runge-Kutta			
	method with $h = 0.1$ to find the approximate value of $y(0.2)$.			
Q2	Solve Laplace equation $u_{xx} + u_{yy} = 0$ with $u(0, y) = u(1, y) =$			
	$0, for \ 0 \le y \le 4, u(x, 0) = 0, u(x, 4) = x \cos \frac{\pi x}{2}$ for $0 \le x \le 1$			
	OR			
	Consider the wave equation with a forcing term as follows:			
	$\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} + e^x \text{ for } 0 < x < 1, t > 0$	20	CO3	
	$y(0,t) = y(1,t) = 0$ for $t \ge 0$			
	$y(0,t) = \frac{\partial y}{\partial t}(x,0) = 0$ for $0 \le x \le 1$			
	Using suitable transformation reduce it into homogeneous wave equation and hence find the solution.			