Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Elements of Modern Physics Program: B.Sc (H) Physics Course Code: PHYS 2005 Semester : IV Time : 03 hrs. Max. Marks: 100

Instructions:

- All questions are compulsory (Q.No. 9 and Q.No. 11 have an internal choice)
- Scientific calculators can be used for calculations

SECTION A (50 x 4M = 20 Marks)

- All Questions are compulsory, Each Question carries 4 Marks
- Write very Short Answers/ Solve

Q. No.	Statement of question		СО
1	What is the photoelectric effect? What are the factors that influence the photoelectric effect?	4	CO1
2	Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to $(1/20)^{\text{th}}$, of the velocity of light.	4	CO4
3	Uncertainty in the time of an excited atom is about 10^{-8} sec. What are the uncertainties in energy and frequency of radiation?	4	CO1
4	Explain pair production by gamma-ray photons in the vicinity of the nucleus.	4	CO4
5	Distinguish between spontaneous and stimulated emissions.	4	CO1

SECTION B

(4Q x 10M = 40 Marks)

- All Questions are compulsory, Q.No. 9 has an internal choice, Each Question carries 10 Marks
- Write Short/ Brief notes/ Derive/ Solve

Q. No	Statement of Question	Marks	СО
6	What is Compton Effect? Explain the Compton effect with a neat diagram.	10	CO2
	Derive an equation for a shift in the Compton wavelength.	10	
7	(a) Prove that the relation between the phase velocity (v_p) and group velocity		
	(v_q) in a dispersive medium is (5)		
	$v_g = v_p - \lambda \left(rac{dv_p}{d\lambda} ight)$	10	CO2
	(b) Calculate the lowest energy of an electron confined in a 3-D cubical box		
	of each side 1 Å. (5)		
8	(a) Mention any five properties of α -radiations. (5)	10	CO2

	(b) The half-life of Radon is 3.8 days. After how many days will only one-		
	twentieth of the radon sample be leftover.		
	(answer upto the second decimal) (use $\log_{10} 20 = 1.3010$) (5)		
9	(a) Explain the construction and working of a pulsed laser with the help of a		
	neat energy level diagram.	10	CO3
	(UK) (b) What an Einstein's Coefficients? Derive the velation between Einstein's	10	
	(b) what are Einstein's Coefficients? Derive the relation between Einstein's coefficients.		
	SECTION-C		
	$(2Q \times 20M = 40 \text{ Marks})$		
• All (Questions are compulsory, Q.No. 11 has an internal choice, Each Question carrie	es 20 Marl	ks
• Write	e long answers/ Derive/ Solve		
Q. No	Statement of question	Marks	CO
	(a) Show that the wave function of a particle trapped into a one-dimension		
	box of length L is (10)		
10	$\frac{1}{2} \sin \left(\frac{n\pi x}{n\pi x}\right) = 1 - 2 - 2$	20	CO3
10	$\Psi_n(x) = \sqrt{\frac{1}{L}} \sin(\frac{1}{L}), \text{ where } n=1, 2, 3, \dots$	20	COS
	(b) Electrons with energies of 1 eV and 2 eV are incident on a barrier 5 eV		
	high and 5 Å wide. Find their respective transmission probabilities. (10)		
	(a) Define the range of the α -particle. Explain Gamow's theory of alpha		
	decay with the necessary diagram. (10)		
	(b) Explain the binding energy of the nucleus.		
	Find the binding energy of an α -particle from the below-given data.		
	Mass of Helium nucleus $= 4.001265 a.m.u$		
	Mass of proton $= 1.007277$ a.m. u		
11	Mass of neutron $= 1.008666$ a.m. u	20	CO3
11	1 a.m.u = 931.4812 MeV (10)		
	(OR)		
	(a) what are various nuclear models? State and explain the liquid drop model		
	of the nucleus, with the analogies between a small drop of a liquid and a mucleus.		
	(10) (b) Derive a relation for the sami ampirical mass formula for the muclaus		
	giving arguments for each of the terms involved (10)		
	giving arguments for each of the terms involved. (10)		

Constant	Standard Values
Planck's Constant (h)	6.63×10^{-34} Joule – sec
Permittivity of free space (ε_0)	8.85×10^{-12} Farad/meter
Velocity of light (c)	3×10^8 m/sec
Boltzmann constant (k_B)	$1.38 \times 10^{-23} \text{ JK}^{-1}$
Rest mass of an Electron	9.11×10^{-31} kg
Mass of the proton	$1.67 \times 10^{-27} \mathrm{kg}$
Charge of an electron	$1.6 \times 10^{-19} \text{ C}$