Name: Enrolm	ent No:		
Program Course Course Nos. of	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 Programme Name: B. Tech. FSE Semester : IV Course Name : Strength of Materials Time : 03 hrs Course Code : GNEG 227 Max. Marks : 100 Nos. of page(s) :		
S. No.		Marks	
Q 1	MCQ		
02	 a. A rod is enclosed centrally in a tube and the assembly is tightened b washers. If the assembly is subjected to a compressive load, i. Rod is subjected to a compressive load, ii. Both are subjected to a compressive load, iii. Both are subjected to a compressive load, iv. Rod is subjected to a compressive load, while the tube is subject tensile load. b. When a body is subjected to a direct tensile stress (σ) in one plane, th tangential stress on an oblique section of the body inclined at an angle normal of the section is equal to o sin θ o cos θ o sin² θ the total strain energy stored in a body is known as Impact energy Resilience Proof resilience When a cantilever is loaded at its free end, maximum compressive strest develop at Bottom fiber Top fiber Neutral axis Centre of gravity 	y rigid red to a hen the (θ) to 4 Ss shall	CO1
	 a. Curvature of Section b. Neutral Axis c. Angle of Obliquity d. Impact loading 	4	CO1
Q 3	Determine the position of centroid of the plane as shown in fig.	4	CO3

	$ \begin{array}{c} $		
Q 4	An axial pull of 20 kN suddenly applied on a steel rod 2.5 m long and 1000 mm2 in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take $E = 200$ GPa.	4	CO2
Q 5	Show that in a strained material subjected to two-dimensional stress, the sum of the normal components of the stresses on any two mutually perpendicular plane is constant.	4	CO2
	SECTION B		
Q 6	A composite bar is made up by connecting a steel member and a copper member, rigidly fixed at their ends as shown in fig. $\frac{1}{2} + \frac{1}{2} + \frac$	10	CO4
Q 7	Two elastic bars of the same material and length, one of circular section of diameter d and the other of square section of side d, absorb the same amount of energy delivered by axial forces. Compare the stresses in two bars.	10	CO3
Q 8	A plane element is subjected to stresses as shown in figure. Determine the principle stresses, the maximum shear stress and their plane. Sketch the planes determined.	10	CO4

	$f_r = 30 \text{ N/mm^2}$ $f_s = 60 \text{ N/mm^2}$ $g = 10 \text{ N/mm^2}$ $f_s = 60 \text{ N/mm^2}$ $f_s = 60 \text{ N/mm^2}$ $f_y = 30 \text{ N/mm^2}$		
Q 9	An element cube is subjected to tensile stresses of 110 N/mm ² and 47 N/mm ² acting on two mutually perpendicular planes. Each of the above stresses is accompanied by a shear stress of 63 N/mm ² , such that the one associated with the former tensile stress tends to rotate the element counterclockwise. Find the magnitude of the stresses on a plane inclined at 45° to the principle planes.	10	CO4
	SECTION-C		
Q 10	A beam AB, 8 m long and supported at A, has a simple support of 1 m length between C and D. Assuming uniformly distributed reaction between C and D, draw the S.F. and B.M. diagrams for the loading shown in Fig.	20	CO5
Q 11	A beam ABCD is supported at B & C and has overhangs AB and CD. The B.M. diagram for the beam is shown in fig. Draw the loading on the beam and S.F. diagram.	20	CO5