Name:			WUPES									
Enrolment No:					IVERSITY OF TOMORROW							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES												
End Semester Examination, May 2022												
Programme Name: B. Tech. APE (Gas) Semester : IV												
Course Name : Natural Gas Engineering Time						: 03 hrs						
Course Code : CHCE 2024 Max. Mar						100						
Nos. of	Nos. of $page(s)$: 4											
Instructions:												
✓ Draw diagrams wherever necessary												
 ✓ Attempt questions in sequence 												
		-	graphs are	attached at the end of th	e question paper							
	11		01		1 1 1							
SECTION A (5 X 4= 20 Marks)												
			Answ	ver all questions								
S. No.						Marks	CO					
1.	Explain biogenic and thermogenic mechanisms?					4M	CO1					
	. The following is a list of the compositional analysis of different hydrocarbon systems. The compositions are expressed in the terms of mol%. Classify hydrocarbon systems.											
	Component C1	System #1	System a		System #4							
	C2	68.00 9.68	25.07	60.00 8.15	12.15 3.10	4M	CO2					
	C3	5.34	9.36	4.85	2.51							
	C4	3.48	6.00	3.12	2.61							
	C5	1.78	3.98	1.41	2.78							
	C6	1.73	3.26	2.47	4.85							
	C7+	9.99	40.66	20.00	72.00							
3.	Describe the w	<u>.</u>	4M	CO3								
4.	Compare orifice types including their effect on gas flow measurement.						CO4					
5.	Articulate the	4M	CO5									
SECTION B (4 x 10=40 Marks) Answer all questions												
6.	a) Solve for co	ompressibility fo		gas composition at 200	psia and 80°F.		CO1					
	N ₂ -1%, C ₁ -899	(5+5)	& CO2									
	C ₅ .					10M	202					

	1400 1400 1200 1200 1200 1000 1225 100 141 1255 100 141 1255 100 141 1255 100 141 1255 100 141 1255 100 141 1255 100 141 140 140 140 140 140 140		
7.	A gas is being compressed from 150 psia and 200°F to 2000 psia. Determine its compression parameters at the suction end. The gas has the following composition expressed as mole fraction. C_1 =0.9134, C_2 =0.0456, C_3 =0.0175, i-C ₄ =0.0043, n-	10M	CO
	C ₄ =0.0044, i-C ₅ =0.0148.		
8.	A 4-in diameter orifice meter is installed in a pipe with an inside diameter of 12.09 in. The differential pressure is measured at 30 in of water and the static pressure upstream is 600 psig. Gas gravity= 0.6, gas flowing temperature= 70°F. The base temperature and the base pressure are 60°F and 14.7 psia, respectively. Assuming flange taps, calculate the flow rate in standard ft ³ /h. The barometric pressure is 14.5 psia.	10M	CO4
9.	Illustrate the working of a vertical separator with a neat diagram, its advantages and	10M	CO5
	disadvantages.		
	SECTION C (2 x 20=40 Marks)		l
10.	Solve the adiabatic horsepower required to compress 1 MMcfd of a 0.6 grvaity natural gas from 100 psia and 80°F to 1600 psia. Intercoolers cool the gas to 80°F. What is the		
	heat load on the intercoolers and what is the final gas temperature. Use:	20M	CO.
	a) The enthalpy –entropy diagram		

	b) Analytical expressions.		
11.	Meter equipped with flange taps , with static pressure from downstream tap:		
	D1= line size=8.071 in. actual ID		
	D2=orifice size=1 in		
	Flowing temperature=65°F		
	Ambient temperature=70°F		
	Base pressure=14.65 psia		
	Base temperature= 50° F		
	Specific gravity=0.570	20M	CO4
	Total heating value=999.1 Btu/cu ft		001
	Mole fraction of nitrogen content=0.011		
	Mole fraction of carbon dioxide content=0		
	Average differential head=50 in water		
	Average downstream gauge pressure=370 psig		
	Solve for the orifice flow constant and the quantity rate of flow for 1 hour at base		
	conditions		
	(Or)		
	a)A metering system is required to measure approximately 8.5 MMSCFD of 0.62		
	gravity gas at a line pressure of 250 psig The meter run is to be made of 8 in pipe		
	(7.981 in ID). Determine the size of the orifice plate to give a differential of about 50		
	inches. Flowing temperature averages about 80°F. Use flange taps.		
		(10+10) 20M	CO4
	b)A 2 in [5.1 cm] orifice plate is used in 3.438 in [8.7 cm] ID pipeline. The differential	20111	
	pressure is 30 in of water. The static pressure upstream is 80 psia and the specific		
	gravity is 0.65. The flowing temperature of gas is 80°F. Flange taps are used. Assume		
	Ftb = Fpb = 1. Calculate the gas flow rate through the pipe.		