Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, May- 2022

Course: Heat Transfer

Program: B. Tech (APE Gas)

Semester: 4

Time: 03 hrs.

Course Code: CHCE 2009 Max. Marks: 100

Instructions:

- 1. This is a **closed book** examination. Please write your answers with detailed information, wherever required.
- 2. In case of any missing data or information, make necessary assumptions with proper reason.

	SECTION A		
S. No.	Statement of the questions	Marks	CO
Q 1	Write the expression for conduction heat flux and convection heat flux with its S.I. units. Write the nomenclature for any symbols or letters used to denote any property/parameter in the expression.		
Q 2			
Q 3	What is Biot number? Write its expression and its significance	5	CO3
Q 4	State the Stefan–Boltzmann law for a blackbody. How can the law be applied to a real bodies.	5	CO4
Q 5	What is fouling? Mention one example, where it is encountered, and mention 2 (two) methods by which it can be avoided.	5	CO5
Q 6	State the no-slip condition, and no temperature jump condition. Mention one similarity or difference (<i>any one</i>) between them.	5	CO3
	SECTION B		
Q 7	An aluminum pan whose thermal conductivity is k_{roll} W/m · °C has a flat bottom with diameter 20 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in the pan through its bottom at a rate of 800 W. If the inner surface of the bottom of the pan is at 105°C, determine the temperature of the outer surface of the bottom of the pan. Mention all necessary assumptions. Here, k_{roll} = last two digits of your roll number. For, example: If, Roll number: R820219007, then thermal conductivity, k_{roll} = 07 W/m · °C	10	CO1
Q 8	Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall whose representative cross section is as given in the figure below. The thermal conductivities of various	10	CO2

	materials used, in W/m · °C, are $k_A = k_F = 2$, $k_B = 8$, $k_C = 20$, $k_D = k_{roll}$, and $k_E = 35$. The left and right surfaces of the wall are maintained at uniform temperatures of 300°C and 100°C, respectively. Determine, (a) the rate of heat transfer through the wall; (b) the temperature at the point where the sections B, D, and E meet represented by red dashed circle; and (c) the temperature drop across the section F. Mention other necessary assumptions with proper reasons for each. Here, k_{roll} = last two digits of your roll number. For, example: If, Roll number: R820219007, then thermal conductivity, $k_{roll} = 07$ W/m · °C		
	100°C A 4 cm 6 cm F 1 cm 5 cm 10 cm 6 cm 8 m		
Q 9	Engine oil at 60°C flows over the upper surface of a 5-m-long, width 10 m, and height, 1 m, flat plate whose temperature is 20°C with a velocity of 2 m/s, shown in the image below. Determine the (i) total drag force and the (ii) heat flux over the entire plate. Mention all necessary assumptions. Given data: Density = 876 kg/m ³ , $k = 0.144$ W/m · °C, Kinematic viscosity = 242 × 10^{-6} m ² /s, thermal diffusivity = 0.012×10^{-6} m ² /s, specific heat = 500 J/kg · °C Use the following correlations: For laminar flow, Drag coefficient, $C_D = 24/Re$ & Nusselt number, $Nu = 0.664$ $Re^{0.5}$ $Pr^{1/3}$		
	For turbulent flow, Drag coefficient, $C_D = 0.44$ & $Nu = 0.664 Re^{0.2} Pr^{0.5}$ Oil $V = 2 \text{ m/s}$ 2 m 1 m	10	CO3
Q 10	Derive the expression for heat transfer coefficient due to radiation heat transfer with all necessary assumptions.	10	CO4
Q 11	Describe the working principle of any three (3) type of heat exchanger with labelled diagram. OR	10	CO5
	Derive the expression for log mean temperature difference in a double pipe heat		

exchanger. Mention all necessary assumptions.		
SECTION C		
A counter-flow double-pipe heat exchanger is to heat water from 40 °C to 80 °C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 150 °C at a mass flow rate of 3 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m². °C, determine the length of the heat exchanger required to achieve the desired heating. The specific heat of water and geothermal fluid is 4.18 and 4.31, with units, kJ/kg-°C. Mention the necessary assumptions. Hot geothermal vater are some content of the outer tubes have a diameter of 2.5 cm and negligible thickness. The inner diameter of the outer tube (the shell) is 3.5 cm. In addition, water flows through the tube at a rate of 0.5 kg/s, and the oil through the shell at a rate of 0.9 kg/s. Taking the average temperatures of the water and the oil to be 45 °C and 80 °C, respectively, determine the overall heat transfer coefficient of this heat exchanger. Mention all necessary assumptions with its reasons. Here, Nusselt number, Nu = 0.028 Re ^{0.5} Pr ^{0.4} (for turbulent flow) and the value of Nu for laminar flow is provided in the table. The properties of water at 45°C are: ρ = 990 kg/m³, Pr = 3.91, k = 0.637 W/m·°C, kinematic viscosity, v = 3.7.5 × 10.6 m²/s. The properties of oil at 80°C are: ρ = 852 kg/m³, Pr = 490, k = 0.138 W/m·°C, kinematic viscosity, v = 3.7.5 × 10.6 m²/s.	20	CO5

3.66 4.06 4.11

4.23 4.43 4.86

			Nu for I	laminar fl	C
		Hot oil 0.8 kg/s	D_i/D_o	Nui	_
		~	0.00	_	
Cold			0.05	17.46	
water		†	0.10	11.56	
→ 0	‡ 2 cm	3 cm () -	0.25	7.37	
0.5 kg/s		+	0.50	5.74	
			1.00	4.86	
	Ī				