Name:

Roll No:

Semester: II

Time: 03 hrs

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Sem Examination, May-2022

Programme Name: M.Tech Petroleum Engineering

Course Name: Advanced Drilling Engineering

Course Code: PEAU 7018

Instructions:

> All questions are compulsory.

> However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q1	"You are the company man on a well being drilled. Well takes a kick. What will be your course of action?	04	CO1
Q2	Define PDC Bits and major components of PDC bit design?	04	CO2
Q3	Optimizing weight on bit (WOB) is an essential part of drilling to ensure that the well deepens as drilling moves forward. Justify.	04	CO3
Q4	What is the normal range of pH of a drilling mud? Why a very high pH is undesirable in drilling muds?	04	CO2
Q5	Define KOP, inclination angle and azimuth angle?	04	CO1

SECTION B (4Qx10M=40 Marks)

(4Qx10M=40 Marks)					
Q 6	Discuss the application of rheology control and lost circulation materials in drilling fluids. Discuss two properties of drilling fluids and their importance.	10	CO2		
Q 7	a) Discuss the chipping and grinding action of rock cutting mechanism with neat clean diagram.b) Explain the design criteria for rolling cutter bits	5+5	CO3		
	OR				
l	The following table shows the bit performance of three bits for a sandstone formation at 10,000 ft depth. Determine which bit gives the lowest drilling cost if the fixed operating cost of the rig is \$500/hr, and the trip time is 8 hours.				

	11	Bit Cost (\$)	Total rotating time (hrs)	Total non-rotating time (hrs)	ROP (ft/hr)		CO3
	A	950	25.5	0.25	12.0	10	
	В	1500	42.0	0.40	10.5		
	C	2000	70.5	0.7	8.5		
Q 8	b) Lis	st out the differen		ed while planning a direction in directional drilling? Example 1 disadvantages?		5+5	CO4
Q 9	Differ	entiate between	n primary, secondary and	d tertiary well control met	hods?	10	CO5
				CTION-C M=40 Marks)	1		
Q 10			asing string of a well is following for two stage	to be cemented using clas cementing calculation:	s 'G'cement.	20	CO4
		a) The re	equired number of sacks	of cement for a 1st stage of	of 700 ft. and		
		a 2 nd s	stage of 500 ft.(Allow 20	0% excess in open hole)			
		b) The volume of mixwater required for each stage.					
	c) The total hydrostatic pressure exerted at the bottom of each stage of						
	cement (assume a 10 ppg mud is in the well when cementing)						
	d) The displacement volume for each stage.						
			Casing shoe	: 1500 ft			
			8/8" Casing 77 lb/ft 8/8" Casing 77 lb/ft				
			3/8" Casing 77 lb/ft 1/2" open hole Depth	: 7030 ft.			
			ge Collar Depth	: 1500 ft.			
		_	etrack	: 60 ft.			
			nent stage 1	(7000-6300 ft.)			
			ss 'G'	(7000 0500 11.)			
		Den		:15.9 ppg			
		Yiel	•	$: 1.18 \text{ ft}^3/\text{sk}$			
		Mix	water Requirements	$: 0.67 \text{ ft}^3/\text{sk}$			
			ment stage 2	(1500-1000 ft.)			
		Den	ss 'G' + 8% bentonite	: 13.3 ppg			
		Yie	•	: 1.89 ft ³ /sk			
	1		water Requirements	: $1.37 \text{ ft}^3/\text{sk}$			

	VOLUMETRIC CAPACITIES						
		bbls/ft	ft³/ft				
	Drillpipe						
	5" drillpipe :	0.01776	0.0997				
	Casing						
	13 3/8" 72 lb/ft :	0.1480	0.8314				
	13 3/8" 77 lb/ft :	0.1463	0.8215		ļ		
	Open Hole						
	26" Hole	0.6566	3.687				
	17 1/2" Hole	0.2975	1.6703		ļ		
	Annular Spaces						
	26" hole x 20" Casing:	0.2681	1.5053				
	17 1/2" hole x 13 3/8" Casing:	0.1237	0.6946				
	30" Casing x 20" Casing:	0.3730	2.0944				
	20" Casing x 13 3/8" Casing:	0.1816	1.0194				
		OR					
Q 10							
	a) Wells are designed telescopi	ically", discuss your vie	ws to justify it.	10+10	CO4		
	Explain the failures and stab						
	casing.						
	b) Discuss the properties of class G & H cement powders and role of accelerators and retarders in cement slurry additives.						
	accelerators and retarders in	cement starry additives	•				
Q 11							
	i) Designing a Deviated Well. It has						
	1500 ft. The sidetrack will be a build and hold profile with the following						
	specifications:			15+5	CO5		
	Target Depth	: 10000 ft.					
	Horizontal departure	: 3500 ft.					
	Build up Rate	: 1.5° per 100 ft.					
	2 that up 1 this	, in per room					
	Calculate the following:						
	a. the drift angle of the well.						
	b. the TVD and horizontal deviati						
	c. the total measured depth to the						
	c. the total measured deput to the target						
	ii) Discuss the advantages of Rotary						
	in Discuss the advantages of Rotal y	, stociusie system over	maa motor systems				
	•			•			

All the Best!!