Name:

Roll No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Sem Examination, May-2022

Programme Name: M.Tech Petroleum Engineering Course Name: Enhanced Oil Recovery Techniques Course Code: PEAU 7009 Instructions: Semester: II Time: 03 hrs Max. Marks: 100

- > All questions are compulsory.
- However, internal choice has been provided. You have to attempt only one of the alternatives in all such questions.

SECTION A

(5Qx4M=20Marks)						
S. No.		Marks	CO			
Q1	Define Displacement efficiency and volumetric sweep efficiency	04	CO1			
Q2	Distinguish between EOR & IOR?	04	CO2			
Q3	Define MMP and MMC?	04	CO3			
Q4	List out the different methods of oil and gas reserves estimation.	04	CO2			
Q5	Discuss about Inaccessible pore volume and viscous fingering	04	CO1			
SECTION B (4Qx10M=40 Marks)						
Q 6	Explain Microbial EOR mechanism, selection criteria with examples	10	CO2			
Q 7	Explain in detail about SAGD EOR process with neat sketch with reservoir specifications	10	CO3			
Q 8	Mention the selection criteria and challenges associated with Miscible gas flooding process and discuss WAG process	10	CO4			
Q 9	Discuss Micellar flooding process and effects of brine salinity concentration on Micellar flooding process. OR	10	CO5			

	Explain EOR techniques and their types? Explain the Huff and Puff method with neat and clean diagram?	1	
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Discuss the Drive indexes for the material balance equations. Given the following data:		
	well's production rate at time 0, STB/day 100 BOPD		
	initial nominal exponential decline rate (t = 0), $1/day$ 0.5/year	10+10	CO4
	hyperbolic exponent 0.9	10110	004
	Assuming hyperbolic decline, predict the amount of oil produced for five years.		
Q 11	Given the following data for the Hout oil field in Saudi Arabia		
	Area= 26,700 acresNet productive thickness= 49 ftPorosity= 8%Average S_{wi} = 45%Initial reservoir pressure, p_i = 2980 psiaAbandonment pressure, p_a = 300 psia B_o at p_i = 1.68 bbl/STB B_o at p_a = 1.15 bbl/STB	20	CO5
	$S_g at p_a = 34\%$ $S_{or} after water invasion = 20\%$		
	The following quantities will be calculated:		
	 Initial oil in place Oil in place after volumetric depletion to abandonment pressure Oil in place after water invasion at initial pressure Oil reserve by volumetric depletion to abandonment pressure Oil reserve by full water drive Discussion of results 		
	OR		
	Given the following data for an oil field		

Volume of bulk oil zone	=112,000 acre-ft			
Volume of bulk gas zone	=19,600 acre-ft		20)
Initial reservoir pressure	= 2710 psia			
Initial oil FVF	= 1.340 bbl/STB			
Initial gas FVF	= 0.006266 ft ₃ /SCF			
Initial dissolved GOR	= 562 SCF/STB			
Oil produced during the interval	= 20 MM STB			
Reservoir pressure at the end of the interval	= 2000 psia	-		
Average produced GOR	= 700 SCF/STB	-		
Two-phase FVF at 2000 psia	= 1.4954 bbl/STB			
Volume of water encroached	= 11.58 MM bbl	-		
Volume of water produced	= 1.05 MM STB			
Water FVF	= 1.028 bbl/STB			
Gas FVF at 2000 psia	= 0.008479 ft ₃ /SCF			

All the Best!!