Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Turbulence Modelling Program: M. Tech CFD Course Code: ASEG 7026 Semester: II Time: 03 hrs. Max. Marks: 100

Instructions: Make use of sketch/plots to elaborate your answer. All sections are compulsory

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Write a brief on transition of turbulence. What do you mean by hydrodynamic instability? Give examples of flow with and without a point of inflexion.	[04]	CO1
Q 2	Describe in details any two flows characterized as free turbulent flows.	[04]	CO1
Q 3	Define the descriptors used for fluctuating components a) Variance b) Root mean square	[04]	CO2
Q 4	Compare the hydrodynamic and thermal entry lengths for the flow of mercury in a circular tube when the flow is either laminar or turbulent.	[04]	CO2
Q 5	For laminar flow over a flat plate, how do the local heat transfer coefficient and the friction coefficient vary with distance from the leading edge?	[04]	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	 Give a detailed description of the turbulent boundary layer adjacent to a solid surface. Clearly explaining the inner sub-regions with the following sub-layers; a) The linear sub-layer b) The buffer layer c) the log-law layer 	[10]	CO2

Q 7	Compute the time average of the function $u(t) = Ae^{-t/\tau} + B\cos(\omega t)$ using, $\overline{u^m(x)} = \frac{1}{\Delta t} \int_{t-\Delta t/2}^{t+\Delta t/2} u^m(x,t) dt$ Presuming this function is meant to represent a turbulent field variable with zero-mean fluctuations, $B\cos(\omega t)$, superimposed on a decaying time-dependent average, $Ae^{-t/\tau}$, what condition on Δt leads to an accurate recovery of the decaying average? And, what condition on Δt leads to suppression of the fluctuations?	[10]	CO3
Q 8	 Explain the following terms: a) Cumulative Distribution function (CDF) b) Probability Density function (PDF) c) The Exponential Distribution d) The Normal Distribution 	[10]	CO2
Q 9	Derive the Reynolds-averaged NavierStokes equations for incompressible flow. Also give the time-average transport equation for scalar φ . Write a brief note on any two turbulent models of your choice.	[10]	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	A two-dimensional bead of a viscous fluid with density ρ and viscosity μ spreads slowly on a smooth horizontal surface under the action of gravity. Ignoring surface tension and fluid acceleration, determine a differential equation for the thickness $h(x, t)$ of the spreading bead as a function of time. $y \longrightarrow u(x,y,t) \longrightarrow h(x,t) \longrightarrow x$ Fig.1 Gravity-driven spreading of a two-dimensional drop on a flat, stationary surface. The fluid is not confined from above. Hydrostatic pressure forces cause the fluid to move but it is impeded by the viscous shear stress at $y = 0$. The flow is assumed to be symmetric about $x = 0$ so only half of it is shown.	[20]	CO3

Q 11	 Read the cases below and derive the exact solutions of Navier-Stokes equations by considering necessary boundary conditions: a) Steady laminar flow through a straight circular pipe. Consider the Darcy-Weisbach friction factor. b) Long flat plate kept in an infinite viscous fluid which is suddenly accelerated and moves in its plane at a velocity U₀. OR a) A steady two dimensional flow between parallel plates kept at a distance <i>h</i> apart. Indicate the velocity distribution. b) Couette flow between parallel plates with top surface moving at a velocity of U₀. Indicate the velocity distribution. 	[20]	CO4	
------	---	------	-----	--