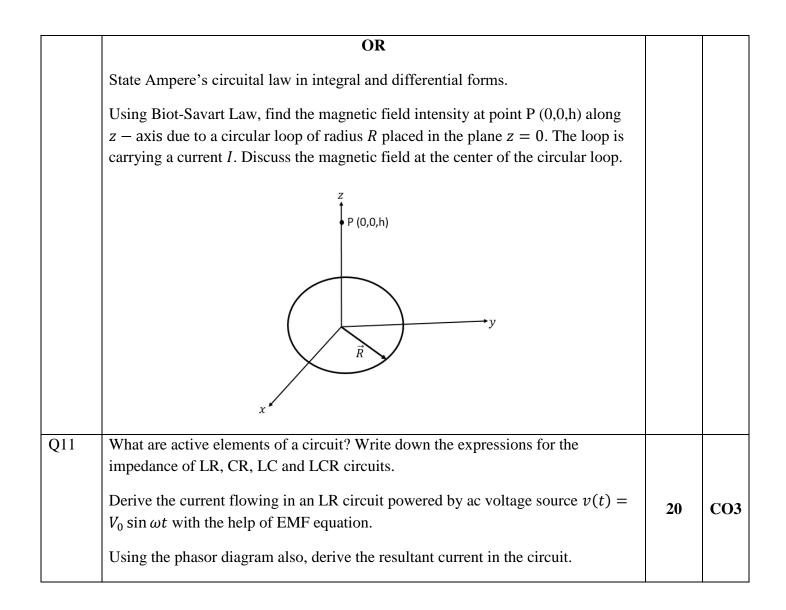
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022


Course: Electricity & Magnetism Program: Integrated BSc-MSc Physics Course Code: PHYS 1013 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

- There are 3 Sections such as Section A, B & C.
- Section A is compulsory, however, Section B & Section C have internal choices.
- Scientific calculator is allowed

SECTION A (5Qx4M=20Marks)				
S. No.		Mark s	СО	
Q1	For electrostatic field (\vec{E}) and potential (V), establish the following relationship: $\vec{E} = -\vec{\nabla}V$	4	CO1	
Q2	Discuss the origin of spin magnetic moment, and find an expression for this in terms of Bohr Magneton	4	CO2	
Q3	Differentiate between polar and non-polar dielectrics. Briefly explain the polarization process in non-polar dielectrics.	4	CO1	
Q4	The potential due to a dipole is given as: $V = \frac{\vec{p} \cdot \hat{r}}{4\pi\epsilon_0 r^2}$ where \vec{p} is the dipole moment. Find the Electric field at any point P(r, θ, φ) in space.	4	CO2	
Q5	Find an expression for the energy stored in a capacitor of capacitance C , which is charged to a potential difference of γ .	4	CO2	
	SECTION B (4Qx10M= 40 Marks)			
Q6	What is a phasor diagram? Derive the current flowing in an RC circuit powered by the voltage source $v(t) = V_0 \sin \omega t$. Discuss the current and voltage phasors using a phasor diagram.	10	CO3	
Q7	What are the characteristics of an ideal solenoid?	10	CO2	

Q8	 Considering a solenoid of length <i>l</i>, total number of turns as <i>N</i>, and current flowing in the solenoid as <i>I</i>, derive the magnetic field at the center of the solenoid. If the solenoid is kept in a medium having permeability as µ_m, find the magnetic flux density due to the solenoid Write statements for Poisson and Laplace's equations. State and prove first 	10	C01
Q9	Uniqueness Theorem. Derive the capacitance of two concentric spherical shells having inner radius as β and outer radius as d . Outer shell is uniformed charged with charge – Q and inner sphere is uniformly charged with a charge + Q .	10	
	OR Derive the capacitance of two concentric cylindrical surfaces having inner radius as <i>a</i> and outer radius as <i>b</i> . The height of the cylindrical capacitor is β . Outer surface is uniformed charged with charge – <i>Q</i> and inner surface is uniformly charged with a charge + <i>Q</i>	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q10	A finite conductor carrying a current <i>I</i> is placed along $z - axis$. The length of the conductor is $l = z_2 - z_1$, where $(0,0, z_1)$ and $(0,0, z_2)$ are the coordinates of bottom and top most points of the conductor, respectively (see the figure below). Prove that the magnetic field intensity at any point P in space is given as: $\vec{H} = \frac{l}{2\pi\rho} (\sin \varphi_1 - \sin \varphi_2)\hat{\varphi}$ The symbols are shown in the given diagram; φ_1, φ_2 are the angular positions of bottom and top most points of the finite conductor w.r.t. ρ .	20	CO4
	x^{*} Using the expression for the magnetic field intensity for finite current carrying conductors, derive the magnetic field intensity for an infinite current conductor.		

