Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Integral Calculus Program: BSc. (Hons) Mathematics Course Code: MATH1030 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	For the function $f(x) = 8 - 2x$, find $c \in [0, 4]$ such that $f(c)$ is the average value of the function $f(x)$.	4	CO1	
Q 2	Compute $\Gamma(-\frac{3}{2})$.	4	CO2	
Q 3	Evaluate the integral $ \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}\sqrt{1-x^{2}-y^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dxdydz $	4	CO3	
Q 4	Use double integration to find the area of a bounded region between the parabolas $y^2 = 4\alpha x$ and $x^2 = 4\alpha y$	4	CO4	
Q 5	Derive reduction formula for $\int \cos^n \theta \ d\theta$.	4	CO5	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Use differentiation under Integral sign to evaluate $\int_{0}^{1} \frac{x^{y} - 1}{\log x} dx$	10	CO1	
Q 7	State and prove the duplication formula for Gamma function.	10	CO2	
Q 8	Evaluate $\iint_{R} x^2 dx dy$ where <i>R</i> is the domain in the first quadrant, bounded by lines $x = y$, y = 0, x = 8 and the curve $xy = 16$.	10	CO3	
Q 9	Find the volume of the solid generated by the revolution of the <i>tractrix</i>	10	CO4	

	$x = a \cos t + \frac{1}{a} \log \tan^2 t/2$, $y = a \sin t$			
	about its asymptotes.			
	OR			
	Find the volume of the solid obtained by revolving the ellipse			
	$\frac{x^2}{x^2} + \frac{y^2}{x^2} - 1$			
	$\frac{1}{a^2} + \frac{1}{b^2} = 1$			
	about the x-axis.			
(2Qx20M=40 Marks)				
Q 10	Find the value of			
	$\iiint x^{l-1}y^{m-1}z^{n-1}dxdydz$			
	where x, y, z are always positive and			
	$\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$	20	CO3	
	Find volume of the allingoid	_0	000	
	$r^2 v^2 z^2$			
	$\frac{x}{a^2} + \frac{y}{b^2} + \frac{z}{c^2} = 1$			
	u b c			
Q11	Evaluate the definite integral, π			
	$\frac{1}{2}$			
	$\sin^p \theta \cos^q \theta d\theta$			
	using the reduction formula. Use the formula to evaluate π			
	$\int_0^{\frac{1}{2}} \sin^5 \theta \cos^6 \theta d\theta$			
	OR			
	Evaluate the definite integral	20	CO5	
	$\frac{\pi}{2}$			
	$\overline{\int}$ cos ⁿ 0 d0			
	using the reduction formula. Use the formula to evaluate			
	(i) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^7 \theta d\theta$			
	$J_0^- cos b ub$			
	(ii) $\int_0^{\frac{\pi}{2}} \cos^8 \theta d\theta$			