Name:							
Enrolment No:		UNIVERSITY OF TOMORROW					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, May 2022 Course: R&S Connecting Networks Semester: VI							
Program: BCA (Internet of Things) Time			: 03 hrs.				
Course Code: CSBC3007P Max. N			Marks: 10	0			
Instructions: Attempt all Questions							
SECTION A (50x4M=20Marks)							
S. No.			Marks	CO			
Q 1	Which of the following generator polyn is caught? Explain your answer. • x4 • 1 • x+1	omial guarantees that a single bit error	04	CO1			
Q 2	An Ethernet host joins the multicast group 225.128.47.81. The arrival of a frame with what MAC address will cause the NIC to interrupt the CPU?		04	CO2			
Q 3	A network on the Internet has a subnet mask of 255.255.240.0. What is the maximum number of hosts it can handle?		04	CO3			
Q 4	Illustrate the difference between flow control and congestion control? What are the reasons for which congestion may occur in a network?		04	CO4			
Q 5	Demonstrate Cisco Enterprise Teleworker with the help of a suitable diagram.		04	CO1			
SECTION B							
(4Qx10M= 40 Marks)							
Q 6	Demonstrate Diffie Hellman Key Exch Diffie-Hellman Key Exchange, Alice an and primitive root = 5. If Alice's secret is the secret key they exchanged?	ange Approach for Data Security. In a ad Bob have chosen prime value $q = 17$ key is 4 and Bob's secret key is 6, what	10	CO2			
Q 7	Demonstrate PPP Authentication Proto maximum number of connections that c link with Frame Relay using the ANSI F	col with suitable diagram. What is the an be multiplexed on a 1.544 Mbps T1 rame Relay encapsulation standard?	10	CO3			
Q 8	Discuss Tunneling and basic architecture	e of VPN in detail.	10	CO4			
OR							
Q 8	Demonstrate the functionality of NAT problems associated with NAT.	with suitable diagram. State 2 different	10	CO4			
Q 9	Consider a selective repeat sliding wind	ow protocol that uses a frame size of 1	10	CO1			

	KB to send data on a 1.5 Mbps link with a one-way latency of 50 msec. To achieve a link utilization of 60%, the minimum number of bits required to represent the sequence number field is				
SECTION-C (2Qx20M=40 Marks)					
Q 10	Consider a 30 station, 10 Mbps token passing bus system in which there are 15 active stations on average in any round of token passing. If the token is passed explicitly as a separate control packet with 10% size of the data frame, what are the channel utilizations and average token rotation time for the best and worst case of token passing? Consider the data frame to be 1500 bytes and the end-to-end propagation delay to be $10\mu s$.	20	CO2		
	OR				
Q 10	To understand the effect of window size on the performance of sliding window protocol, consider an error free channel of 1 Mbps with 20 msec propagation delay. The frame size is 256 bytes with negligible header. Acknowledgement frames can be ignored. Calculate the performance of sliding window protocol for window sizes varying from 1 to 32 in steps of 5 and plot them.		CO2		
Q 11	 10km 10gb/s glass 10km 1Gb/s copper R 10gb/s glass 500m 10Mb/s copper Propagation Delay copper 4µs/km 10Gb/s copper 0km 10Gb/s copper 0km 10Gb/s copper 0km 10Gb/s copper 0km 10Gb/s copper 0km 10Gb/s copper 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 0km 10Gb/s 10Km 10Gb/s 10km 10km 10gb/s 10km 10km 10km 10gb/s 10km 10km 10km 10km 10km 10gb/s 10km 10km 10km 10km 10km 10km 10km 10km	20	CO3		