Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Discrete Mathematics Program: B. Tech CSE (All Batches) Course Code: CSEG 1012 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	 Over the universe of four-wheelers, let A(x): x is a four wheeler, B(x): x is a car and C(x): x is manufactured by Tata. Express the following statements using quantifiers. i. Every four wheeler is a car ii. There are cars that are not manufactured by Tata. 	4M	CO2		
Q2	Is the poset $A = \{2,3,6,12,24,36,72\}$ under the relation of divisibility a Lattice? Explain.	4M	CO3		
Q3	Does there exist a 4-regular graph on 6 vertices? If so construct a graph.	4 M	CO4		
Q4	<i>G</i> is a non-directed graph with 12 edges. If <i>G</i> has 6 vertices each of degree 3 and the rest have degree less than 3, what is the minimum number of vertices <i>G</i> can have?	4 M	CO4		
Q5	Find the generators of the cyclic group $(G, +_6)$ where $G = \{0, 1, 2, 3, 4, 5\}$	4 M	CO5		
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Represent the argument given below symbolically and determine whether the argument is valid If this number is divisible by 6, then it is divisible by 3. The number is not divisible by 3. Therefore this number is not divisible by 6.	10M	CO2		
Q7	Let L_1 be the lattice D_6 (divisor of 6) and L_2 be the lattice $(P(S), \subseteq)$ where $S = \{a, b\}$. Then show that L_1 and L_2 are isomorphic.	10M	CO3		
Q8	Using Dijkstra's algorithm, determine the length of the shortest path and hence the shortest path in the following graphs from a to z .	10M	CO4		

	$a \bullet 2 \\ a \bullet 2 \\ c \bullet 5 \\ e \\ c \bullet 5 \\ c \bullet $			
Q9	Prove that the set $G = \{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7. OR Prove that the set I of integers forms an abelian group with respect to the operation * defined as $a * b = a + b + 1$	10M	CO5	
SECTION-C (2Qx20M=40 Marks)				
Q 10	 a. Let f: R → R be a function defined as f (x) = 3x + 5 and g: R → R be another function defined as g (x) = x + 4. Find (gof)⁻¹ and f⁻¹og⁻¹ b. Solve the difference equation y_{n+2} - 2y_{n+1} + y_n = 3n + 4 given that y₀ = 0 and y₁ = 1. 	20M	CO1	
Q11a	Define vertex colouring. Explain Welch-Powell algorithm and using this algorithm determine the coloring of the graph as shown below and hence determine the chromatic number $\chi(G)$.	10M	CO4	

