Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Artificial Neural Networks & its applications Program: M. Tech. (CSE) Course Code: CSAI 7005P

Semester: II Time: 03 hours Max. Marks: 100

SECTION A

1. Each Question carries 4 Marks

Q1	Justify the need for <i>activation function</i> . Compare the different types of activation functions in ANN.	CO1
Q2	Distinguish between Overfitting and Overtraining.	CO2
Q3	Below is a mathematical representation of a neuron.	

w1, w2,...,wN: The Weight of each input.

The different components of the neuron are denoted as:

CO3

bi: Is termed as Bias units. These are constant values added to the input of the activation function corresponding to each weight. It works similar to an intercept term.

x1, x2,..., xN: These are inputs to the neuron. These can either be the actual observations from

a: is termed as the activation of the neuron, which can be represented as and

the input layer or an intermediate value from one of the hidden layers.

y: is the output of the neuron

$$a = f(\sum_{i=0}^{N} w_i x_i)$$

Considering the above notations, will a line (y = mx + c) fall into the category of a neuron? Justify

	Discuss McCull					CO1
Q5	Let us assume we implement an AND function to a single neuron. Below is a tabular					
	representation of				1	
		X1	X2	X1 AND X2		
		0	0	0		
		0	1	0		
		1	0	0		
	The activation fu	1 Inction of our n	l euron is denoted as:	1		
	$f(x) = \begin{cases} 0, & for \ x < 0 \\ 1, & for \ x \ge 0 \end{cases}$					
	$X_1 \rightarrow X_2$	d				
	What would be t	the weights and	bias?			
			bias? SECTION B			
1. Eac	What would be t					
1. Eac Q6	ch question carries Discuss the main	10 marks n objectives <i>of s</i>	SECTION B	works. Consider the be g K means clustering al		
	ch question carries Discuss the main	10 marks n objectives <i>of s</i>	SECTION B			
	ch question carries Discuss the main	10 marks n objectives <i>of s</i> ht. Classify then SL No 1	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185	g <i>K means clustering al</i> Weight in kg 72		
	ch question carries Discuss the main	10 marks n objectives of s ht. Classify then SL No 1 2	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170	g K means clustering al Weight in kg 72 56		
	ch question carries Discuss the main	10 marks n objectives of s ht. Classify then SL No 1 2 3	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168	g K means clustering al Weight in kg 72 56 60		
	ch question carries Discuss the main	10 marks n objectives of s ht. Classify then SL No 1 2 3 4	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179	g K means clustering al Weight in kg 72 56 60 68		(0)2
	ch question carries Discuss the main	n objectives of s ht. Classify then SL No 1 2 3 4 5	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182	g <i>K means clustering al</i> Weight in kg 72 56 60 68 72		CO3
	ch question carries Discuss the main	a 10 marks n objectives <i>of s</i> ht. Classify then SL No 1 2 3 4 5 6	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182 188	g <i>K means clustering al</i> Weight in kg 72 56 60 68 72 77		C03
	ch question carries Discuss the main	n objectives of s ht. Classify then SL No 1 2 3 4 5	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182	g <i>K means clustering al</i> Weight in kg 72 56 60 68 72		C03
	ch question carries Discuss the main	a 10 marks n objectives <i>of s</i> ht. Classify then SL No 1 2 3 4 5 6	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182 188	g K means clustering al Weight in kg 72 56 60 68 72 77 77 71 71 70		C03
	ch question carries Discuss the main	10 marks n objectives of s ht. Classify then SL No 1 2 3 4 5 6 7	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182 188 180	g K means clustering al Weight in kg 72 56 60 68 72 77 77 71		C03
	ch question carries Discuss the main	10 marks n objectives of s ht. Classify then SL No 1 2 3 4 5 6 7 8	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182 188 180 180	g K means clustering al Weight in kg 72 56 60 68 72 77 77 71 71 70		C03
	ch question carries Discuss the main	a 10 marks n objectives <i>of s</i> ht. Classify then SL No 1 2 3 4 5 6 7 8 9	SECTION B self-adaptive neural net n into two clusters usin Height in cm 185 170 168 179 182 188 180 180 183	g <i>K means clustering al</i> Weight in kg 72 56 60 68 72 77 77 71 71 70 84		CO3

Q8	Discuss various data compression and reduction techniques using ANN.			
Q9	Distinguish between <i>competitive learning and boltzmann learning</i> in ANN with suitable examples.			
1. Eac	Section C h question carries 20 Marks.			
Q10	 (a) State <i>Kohonen's self-organizing feature map</i> algorithm. Construct <i>Kohonen's self</i> organizing feature map to cluster four given vectors [0 0 1 1], [1 0 0 0], [0 1 1 0] and [0 0 0 1]. The number of clusters to be formed is two. Assume an initial learning rate of 0.5 OR (b) State the <i>learning vector quantization</i> (LVQ) method. Construct an LVQ net with five vectors assigned to two clusters. Assume an initial learning rate of 0.1 Given vectors along with clusters as shown below 			
	Vector Cluster [0011] 1 [1000] 2 [0001] 2 [1100] 1 [0110] 1			
Q11	 (a) Suppose you have been given a data set of training examples {(X1, Y1), (X2, Y2)(Xn, Yn)} Find the equation of the line that best fits the data, which minimizes the squared error. 	C01		