Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End-Semester Examination 2022

Program/course	: MA Economics	Semester	: IV
Subject	: Panel Data Econometrics	Max. Marks	: 100
Code	: ECON8016P	Duration	: 3 Hrs
No. of page/s	:4		

	SECTION A		
Q1	Answer all the questions. Each Question will carry 2 Marks	10Qx2	
		M=20	CO
		Marks	
i.	What is the primary advantage of using panel data rather than a large cross- section	[2]	CO1
	data set collected over time?		
	a. It allows you to control for individual heterogeneity.		
	b. It allows the effects of legislation to be estimated.		
	c. It gives you more degrees of freedom.		
	d. It allows coefficients to vary over time.		
ii.	If N is the number of individuals observed in each of T time periods, what is generally	[2]	CO1
	true of a "short, wide" panel?		
	a. T > N		
	b. N > T		
	c. N = T		
	d. $N^{1/2} < T^2$		
iii.	If N is the number of individuals observed in each of T time periods, what is generally	[2]	CO1
	true of a "long, narrow" panel?		
	a. $T > N$		
	b. N > T		
	c. $N = T$		
	d. $N^{1/2} < T^2$		
iv.	What is the difference between balanced and unbalanced panels?	[2]	CO1
	a. Unbalanced panels have some observations missing, balanced do not.		
	b. Balanced panels are demographically representative of the population		
	being studied, unbalanced are not.		

	c. Balanced panels have an equal number of observations above and		
	below the mean of the dependent variable, unbalanced panels are		
	skewed.		
	d. A balanced panel has $T = N$, an unbalanced panel has $N>T$ or $N.$		
v.	Unobserved, individual specific, time-invariant random errors are called	[2]	CO1
	a) idiosyncratic errors		
	b) random effects		
	c) fixed effects		
	d) unobserved heterogeneity		
vi	When a regression error has two components one for the individual and one for		CO1
	the regression, it is called a (an) model.		001
	a. error components		
	b. pooled		
	c. fixed effects		
	d. random effects		~ ~ .
Vii.	Suppose a simple panel data regression model: $y_{it} = \beta_1 + \beta_2 x_{2it} + \alpha_1 w_{1i} + (u_i + e_{it}),$	[2]	CO1
	where $i = 1,, N$ and $t = 1, 2$. If the average is taken between the two time		
	periods, the OLS estimator of β_2 is called the estimator.		
	a. difference		
	b. within		
	c. fixed effect		
	d. random effect		
viii.	The terminology estimator is used because we are treating individual differences	[2]	CO1
	as parameters that can be estimated.		
	a. fixed effect		
	b. random effect		
	c. difference		
	d. within		
ix.	The appropriate test to use to test for unobserved heterogeneity in a fixed effect model	[2]	CO1
	is a		
	a. t-		
	b. F-		
	c. χ^2		
	d. Chow		
х.	Which of these assumptions indicates homoskedasticity?	[2]	CO1
	a. $E(e_{it}) = 0$		
	b. $var(e_{it}) = E(e^{2}_{it}) = \sigma^{2}$		
	c. $\operatorname{cov}(e_{it}, e_{js}) = \operatorname{E}(e_{it}, e_{js}) = 0$ for $i \neq j$ or $t \neq s$		
	d. $cov(e_{it}, x_{2it}) = 0$		

				Sectio	n B				4Qx5	
	Attempt all	the question	s Each que	stion carri	ies equal ma	rke			M= 20	CO
	Attempt an	the question	s. Each que	stion carn	ies equai ma	1K5.			Marks	
Q2	How do you	test for end	logenous reg	gressors, o	or correlation	n between th	e error	term		CO2
	and any reg	ressor in a ra	andom effec	ts model?)				[5]	
Q3	When shoul	d the Hausn	nan-Taylor e	estimator	be used?				[5]	CO2
Q4	What do yo	u mean by u	nbalanced p	anel? Exa	amine with e	example.			[5]	CO2
									[5]	
Q5	Compare pa	nel data mo	dels with Ol	LS model					[5]	CO2
				Sectio	n C					
				F 1	<i>.</i>				3Qx10	
	F	Attempt all t	ne questions	. Each qu	estion carrie	es equal marl	KS.		M=30	
									Marks	
	of the follow	ving results.	Fixed Effects		R	tandom Effects				
	Variable	Coefficient	Std. Error*	t-Value	Coefficient	Std. Error*	t-Value			
	С	1.4500	0.0401	36.12	0.5339	0.0799	6.68			
	EDUC				0.0733	0.0053	13.74		[10]	CO3
	EXPER	0.0411	0.0066	6.21	0.0436	0.0064	6.86		[10]	COS
	EXPER ²	-0.0004	0.0003	-1.50	-0.0006	0.0003	-2.14			
	TENURE	0.0139	0.0033	4.24	0.0142	0.0032	4.47			
	TENURE ²	-0.0009	0.0002	-4.35	-0.0008	0.0002	-3.88			
	BLACK				-0.1167	0.0302	-3.86			
	SOUTH	-0.0163	0.0361	-0.45	-0.0818	0.0224	-3.65			
	UNION	0.0637	0.0143	4.47	0.0802	0.0132	6.07			
	 Conventional st 	andard errors.							51.03	
Q8.	Interpret the	tollowing r	esults.						[10]	CO3

	WwIsIsi								
	Between regree	ssion (regress	ion on grou	p means)	Number	of obs =	53		
	Group variable	e: State			Number	of groups =	9		
	R-squared:				Obs per	group:			
	Within =	= 0.0798				min =	5		
	Between =	= 0.7394				avg =	5.9		
	Overall =	= 0.0035				max =	6		
					F(5,3)	=	1.70		
	sd(u_i + avg(e	e_i.)) = .8215	822		Prob >	F =	0.3508		
	lagfdi	Coefficient	Std. err.	t	P> t	[95% conf.	interval]		
	lagsdn	- 1994666	1680491	-1 19	0 321	- 7342737	3353405		
	lagEC	.0223336	.0129449	1.73	0.183	0188629	.0635301		
	lagITC	.0427817	.2994203	0.14	0.895	9101073	.9956706		
	lagRPO	-1.096438	.7791355	-1.41	0.254	-3.575995	1.383119		
	lagFiT	8592733	.5719459	-1.50	0.230	-2.679461	.9609139		
	_cons	15.71445	10.41782	1.51	0.229	-17.4397	48.86859		
Q9	Explain and il	lustrate the pa	nel regressio	on model	when a	Il coefficients	vary across	[10]	
	individuals								CO3
			Sec	tion D				2Qx15	CO
								M = 30	
	Answer all que	stions. Each Q	uestion carrie	es 15 Mai	·ks.			Marks	
Q12	What do you m	ean by fixed ef	fect model?	Examine	various s	teps to estimate	e fixed effect		CO4
`	model.	<u> </u>				L		[15]	-
								[]	

Q13.

	(1) OLS 1987	(2) OLS 1988	(3) FE	(4) FE Robust	(5) RE
С	0.9348	0.8993	1.5468	1.5468	1.1497
	(0.2010)	(0.2407)	(0.2522)	(0.2688)	(0.1597)
EXPER	0.1270	0.1265	0.0575	0.0575	0.0986
	(0.0295)	(0.0323)	(0.0330)	(0.0328)	(0.0220)
EXPER ²	-0.0033	-0.0031	-0.0012	-0.0012	-0.0023
	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0007)
SOUTH	-0.2128	-0.2384	-0.3261	-0.3261	-0.2326
	(0.0338)	(0.0344)	(0.1258)	(0.2495)	(0.0317)
UNION	0.1445	0.1102	0.0822	0.0822	0.1027
	(0.0382)	(0.0387)	(0.0312)	(0.0367)	(0.0245)
v	716	716	1432	1432	1432

(standard errors in parentheses)

a. The OLS estimates of the ln(*WAGE*) model for each of the years 1987 and 1988 are reported in columns (1) and (2). How do the results compare? For these individual year estimations, what are you assuming about the regression parameter values across individuals (heterogeneity)?

b. The ln(WAGE) equation specified as a panel data regression model is

$$ln(WAGE_{ii}) = \beta_1 + \beta_2 EXPER_{ii} + \beta_3 EXPER_{ii}^2 + \beta_4 SOUTH_{ii} + \beta_5 UNION_{ii} + (u_i + e_{ii})$$
(XR15.6)

Explain any differences in assumptions between this model and the models in part (a).

- c. Column (3) contains the estimated fixed effects model specified in part (b). Compare these estimates with the OLS estimates. Which coefficients, apart from the intercepts, show the most difference?
- d. The F-statistic for the null hypothesis that there are no individual differences, equation (15.20), is 11.68. What are the degrees of freedom of the F-distribution if the null hypothesis (15.19) is true? What is the 1% level of significance critical value for the test? What do you conclude about the null hypothesis.
- e. Column (4) contains the fixed effects estimates with cluster-robust standard errors. In the context of this sample, explain the different assumptions you are making when you estimate with and without cluster-robust standard errors. Compare the standard errors with those in column (3). Which ones are substantially different? Are the robust ones larger or smaller?
- f. Column (5) contains the random effects estimates. Which coefficients, apart from the intercepts, show the most difference from the fixed effects estimates? Use the Hausman test statistic (15.36) to test whether there are significant differences between the random effects estimates and the fixed effects estimates in column (3) (Why that one?). Based on the test results, is random effects estimation in this model appropriate?