Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Data Mining and Prediction Modeling

Semester: V

Program: B.Tech.(CSE + BAO)/ B.Tech.(CSE + BAO) (Hons.)

Time : 03 hrs.

Course Code: CSBA 3001 Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

	(5Qx4M=20Marks)			
S. No.		Marks	CO	
Q1	Data preprocessing is a most important part of KDD process. Enlist FIVE characteristics of data which are essentially required to measure a data quality.			
Q2	What are data mining tasks and two types of these? Discuss and give examples of 3 applications of each category of these tasks.	4	CO2	
Q3	Name FIVE measures which are generally used to evaluate the performance of a classifier or classification method	4	CO3	
Q4	What does it mean to deploy a machine learning model?	4	CO4	
Q5	 a) Data Mining isin nature. (Hypothetical-based/Exploratory-based) b) Let, in a given data set, the mean μ is 40 and standard deviation σ is 16, what will be the z-score for the value 85? c) What is the supremum distance between two data points (3,9,1) and (2,6,2)? d) If we do the partitioning of dataset, and pick up the proportional volume from each partition, which type of sampling this is called? e) Name THREE data visualization techniques. 	4	CO2	
	SECTION B			
	(4Qx10M=40 Marks)			
Q6	For a given dataset (Youth, Low, No, Excellent, ,?), using Naïve Bayes Classifier classify whether customer will buy computer or not?	10	CO3	

	RID	age	income	student	credit_rating	Class: buys_computer		
	1	youth	high	no	fair	no		
	2	youth	high	no	excellent	no		
	3	middle_aged	high	no	fair	yes		
	4	senior	medium	no	fair	yes		
	5	senior	low	yes	fair	yes		
	6	senior	low	yes	excellent	no		
	7	middle_aged	low	yes	excellent	yes		
	8	youth	medium	no	fair	no		
	9	youth	low	yes	fair	yes		
	10	senior	medium	yes	fair	yes		
	11	youth	medium	yes	excellent	yes		
	12	middle_aged	medium	no	excellent	yes		
	13	middle_aged	high	yes	fair	yes		
	14	senior	medium	no	excellent	no		
Q7.	Write an algorithm for k-nearest neighbor classification given k , the nearest number of neighbors, and n , the number of attributes describing each tuple. OR Illustrate Neural Network Classifier. Discuss Back Propagation Algorithm and its working philosophy by taking suitable example.						10	CO3
Q8	How can the efficiency of a classifier be increased? Discuss various methods available to do so. OR						10	CO4
_	Explain the terms: a) Model evaluation b) Model Validation c) Model Deployment d) Model Performance							
Q9.	What do you understand by Sampling? Discuss various types of Sampling methods.						10	CO2
	-				CTION-C M=40 Marl	xs)		
Q 10	Create a complete decision tree of the following data set using C 4.5 algorithm (based on the parameter <i>Gain Ratio</i>) OR Create a complete decision tree of the following data set using ID3 algorithm.						20	CO3
	(based on the parameter <i>Information Gain</i>)							

	Customer ID	Gender	Car Type	Shirt Size	Class			
	1	M	Family	Small	CO			
	2	M	Sports	Medium	CO			
	3	M	Sports	Medium	CO			
	4	M	Sports	Large	C0			
	5	M	Sports	Extra Large	C0			
	6	M	Sports	Extra Large	C0			
	7	F	Sports	Small	C0			
	8	F	Sports	Small	C0			
	9	F	Sports	Medium	CO			
	10	F	Luxury	Large	C0			
	11	M	Family	Large	C1			
	12	M	Family	Extra Large	C1			
	13	M	Family	Medium	C1			
	14	M	Luxury	Extra Large	C1			
	15	F	Luxury	Small	C1			
	16	F	Luxury	Small	C1			
	17	F	Luxury	Medium	C1			
	18	F	Luxury	Medium	C1			
	19	F	Luxury	Medium	C1			
	20	F	Luxury	Large	C1			
Q11	Write short note of	n the follow	/ing:					
`	 a) Support Vector Machine b) Artificial Neural Network c) Sampling d) Confusion Matrix 							
							20	CO1,
							20	CO4
								CO4
	u) Comusion Matrix							