Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Neural Networks Program: B.Tech (CSE+AIML) Course Code: CSAI 3001 Semester: V Time: 03 hrs. Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)					
Q1	Discuss the architecture of an Artificial Neuron Model.	4	CO1		
Q2	Explain how an XOR function can be implemented using MP neuron.	4	CO1		
Q3	What is cross-validation technique? Illustrate early stopping of training based on the cross-validation.	4	CO2		
Q4	 Recurrent Neural Networks (RNNs) can be used in four configuration: One to one, One to many, Many to one, and Many to many. Identify which type of RNN will you apply for the following problems: Named-Entity Recognition: For each word in a sentence classify that word as either a person, organization, location, or none Sentiment Analysis: Classify the sentiment of a sentence ranging from negative to positive (integer values from 0 to 4). Language models: Generating text from a chatbot that was trained to speak like you by predicting the next word in the sequence. Image Tagging: Automatic generation of tags from a photo 	4	CO4		
Q5	Differentiate between discriminative and generative classifiers with suitable examples	4	CO5		
SECTION B					
	(4Qx10M= 40 Marks)				
Q6	Define and plot the identity function, binary step function, binary sigmoidal function, bipolar sigmoidal function, and ReLU functions used in neural networks OR	10	CO2		
	Assume that the neurons have sigmoid activation function, perform a forward pass and a backward pass on the network.				

Q8	Define a Convolutional Neural Network. What are its advantages over a traditional fully connected network?				
	Below is a diagram of a small convolutional neural network that converts a 13x13 image into 4 output values. The network has the following layers/operations from input to output: convolution with 3 filters, max pooling, ReLU, and finally a fully-connected layer. For this network we will not be using any bias/offset parameters. Please answer the following questions about this network.				
	$\begin{array}{c cccc} 13x13 & 3@10x10 & & & & & & & & & & & & & & & & & & &$	4+2+2+2	CO3		
	(a) How many weights in the convolutional layer do we need to learn?				
	(b) How many ReLU operations are performed on the forward pass?				
Q9	Define Autoencoder Neural Network. What type of problems it solve.				
	Discuss the implementation of following types of Autoencoders:i. Vanilla autoencoderii. Denoising autoencoder	4+6	CO4		
SECTION-C (20x20M-40 Marks)					
Q10	Discuss the following techniques and explain how they help to improve the performance of Convolutional Neural Networks: i. Data Augmentation ii. Batch Normalization iii. Dropout	7+7+6	CO3		
Q11	Explain the implementation of Seq2Seq model for machine translation task. Discuss what kind of problems it may suffer when processing long sequences.	8 + 12			
	Discuss the implementation of Attention mechanism to improve the performance of Seq2Seq model.				

OR	OR	C05
GANs can train generative models by emulating a supervised approach to learning problems. To understand the GAN architecture, describe the following points with proper scenario.	4+3+3+10	05
 i. Sketch the GAN architecture ii. Write the objective of Generator iii. Write the Objective of Discriminator iv. Define the training loop to train GAN. 		