Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Formal Languages & Automata Theory Semester: III Program:BCA (IoT,Cyber Security,AI/ML) Time : 03 hrs. Course Code: CSEG 2035P

Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Define deterministic finite automata. What are the closure properties of regular languages.	4	CO2
Q 2	Construct a DFA for the language over $\{0, 1\}^*$ such that it contains "000" as a substring.	4	CO1
Q 3	Construct a ε -NFA for the following regular expression. (0+1)*(00+11)(0+1)*	4	CO2
Q 4	When is pushdown automata said to be deterministic. what are the conventional notations of push down automata.	4	CO2
Q 5	State the relations among regular expression, deterministic finite automata, non-deterministic finite automaton and finite automaton with epsilon transition.	4	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	 a) Minimize the DFA shown in the following diagram. a) 1 b) 1 b) Convert the following NFA into an equivalent DFA. c) 1 <lic) 1<="" li=""> c) 1 c) 1 c) 1 c) 1 <lic) 1<="" li=""> c) 1 c) 1 c) 1 c) 1 c) 1 c) 1 <lic) 1<="" li=""> c) 1 <lic) 1<="" li=""> c) 1 <lic) 1<="" li=""> c) 1 c) 1 <lic) 1<="" li=""> <lic) 1<="" li=""> c) 1 <lic) 1<="" li=""> c) 1 c) 1 <lic) 1<="" li=""> c) 1 <lic) 1<="" li=""> <lic) 1<="" li<="" td=""><td>10</td><td>CO1</td></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)>	10	CO1

Q 7	Construct a regular expression for the given finite automata using state elimination method.	10	CO2	
Q 8	Convert the following grammar into an equivalent one with no unit productions and no useless symbols S→ABA ,A→aAA aBC bB, B→ A bB Cb, C→CC Cc	10	CO3	
Q 9	Convert the Mealy machine into equivalent Moore machine. $b/0$ $a/1$ g_1 $b/1$ g_2 $a/1$ $a/1$	10	CO1	
SECTION-C (2Qx20M=40 Marks)				
Q 10	a) Design a PDA automata which accepts $L = \{0^n 1^n n \ge 1\}$. b) Design a PDA for the grammar: $S \rightarrow aABC$ $A \rightarrow aB a B \rightarrow bA b C \rightarrow a$	20	CO3	
Q 11	 a) Design a Turing Machine that recognizes the language consisting of all strings of 0's whose length is a power of 2 i.e. L = { 0^{2^m} m≥0}. b) Write short notes on the following: i) Recursive and Recursive enumerable language ii) Decidable and undecidable language 	20	CO4	