Name:			
Enrolment No:		VPLJ	
		UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM & ENERGY STUDIES			
Course: Piomedical Machetronica			
Program: B Tach Machatronics		me:03 Hrs	
Course Code: MECH4010P Max M		av Marks: 100	
Course code. MECH40101 Max M		ax Iviaiks. 100	
	Section A		
1. Each Question will carry 4 Marks			
Sl.N	Question	CO's	
Q1	List the function of electrical activity of excitable cell in	n CO1	
	bioelectric potential.		
Q2	Find the problem in electrophysiology.	CO1	
Q3	Explain the functional organization of the peripheral	CO2	
	nervous system.		
Q4	Explain the resting rhythms of the brain.	CO2	
Q5	Define the M wave and the H reflex.	CO2	
Section B			
1. Each Question will carry 10 Marks			
Q1	A set of bio potential electrode made of silver is attac	ched CO3	
	to the chest of a patient to detect the electrocardiog	am.	
	When the current passes through the anode, it cause si	lver	
	to be oxidized, producing silver ions in solution. There	is a	
	10µA leakage current between these electrodes. Determ	nine	
	the number of silver ions per second entering the solution	on at	
	the electrode –electrolyte interface.	~~~~	
Q2	A electrocardiograph has a broad frequency response	e so CO3	
	that its amplifier has a first order time constant of 16s.	The	
	electrocardiograph amplifier has a broad dynamic rang	e of	
	input voltages, but any input voltage greater than $\pm 2mv$		
	be out of the fanges of its display and cut off. w	haa	
	an amplitude of 10mV and this causes the ECC to fall	nas	
	an amplitude of 10111v, and units causes the ECG to fall of the range of the instrument's display. If the ECG P w		
	has an amplitude of 1mV how long will it take for	the	
	entire signal to be visible on the display		
03	Discuss the factor that enter into choosing a resista	ance CO4	
	values for the three resistors used to establish the Wi	lson	
	central terminal. Describe the advantages and disadvanta	ages	
	of having this resistance either very large or very small.		

0.4		CO 1	
Q4	A heart murmur has a frequency of 300 Hz. Give the block	CO4	
	diagram and sketch waveform for the special		
	instrumentation that enables us to show the occurrence of		
	this murmur on a 0 to 80 Hz pen recorder.		
Section C			
1. Each Question carries 20 Marks.			
Q1	Design a portable system for indirectly measuring blood	CO3	
	pressure every 5 minutes on ambulatory subjects. It should		
	operate without attention from the subject for the 24 Hrs.		
	Show a block diagram and describe the system operation		
	including power source, sensor, storage and algorithm.		
Q2	The maximal average velocity of blood in a dog 1m/s occurs	CO4	
	in the dog's aorta, which is 0.015m in diameter. The		
	magnetic flux density in an electromagnetic blood		
	flowmeter is 0.03T. Calculate the voltage at the electrodes.		
	OR		
	For cardiac catheterization, describe the characteristics of		
	the dye used to improve visualization. Describe the		
	characteristics of the dve used for measuring cardiac output.		
		1	