

January 2021

DECLARATION

I declare that the thesis entitled "Designing Reinforcement Learning
Framework for a Finite State Machine", has been prepared by me under the
guidance of Dr. Inder Singh, Assistant Professor (S.G.) of Computer Science,
University of Petroleum & Energy Studies, and Dr. Ashutosh Pasricha, OFS

Director, Schlumberger - India, Member of Academic Council, University of

Petroleum & Energy Studies. No part of this thesis has formed the basis for
the award of any degree or fellowship previously.

Rashmi Sharma

DATE:^?/

iii

CERTIFICATE

I certify that Rashmi Sharma has prepared her thesis entitled “Designing

Reinforcement Learning Framework for a Finite State Machine”, for the

award of the Ph.D. degree of the University of Petroleum & Energy Studies,

under my guidance. She has carried out the work at the Department of

Computer Science Engineering, University of Petroleum & Energy Studies.

 External Supervisor

Dr. Ashutosh Pasricha

OFS Director,

Schlumberger - India

Date:

iv

ABSTRACT

The scope of this research was to design a framework with RL for autonomous

mobile/ bipedal robots. The result was designing, programming, and validation

of RL based algorithms for navigation of the Bipedal Walking Robot. The

improvements proposed include 1. Incorporation of Forgetting Mechanism in

Traditional Q-learning Algorithm 2. Feature-based Object Identification by the

RL agents in the dynamic environment. 3. Hierarchical Training of the RL

agent. RL agent is a Bipedal in this case. This research work examines

improvements in traditional Q-learning algorithms to successfully interact

with a dynamic and uncertain environment. Simulations were carried out for

each proposal. Incorporating the Forgetting mechanism resulted in a

considerable improvement in the learning time of RL agents (Hip joint, Knee

joint, Ankle joint) in a dynamic environment. The Feature-based Object

Identification Algorithm reduced considerably in the number of state values

that are required to be maintained. This facilitates the use of multiple agent

systems (MAS) in large environments with dynamic conditions. The

Hierarchical implementation of the algorithm help in sharing and transferring

the knowledge from one RL agent to another RL agent. Also useful for

obstacle avoidance and identifying dangerous objects while navigating. The

communication and data sharing between MAS are online as well as offline to

that the bipedal walk's without tipping and with stability.

It uses different modules that consist of simple controllers with RL forgetting

the Q-learning algorithm. The feature-based object identification system

would help to identify objects and the bipedal controller would be able to take

appropriate actions. The present work deals with vision-based navigation

(VBN) of bipedal. The bipedal identifies the object by using an updated SURF

algorithm.

v

The reinforcement control algorithms for the Bipedal robot had been applied

for self-learning and for taking self-decision. Bipedal is sensing the present

state and switching to the next subsequent stable state and finally reaching the

desired goal state. Simulation is carried out on the MATLAB platform and

SimSpace Multibody dynamics toolbox to verify proposed algorithms. The

optimal policy is achieved in reaching the goal/target state and are stored in

the lookup tables for future use. After the learning of each of the agents of

MAS is completed, the execution phase starts. The data from the lookup table

is visited for further decision making. The data is stored in a lookup table

which helps in reducing the learning time of the agents. As the number of

strides increases the size of the lookup table increases, the agent gets more

options for exploration of a new stable state. Then after a few runs, it starts

exploiting the explored data in terms of the next state and the optimal policy

previously achieved. These lookup tables are useful if the scenario in the

dynamic environment does not change. This helps in reducing the execution

time of the multiple agents. When the scenario changes the agents will learn

from scratch. Several experiments are carried out on MATLAB to verify the

analytical and simulation result. The results verify that the execution time

reduces to a considerable amount. There is overhead attached when the size of

the lookup table increases beyond the limit its search time increases. This

results in approximately the same time for the learning and execution phase of

the bipedal gait.

vi

ACKNOWLEDGMENTS

I, first and foremost, would like to express my deepest gratitude to Dr. Manish

Prateek (Mentor), Dr. Inder Singh (Internal Supervisor), Dr. Ashutosh

Pasricha (External Supervisor) for encouraging me to take this research

problem on Designing of Reinforcement Learning Framework for a Finite

State Machine. My mentor and supervisors were always a source of inspiration

and source of motivation to me throughout my research work. Without them,

this work would never have been completed.

I am thankful to Chancellor Dr. S. J. Chopra, Vice-Chancellor Dr. Sunil Rai,

Dr. Kamal Bansal, Dr. Jitendar Pandey. I would like to mention a special

thanks to team R&D UPES for providing constant guidance and support.

I am extremely grateful to my doctoral member Dr. Deepak Bharadwaj for his

constant encouragement and fruitful discussion during the work. He helped me

while implementing the software and theoretical framework of this research.

Also, I am thankful to each faculty member of Computer Science Engineering

for their support and cooperation.

I would like to thanks Ms. Rakhi Ruhal, Mr. Sony Sandeep Farmer, and other

staff members for their help and numerous occasions and support.

Finally, I must express my very profound gratitude to my parents Prof.

Someshwar Trivedi, Ms. Jyotsna Trivedi, my in-laws late Shri Ved Ram

Sharma, Ms. Shiksha Sharma, my sisters Ms. Shikha Trivedi and Ms. Shardha

Trivedi, and other family members for their support and numerous blessings.

Most importantly, I thank my husband Mr. Yogendra Kumar Sharma, and my

daughter Ms. Pranjali Sharma, my son Master Mantavya Sharma for always

being there with me and being a persistent source of encouragement.

vii

I am thankful to God who converted the positive and negative energy present

to me into some creative output.

Rashmi Sharma

UPES Dehradun

June 2020

viii

 TABLE OF CONTENTS

DECLARATION ... I

CERTIFICATE ... II

CERTIFICATE .. III

ABSTRACT ... IV

ACKNOWLEDGMENTS ... VI

TABLE OF CONTENTS .. VIII

LIST OF FIGURES .. XIV

LIST OF TABLES ... XVIII

LIST OF ABBREVIATIONS .. XX

LIST OF SYMBOLS .. XXII

CHAPTER 1 INTRODUCTION ... 1

1.1 History of Humanoid/ Bipedal Robot .. 2

1.2 Features of Humanoid/ Bipedal Robots ... 4

1.2.1 Manipulation tasks ... 4

1.2.2 Vision system .. 5

1.2.3 Sensing behavior.. 5

1.2.4 Mobile platform ... 6

1.3 Application of Bipedal Robot .. 6

1.3.1 Home Management Services ... 6

1.3.2 Healthcare .. 6

1.3.3 For aging / old aged people ... 6

1.3.4 Industrial Application .. 7

1.3.5 Space Exploration .. 7

1.4 Motivation .. 7

1.5 Research Contribution .. 8

1.6 Thesis Outline .. 9

CHAPTER 2 LITERATURE REVIEW .. 11

2.1 Current Humanoids / Bipedal ... 11

2.1.1 Vyommitra (Jan 2020) ... 11

ix

2.1.2 Sophia (Feb 2016) ... 12

2.1.3 Atlas ... 12

2.1.4 Manav (Dec 2014) ... 13

2.1.5 ASIMO .. 14

2.1.6 iCub ... 14

2.1.7 POPPY ... 15

2.1.8 Romeo .. 16

2.1.9 PETMAN (Protection Ensemble Test Mannequin) 16

2.1.10 NAO (Aug 2008) ... 17

2.1.11 Actroid-SIT (2003) .. 18

2.1.12 Bipedal/ Humanoids of 2020 ... 19

2.2 Bipedal Robot Motion .. 19

2.3 Mechanical Design of Humanoid Robot .. 26

2.4 Control Architecture of Bipedal Robot .. 31

2.5 Reinforcement Learning Control Algorithm .. 36

2.6 Research Gaps .. 45

2.7 Research Objectives ... 46

2.8 Research Outcomes .. 46

CHAPTER 3 PROPOSED MODEL .. 48

3.1 Simulink Model of Bipedal Robot ... 49

3.2 Simulink Model of Bipedal with Ground ... 51

3.3 Simulink Model of Bipedal with the Ground and the Contact Forces ... 54

3.4 Simulink Model of Bipedal with the Object Identification and

Localization .. 60

CHAPTER 4 BIPEDAL WALKING ROBOT: ARCHITECTURE 63

4.1 Overall System is designed to achieve Sub-Objectives 63

4.2 Model of the Bipedal for Object Identification and Navigation 63

4.3 Flow Diagram of the Overall System ... 64

4.3.1 System Dynamics and Variations .. 67

4.4 Stepwise Execution of the Overall System ... 67

4.5 Architectural Mechanism of Object Identification 68

4.6 Mechanism for Localization of the Object .. 68

4.7 Architectural Model of Control Mechanism of Bipedal 69

x

4.8 Architectural Model of Reinforcement Learning Control Mechanism .. 71

4.8.1 Reinforcement Learning Control Mechanism 71

4.8.2 Hierarchical Structured Learning of RL Agents 72

CHAPTER 5 BIPEDAL WALKING ROBOT: MATHEMATICAL MODEL,

CONTROL ... 73

5.1 Trajectory of Bipedal ... 73

5.2 Mathematical Model of Object Identification .. 74

5.2.1 Identification of Interest Point ... 74

5.2.2 Description of Interest Point .. 76

5.2.3 Matching Interest Points .. 77

5.3 Mathematical Model of Localization of Object 78

5.4 Mathematical Model of Control Mechanism of Bipedal 78

5.4.1 Generating Walking Pattern .. 79

5.4.2 Walking Control Algorithm ... 83

5.5 Mathematical Model of Reinforcement Learning Control Mechanism . 85

5.5.1 Reinforcement Learning Control Mechanism 85

CHAPTER 6 DESIGNING FEATURE-BASED OBJECT IDENTIFICATION

ALGORITHM FOR THE BIPEDAL .. 87

6.1 Vision System in Bipedal Walking Robot ... 87

6.2 Feature-Based Object Identification in Reinforcement Learning 89

6.3 Comparative Study of Different Feature Extraction Algorithms 90

6.3.1 Speeded-Up Robust Features (SURF) Algorithm 92

6.4 Proposed Algorithm for Feature-Based Object Detection 93

6.4.1 Stepwise Approach for Proposed Algorithm 94

CHAPTER 7 DESIGNING OF REINFORCEMENT LEARNING

CONTROLLER ALGORITHM FOR THE BIPEDAL 95

7.1 Reinforcement Learning: Introduction ... 95

7.2 Reinforcement Learning: Reasons to use ... 98

7.3 Problems of Reinforcement Learning .. 98

7.4 Multi-Agent System ... 99

7.5 Various Reinforcement Learning Algorithms .. 99

7.5.1 Temporal Difference (TD) Learning Algorithm 99

7.5.2 Q – Learning Algorithm .. 100

xi

7.5.3 SARSA (State-Action-Reward-State-Action) Algorithm 100

7.5.4 Deep Q – Network (DQN) Algorithm ... 100

7.5.5 Deep Deterministic Policy Gradient (DDPG) Algorithm 101

7.6 Why Q –Learning Method? ... 101

7.6.1 Q – Learning Algorithm .. 103

7.7 Reinforcement Learning (RL) Model: Stepwise Approach 104

7.8 Forgetting Mechanism incorporation into Traditional Q- learning 105

7.9 Action Selection Policy .. 106

CHAPTER 8 SIMULATION OF REINFORCEMENT LEARNING

ALGORITHMS FOR BIPEDAL ... 107

8.1 Stepwise Approach to Desired Objectives (as Incorporated in

Algorithms) .. 108

8.2 Model of Proposed Framework/ System .. 110

8.3 Implementation of Q-Learning Algorithm ... 110

8.4 Proposed Algorithm for Incorporating Forgetting Mechanism............ 112

8.5 The Proposed System's Characteristics .. 113

8.6 Reinforcement Controller ... 114

8.6.1 Model Free Controller: Reason to Use .. 114

8.6.2 Reinforcement Learning (RL) Controller 114

CHAPTER 9 PROGRAMMING, TESTING, AND VALIDATION OF

DESIGNED ALGORITHM... 118

9.1 Experimental Findings of Forgetting Q-learning Algorithm 118

9.1.1 Simulation Results ... 120

9.1.2 Data Saved in Lookup Table for the future use 126

9.2 Experimental Results of Feature-Based RL Agent 129

9.3 Hierarchical Structuring of RL System .. 133

9.3.1 Proposed Assumption .. 134

9.3.2 Learning Phase .. 135

9.3.3 Execution Phase ... 136

9.4 Value comparison of Hip, Knee and Ankle Joints in Learning and

Execution Phase ... 137

9.4.1 Comparison for Number of Iterations in 1
st
 Episode 137

9.4.2 Comparison for Number of Iterations in 200
th

 Episode 137

xii

9.4.3 Comparison of Reduction in Number of Iterations in Successive

Episodes For Hip, Knee, and Ankle Joint .. 144

9.4.4 Comparison of Number of Iterations Vs Episodes in Learning and

Execution phase for all joints ... 146

9.4.5 Comparison of Total Time for Learning and Execution phase for

Hip, Knee, and Ankle Joint .. 151

9.4.6 Random Values Generations for 200 Episodes 157

9.4.7 Mean Random Values, Total Rewards calculation of Learning and

Execution Phase for Hip Joint, Knee Joint, Ankle Joint...................... 159

9.5 Comparison of Combined Episodes for Hip, Knee and Ankle Joints in

Learning and Execution Phase ... 164

9.6 Comparison of Total Time for Hip, Knee, and Ankle Joints in Learning

and Execution Phase... 166

9.7 State of Art Algorithm: Computer Vision .. 167

CHAPTER 10 CONCLUSION AND FUTURE SCOPE 169

10.1 Conclusion .. 169

10.2 Future Scope ... 172

REFERENCES JOURNAL ... 173

APPENDIX A .. 189

A.1 Simulink combined model of the Bipedal ... 189

APPENDIX B .. 190

B.1 Simulink Block of Dynamic Torque for each joint 190

B.2 Simulink Block Diagram of Computed Torque Control 191

APPENDIX C .. 192

C.1 Simulink block of ground force contact .. 192

C.2 Contact Force Logging .. 193

C.3 Angle and Torque measurement for all joints 193

APPENDIX D .. 195

MATLAB CODES... 195

bipedalparameters.m .. 195

evalSmoothTrajectory.m .. 195

createSmoothTrajectory.m ... 196

plotSmoothTrajectory.m .. 196

xiii

Qlearm_episodic_HIP_100.m .. 197

QLearn_episodic_KNEE_100.m.. 202

QLearn_episodic_ANKLE_100.m ... 208

QLearn_execution_HIP_100.m.. 213

QLearn_Execution_KNEE_100.m ... 218

QLearn_Execution_ANKLE_100.m .. 224

ball_Feature_matching.m ... 229

APPENDIX E .. 232

Mathematical Model of Object Identification .. 232

E.1 Detection of Interest Point ... 232

E.1.1 Hessian-Based Interest Points ... 232

E.1.2 Scale Space Representation ... 232

E.1.3 Localization of Interest Point .. 233

E.2 Description of Interest Point .. 233

E.2.1 Feature Vector ... 233

APPENDIX F... 235

F.1 Simulink Reinforcement Controller ... 235

CURRICULUM VITAE .. 236

COMMENT INCORPORATED SUMMARY.. 238

THESIS PLAGIARISM CHECK REPORT .. 240

xiv

LIST OF FIGURES

Figure 3.1 Proposed 3-D Model of Lower Body .. 50

Figure 3.2 Simulink Model without Ground .. 50

Figure 3.3 Simulink Sub-Model of Right Leg of Bipedal...................................... 51

Figure 3.4 Simulink Sub-Model of Right Leg of Bipedal...................................... 51

Figure 3.5 Overall Simulink Model of Lower Body of Bipedal 52

Figure 3.6 Simulink Block Diagram of Lower Body of the Bipedal with the

Ground .. 53

Figure 3.7 Simulink Model of Lower Body of the Bipedal with the Ground .. 54

Figure 3.8 Simulink Block Diagram of Contact Forces of Right Leg of the

Bipedal with the Ground ... 55

Figure 3.9 Simulink Block Diagram of Contact Forces of Left Leg of the

Bipedal with the Ground ... 56

Figure 3.10 Simulink Model of Lower Body of Bipedal with Instability

(Falling Down) ... 57

Figure 3.11 Simulink Model of Bipedal in execution with Prevention from

Falling ... 57

Figure 3.12 Simulink Model of Bipedal with Prevention of Falling 58

Figure 3.13 Simulink Model of Bipedal for Smooth Trajectory 59

Figure 3.14 Simulink Model of Bipedal with Localization Code execution in

Dynamic Environment ... 60

Figure 3.15 Simulink Model of Bipedal with Object in Dynamic Environment

 .. 61

Figure 3.16 Simulink Model of Bipedal with Object Localization Code in the

Dynamic Environment ... 62

xv

Figure 4.1 Overall System Designed to achieve the Sub-Objectives 63

Figure 4.2 Flow Chart of the Overall System .. 66

Figure 4.3 Stepwise Execution of the Overall System ... 67

Figure 4.4 Object Identification Mechanism ... 68

Figure 4.5 Control Mechanism for Gait of the Bipedal .. 69

Figure 4.6 Realization of the Bipedal Walking ... 70

Figure 4.7 Reinforcement Learning Control Mechanism of the Bipedal 71

Figure 4.8 Hierarchical Structured Learning of RL Agents 72

Figure 5.1 Bipedal Walking Robot ... 73

Figure 5.2 Basics of Integral Image .. 75

Figure 5.3 Interest Point Detection using Discretized and Cropped Gaussian

(in the first part), Box Filter Approximation (in the second part) . 75

Figure 5.4 Euclidean Distance ... 77

Figure 5.5 Sign of Laplacian .. 78

Figure 5.6 ZMP Position of a Biped Walking Sequence .. 79

Figure 5.7 Inverted Pendulum Model .. 79

Figure 5.8 Walking Cycle .. 81

Figure 5.9 Sagittal Plane View... 82

Figure 5.10 Forward Landing Position Ratio of Pelvis .. 82

Figure 5.11 Walking Stage .. 83

Figure 5.12 Different Stages of Left and Right Legs .. 84

Figure 6.1 Detailed steps of SURF Image Processing Algorithm 91

Figure 6. 2 Comparison of Different Feature Detection Algorithm 92

Figure 7.1 Basic Model of RL .. 96

Figure 7.2 The Q-learning Algorithm .. 104

Figure 7.3 Basic RL Model of the Bipedal Walking Robot 105

Figure 8.1 Model of the Proposed System (RL agent) .. 110

Figure 8.2 Simulink Block Diagram of Reinforcement Controller 116

xvi

Figure 8.3 Interfacing of Reinforcement Controller to Lower Body of Bipedal

 .. 117

Figure 9.1 Bipedal Robot is at Current State ... 118

Figure 9.2 Locomotion of Bipedal Robot (Model 1) ... 119

Figure 9.3 Locomotion of Bipedal Robot (Model 2) ... 119

Figure 9.4 Case - I Reached the Goal State in 36 Iterations 121

Figure 9.5 Case I- Reached the Goal State in 12 Iterations 122

Figure 9.6 Case II - Does not reach Goal State even after Executing 100

episodes .. 124

Figure 9.7 Case III - Reaches the Goal State in 8 Iterations 125

Figure 9.8 Soccer ball with 200 strongest points identified 129

Figure 9.9 Soccer ball on the ground, its gray image and 400 strongest points

identified .. 131

Figure 9.10 Top - Matched Points including Outliners .. 132

Figure 9.11 Soccer Ball identification done in Gray and Color Image 133

Figure 9.12 Locomotion of Bipedal Robot after Object Identification 134

Figure 9.13 Comparison of Hip for 25, 50, 75, 100, 150, 200 strides 146

Figure 9.14 Comparison of Knee for 25, 50, 75, 100, 150, 200 strides 148

Figure 9.15 Comparison of Ankle for 25, 50, 75, 100, 150, 200 strides.......... 150

Figure 9.16 Total Time Vs episodes for Hip Learning ... 151

Figure 9.17 Total Time Vs episodes for Hip Execution 152

Figure 9.18 Total Time Vs episodes for Knee Learning 153

Figure 9.19 Total Time Vs episodes for Knee Execution 154

Figure 9.20 Total Time Vs episodes for Ankle Learning 155

Figure 9.21 Total Time Vs episodes for Ankle Execution................................... 156

Figure 9.22 Comparison of Random Value Generation for all Three Joints .. 157

Figure 9.23 Comparison of Learning Phase of Reward Generation of Hip Joint

 .. 158

Figure 9.24 Comparison of Executing Phase of Reward Generation of Hip

Joint ... 159

Figure 9.25 Comparison of Learning Phase of Reward Generation of Knee

Joint ... 160

xvii

Figure 9.26 Comparison of Executing Phase of Reward Generation of Knee

Joint ... 161

Figure 9.27 Comparison of Learning Phase of Reward Generation of Ankle

Joint ... 163

Figure 9.28 Comparison of Executing Phase of Reward Generation of Ankle

Joint ... 164

Figure 9.29 Comparison of Learning and Executing Phase of all Joint Data . 165

Figure 9.30 Comparison of Total Time for Learning and Executing Phase of

all Joint Data ... 167

Figure E.1 Scale Space Representation ... 233

Figure E.2 Interest Point Localization using 3D Non-Maximum Suppression

Concept ... 233

Figure E.3 Haar Wavelet Filters and Sliding Window Orientation 234

Figure E.4 Descriptor Vector.. 234

xviii

LIST OF TABLES

Table 2.1 Body Parameters of Atlas ... 13

Table 2.2 Body Parameters of Manav .. 13

Table 2.3 Body Parameters of ASIMO .. 14

Table 2.4 Body Parameters of iCub .. 15

Table 2.5 Body Parameters of Poppy ... 16

Table 2.6 Body Parameters of Romeo ... 16

Table 2.7 Body Parameters of PETMAN ... 17

Table 2.8 Body Parameters of NAO ... 18

Table 3.1 Lower Body Parameter.. 48

Table 3.2 Joint Range Degree of Freedom and Motion .. 49

Table 5.1 Summary of Walking Algorithm .. 85

Table 6.1 A Summary of State-of-Art Feature Detector .. 93

Table 7.1 Comparison of Reinforcement Leaning Algorithms 102

Table 9.1 Case I Final Lookup Table ... 127

Table 9.2 Case II Final Lookup Table ... 127

Table 9.3 Case I Intermediate Lookup Table ... 128

Table 9.4 Case II Intermediate Lookup Table ... 129

Table 9.5 Case III Intermediate Result Sheet .. 129

Table 9.6 Case III Final Lookup Table .. 130

Table 9.7 Hip Joint (Final Data Episode 1) .. 138

Table 9.8 Knee Joint (Final Data Episode 1) ... 139

Table 9.9 Ankle Joint (Final Data Episode 1) ... 140

Table 9.10 Hip Joint (Final Data Episode 200) ... 141

Table 9.11 Knee Joint (Final Data Episode 200) .. 142

xix

Table 9.12 Ankle Joint (Final Data Episode 200) .. 143

Table 9.13 Comparison of Reduction in Number of Iterations in Successive

Episodes ... 145

xx

LIST OF ABBREVIATIONS

AI : Artificial Intelligent

ASIMO: Advanced Step in Innovative Mobility

DSP: Double Support Phase

DOF: Degree of Freedom

iCub: Cub Standing for Cognitive Universal Body

IP: Inverted Pendulum

IPM: Inverted Pendulum Model

MDP : Markov Decision Process

PETMAN: Protection Ensemble Test Mannequin

RL: Reinforcement Learning

SSP: Single Support Phase

SURF : Speeded Up Robust Features

VBN : Vision Based Navigation

ZMP: Zero Moment Point

xxi

LIST OF SYMBOLS

IƩ(X): Sum of areas of location

X=(x, y)
T

H(A,σ): Hessian Matrix in A at

scale σ

Lxx(A,σ): Convolution of 2nd order

Gaussian derivative ((σ)) at

point A of an image I

Lyy(A,σ): Convolution of 2nd order

Gaussian derivative ((σ)) at point

A of an image I

Dxx: Approximation of 2
nd

 order

Gaussian partial derivative in the

X-direction

Dyy: Approximation of 2
nd

 order

Gaussian partial derivative in the

Y-direction

dx: Haar Wavelet responses in the

x-axis

dy: Haar Wavelet responses in the

y-axis

DE/DM: Euclidean or Mahalanobis

distance

fn: Natural frequency of the 2-D

inverted pendulum

l: Distance between ground and

center of mass (Pendulum length)

g: Gravitational acceleration

T: Torque measured at the hip/

knee/ ankle joint

m: Point mass

Fz: Ground reaction force

Ymc: Lateral displacement of the

mass center

Yzmp: Lateral ZMP

Xmc: Forward displacement of the

mass center

Xzmp: Forward ZMP

θ: Actual joint angle due to

compliance (hip/ knee/ ankle)

u: Reference joint angle

K: Stiffness of the leg

xxii

kd: Damping control gain

uc: Compensated joint angle

Ypelvis: Lateral displacement of the

pelvis

α: Learnin rate

λ: Discount Factor

ε: Exploration probability

(Exploration (ε)/Exploitation(1- ε))

ε-decay: Forgetting factor (epsilon

decay)

St: Current/ Present State

Sp: Processed state

at : Current/ Present action

St+1: Next subsequent stable state

rt+1: Immediate reward

rt: Delayed reward

1

CHAPTER 1 INTRODUCTION

Humans have always been fascinated by creating creatures like them, which

resulted in the designing and development of Humanoid/ Bipedal Robots. The

bipedal developed should be able to act, interact like a human being, and

should be intelligent enough to reason. Bipedal have a human body which

through morphological calculation ought to naturally adjust and make up for

movement and dynamic conduct.

Bipedal along with the locomotion should also integrate performing tasks

associated with manipulation, perception, interaction, adaptation, and self-

learning. This leads to a connection with legal, social and ethical domains

along with science and engineering disciplines. Bipedal are cross-disciplinary

including propelled velocity and control, biomechanics, computerized

reasoning, machine vision, recognition, learning, and subjective improvement

alongside the social examinations.

Bipedal are best suited till now for the predefined tasks like in automotive

fields, as a companion in medical surgery, cleaning and mopping the floor,

mowing the garden, and so on. Bipedal cannot perform tasks in an

unstructured and dynamic environment. Bipedal learns from mistakes as a

human being and adapts to the dynamic and uncertain environment with the

algorithms developed by humans. Bipedal should learn the dynamics of the

environment similar to a child, learn to walk/ crawl in a dynamic environment

that is changing for every go of the walk. As the child learns from mistakes

and failures, walking an unforgettable task of life. Similarly, with machine

vision, artificial intelligence (AI), cognitive learning algorithms, bipedal can

adapt to the uncertainty of the environment and can accomplish their desired

goals. Implementation of bipedal to the community is a social, economic, and

legal issue.

2

 The aim is to ease human efforts, save human life in a hazardous

environment. The future of the bipedal robots is like an emotional, physical

companion of humans, which can help humans in household chores, in a

hazardous environment, as a companion and friend at the workplace.

1.1 History of Humanoid/ Bipedal Robot

The word 'Humanoid Robot' describes creatures that resemble humans and can

be used to do tedious and hazardous tasks.

In 250 BC, Liezi described automation as a self-operating machine that is

designed to follow the predefined task automatically. In 50 AD, Alexandria, a

Greek mathematician depicted a machine that consequently pours wine for the

gathering visitors. Al Jazari, in 1206 made handwashing automata with

programmed robot hirelings and clock having elephants and mahout. He

additionally portrayed a band of humanoids that can be performed more than

50 facial and posture activities during their musical show.

Jacques de Vaucanson, in 1738 structured a woodwind player that resembles a

shepherd and had the option to play twelve tunes on woodwind. He

additionally created a tambourine that played woodwind and drum. In 1774,

Pierre Jacquet Droz developed animated dolls which helped the firm in selling

watches. Later his son Henri Louis created a figure of a boy like a

Draughtsman who can remember 40 characters' messages.

Karel Capek, in 1921, coined the 'Robot' word which was derived from

'robota' meaning 'to work'. In 1927, Mashinenmeusch (machine-human)

humanoid robot additionally called Parody/ Futura/ Robotrix humanoid

showed up in the film. In the same year, the humanoid robot Herbert Televox

was developed by Ron Wensley. The humanoid could lift the receiver to

answer a call and correspondingly controlling the task with the help of a

switch. This robot did not have any ability to speak. In 1928, Eric's electrical

robot opened a presentation to the general public of model designers in

London and visited the world.

3

In 1941-42, Isaac Asimo gave three laws of robotics that deals with the safety

restrictions of the robot. He used these laws in his science fiction stories. The

story was recompiled in 'I' robot movie in the year 2004.

In 1961, Unimate, the first carefully worked programmable non-humanoid

robot was introduced in sequential construction systems and assembly lines of

General Motors. It was utilized to lift hot bits of metal from bite the dust

throwing (die-casting) machine.

 In 1967-72, initiated in 1967 and completed in 1972. WEBOT 1, which is the

world's intelligent humanoid robot. WEBOT 1 was the first android which can

walk, communicate in Japanese with people, measure distances and direction

of the objects, grips, and transports object with hands.

In 1970, Miomir proposed a hypothetical idea of Zero Moment Point(ZMP).

In 1972, Miomir and his partner construct the first dynamic human

exoskeleton.

In 1980, Marc Raibut set up MIT leg Lab, devoted to legged velocity and

building dynamic legged robots. In 1983, 'Green man' was developed which

had a torso, arm, and head, the vision system consists of a camera that was

mounted on the helmet. In 1984, WABOT 2, a musician humanoid was

created. It communicated with persons, can read normal musical notes. In

1986-1993, Honda developed seven biped robots E0-E6. In 1989, Hanny a

full-scale anthropomorphic was developed by the US. It can crawl and had 42

DOF.

In 1990, the Bipedal mechanical structure with knees was developed by Tad

McGeer, which was even able to walk on a sloppy surface. In 1993, Honda

developed P1 to P3 with upper limbs. In 1995, Webian, a human-sized biped

walking robot was developed. In 1996-98, Saika light-weight with 2 DOF in

the neck, double 5 DOF upper arms, body, and the head was developed. In

2000, Honda created its 11
th

bipedal which was capable of jumping, running,

climbing stairs.

4

After 2000, Humanoids were at boom and their development was at the full

pace some of them are listed here.

In 2001 HOAP-1, in 2002 HRP-2, in 2003 HOAP-2, JOHNNIE, ACTROID,

in 2004 Persia, KHR-1, in 2005 HOAP-3, WAKAMAN, in 2006 iCUB,

MALIM, in 2008 JUSTIN, in 2010-11 ROBONAUT-2, ASIMO (with semi-

autonomous capabilities), in 2012 COMAN (Compliant Humanoid Robot), in

2013 SCHAFT, POOPY, in 2014 MANAV, PAPER ROBOT, NADINE, in

2015 SOPHIA and so on.

1.2 Features of Humanoid/ Bipedal Robots

The features, which a bipedal possesses are:

1. Autonomous Maintenance

2. Autonomous learning

3. Avoiding destructive circumstances to an individual’s property and

itself.

4. Self-interacting with human being and environment

1.2.1 Manipulation tasks

The manipulating ability of the bipedal robotic mechanisms is required to

enter human-centered environments such as in positioning and orienting end-

effectors. Due to a huge number of DOF, humans can manipulate objects of

many shapes, sizes, weights, and materials(Asfour et al., 2008). Due to more

number of joints and links, the singularity posture of the bipedal robot reduces

the dexterity of the humanoid robot(Ott et al., 2006). Due to a lack of learning

ability and limited manipulation of the bipedal robot, it is unable to pick new

shape objects in an unknown environment. Many tasks require certain

complaint behavior to make deliberate physical contact with the environment

which are implemented by modern robotic manipulators.

5

1.2.2 Vision system

Visual perception is essential for bipedal working in human environments.

The vision system of the bipedal robot extracts information of the joint

positions and manages its own body along with the obstacle avoidance(Okada

et al., 2006). The vision system manipulates the tool’s movement through its

own body and handles the target object. A bipedal robot is required to manage

tools and objects.

Vision systems extract information on the shape and size of the target from the

external and dynamic environment. An overhead camera is employed to the

bipedal robot for computing the desired goal location and screens to interpret

the captured images(Michel et al., 2005). The image processing technology

provides a direct and indirect estimation of the target in the dynamic

environment. In principle, machine vision includes acquiring an image,

process it using digital image processing and analysis techniques, and take

decisions based on the extracted information(Kagami et al., 2003). The

functions are involved in real-time 3D vision are a generation of the 3D depth

map, 3D depth flow generation, and plane segmentation finder. Real-time

depth map generation framework and target finder run on the bipedal body

computer. The other complex vision as the face recognizer and plane finder

runs on the network computers.

1.2.3 Sensing behavior

The sensing behavior of the bipedal robot is the mapping of sensory input to

different joint motor actions. This behavior is the appropriateness of the

bipedal robotic response to a given task and environment. The reactive

behavior provides a bipedal robot to interact with dynamic and unknown

conditions without planning. These behaviors of the bipedal robot deal with

targets independently and coordinating different joints in the desired way.

Based on the environment interaction several sensors are utilized in bipedal.

Force, tactile sensors are elementary sensors for the bipedal robot when

interacting with the environment(Song et al., 2015). Bipedal robots entirely

depend on the fusion of multiple sensors to provide them with information

6

about their surroundings. The sensory input to the bipedal robot helps to

understand the environment and navigation.

1.2.4 Mobile platform

Bipedal robots are moving towards applications beyond structured the

environment(Khatib, 1999). The current generation of the bipedal robot has a

mobile platform. Due to the mobile platform, a bipedal robot is entering the

everyday world that people inhabit. Wheel based humanoid robot is working

in a static environment. The introduction of the legged mobile platform into

the bipedal robot will assist the bipedal to perform the task in the unstructured

and dynamic environment.

1.3 Application of Bipedal Robot

1.3.1 Home Management Services

The bipedal robot observes the house in the absence of people and can be

controlled remotely by people with the help of a simple mobile terminal.

Humanoid robots can perform household activities. They can check the

apparatus condition inside the house(Sawasaki et al., 2004).

1.3.2 Healthcare

 The verbal and gesture interaction of bipedal robots can serve the patient in

the hospital environment(Dahl & Boulos, 2013). Bipedal robot assisting

nursing staff in taking care of the patients and in providing support while

physically efficiently handling patients.

1.3.3 For aging / old aged people

Older age people would like a bipedal robot for assisting with daily routine

tasks. With recent advancements in the technology of the bipedal robot, it can

prevent an old aged person from falling, giving medication alerts, and

managing their location(Robinson et al., 2014). These tasks need to maintain

independence and dignity. The old age people are not able to take care of

themselves. It is also disrespectful for them to use a device that looks like a

7

toy. The appearance of the bipedal robot was fascinated. Bipedal are usually

appreciated as they are capable to have improved communication with old age

people and healthcare professionals both.

1.3.4 Industrial Application

The collaboration of humans and the bipedal robot contributes to the

sustainable growth of factories. A place in which bipedal robots and people

can work together to achieve goals (Maurtua et al., 2017). Safety is the most

critical aspect of the industry. A bipedal robot looks after the safety of workers

inside the industry while the execution of the task. Some tasks are complex

and dangerous to be performed by a human. They require engineering special

tools. An effective bidirectional human-robot communication contributes to

the growth and safety of industrial development.

1.3.5 Space Exploration

With the advancement in satellite technology, satellites are deployed into

space for exploration and colonization of other planets (Tanaka et al., 2017).

The aim of these efforts to establish the possibility of life on other planets.

Such plans require the creation of living environments on the planet. Bipedal

robots can work and assist in space to establish a living environment. The

bipedal robot can interact with the unknown environment of space can interact

with the astronaut.

The application of a bipedal robot is not limited to these areas only. It can be

used in different fields of industrial and non-industrial applications.

1.4 Motivation

The child suffering from the autism spectrum disorder disease deficit in social

interaction and communication with the real world. Similarly, the old aged

cannot do household activities on their own, walking machines resembling

humans, bipedal plays an important role in their life. Interaction and self-

decision making bipedal recognize eye contact and behavior of the old aged

person and the child. After recognizing these parameters, bipedal can execute

8

tasks desired by them. Till today, partial human thinking behavior

implemented in the bipedal robot.

Open situations require a robot to design and learn under novel conditions.

This must be done in a way that guarantees the wellbeing of the system and

general environmental condition, and permits model estimation and figuring

out how to occur inside a possible measure of time. Bipedal not exclusively be

utilized as a partner yet additionally can be implemented into repetitive,

tedious, and risky circumstances, for example, salvage tasks or bomb

arranging. For Bipedal it is possible to do assignments dangerous for the

individual. The assignments are possibly any perilous natural environment, for

example, fire fighting operation, explosives, and can likewise aid other

increasingly intricate, complicated, and confounded assignments. Currently,

the most basic issue for bipedal is how to walk consistently in questionable

and ceaselessly evolving conditions which is dynamic. Numerous scientists

have controlled the ZMP position for strolling steadiness(Lohmeier et al.,

2009)(Lowrey et al., 2018)(Ly et al., 2004). Applying appropriate walking

gaits to biped walking would make the robot walk more stably and walking

posture would resemble human walking.

The motivation of the present research work is implementing human thinking

in bipedal, to serve social services to society. The dynamics of each

humanoid's environment is different and so they cannot be trained for the

static environment. Bipedal should learn to walk on its own as the scenario of

its path changes.

1.5 Research Contribution

 The major contribution of this thesis is the development of model-free

based reinforcement learning control calculation for an autonomous

self-decision bipedal robot.

 The other contribution is to train bipedal to walk stably in the dynamic

and uncertain environment when the position of objects differs in the

environment.

9

 Another contribution is to train the bipedal to identify the object and

localization of the object in the dynamic environment. If the same

scenario is used, the previously learned data is utilized.

1.6 Thesis Outline

 Chapter 2 describes the history of humanoid/ bipedal robot, current

ages of humanoid/ bipedal robot, bipedal robot movement, a

mechanical model of bipedal robot, control design of humanoid/

bipedal robot and development of model-free based reinforcement.

 Chapter 3 describes the biomechanics of the lower body of the bipedal

robot. Biomechanics deals with the motion and the orientation of each

of the joint positions. The design input parameters considered from the

standard human measurement and decided the link length and the joint

trajectory.

 Chapter 4 introduces the general framework which is intended to

accomplish the desired sub-objectives. The sub-objectives are objects

identification and localization, bipedal control mechanism along with

Reinforcement Learning control mechanism, and then the hierarchical

structuring of all RL agents.

 Chapter 5 introduces the mathematical modeling of the bipedal robot.

The gait trajectory and smooth motion evaluated for the different

conditions. The kinematic and dynamic model (online/ offline) was

implemented in the MATLAB platform and validated with the

Multibody Toolbox of MATLAB. It also includes the object

identification model along with the localization of the identified object.

 Chapter 6 introduces the design of the object identification algorithm

of the bipedal. This includes a control framework for the feature-based

identification of the object in the reinforcement learning control

mechanism as proposed in this research work.

 Chapter 7 introduces the design of the reinforcement-learning

controller of the bipedal. This also includes the proposed forgetting

10

mechanism incorporated in the traditional Q-learning Algorithm, how

to model, and simulate Multi-Agent System (MAS).

 Chapter 8 combines both the proposed algorithm to form a model of

the proposed framework which includes both algorithms with setting

up the parameters for the executing simulated system so that the output

produced is in sync with the actual output on the Bipedal. The

simulation implemented in MATLAB platform and interfacing is done

with the proposed framework.

 Chapter 9 describes the constants taken into consideration for

simulation. The output is stored for future use in graphical and lookup

tables for each of the joints. This stored data is used further as

knowledge when the bipedal reach a similar condition when the

dynamic environment is the same. The storage incurs time which was

compensated by a reduction in the execution time of the bipedal by

utilizing previous knowledge. This includes result graphs in 25, 50, 75,

100, 150, 200 strides for comparative study.

 Chapter 10 concludes and summarizes the research work on the

designing, modeling, and simulating along with conclusion for the

proposed algorithms so that the bipedal walks with stability along with

the suggestions for future work regarding consideration of the upper

body of bipedal along with an alternate way to store the optimal policy

so that less time is required for reading and storing that data.

11

CHAPTER 2 LITERATURE REVIEW

Designing and developing the bipedal robots result in achieving real-world

work at a greater speed and accuracy. Research communities and companies

have been doing continuous work on the locomotion of humanoids in different

environments - houses, fire rescue operations, coal mines, etc. In robotic

research, the navigation of the bipedal is a challenging and emerging field. In

this navigation, the bipedal should not get damaged nor any human being. This

has gained significant attention as the dynamics of the environment in each

case are continuously changing.

This reveals the major problem in designing the bipedal is self-awareness of

the dynamics of the uncertain environment by the bipedal. Bipedal robots are

also known as service robots which are included as assistant/companion robots

by humans. Bipedal are used as medical assistants and teaching aids. The

anthropomorphic form of bipedal robots offers greater flexibility for operating

them in a different dynamic environment.

2.1 Current Humanoids / Bipedal

2.1.1 Vyommitra (Jan 2020)

Indian Space Research Organization (ISRO) introduced Vyommitra, half

humanoid, legless but can bend forward and sideways. Vyommitra has a

female look. Vyommitra means space (Vyoma) and a friend (Mitra). She can

switch panel operation, environment control, and life support systems

(ECLSS), monitor module parameters, be a companion and converse with the

astronauts, alert the astronauts, and can respond to the queries. She will be sent

to space as a trial before Gaganyaan, projected in 2022.

12

She simulates human functions in space, can check whether the system is

right. She would help to monitor how the human system will behave in

ECLSS. The robot, powered by speech synthesis software and artificial

intelligence. The robot is seated at the desk in uniform and sported a custom-

made ISRO identify badge with her name.

2.1.2 Sophia (Feb 2016)

Sophia is a humanoid that was designed by Hanson Robotics which can show

60 facial expressions. She is the only robot who is a citizen of Saudi Arabia.

According to Davis Hanson, manufacturer, Sophia uses AI, facial recognition,

visual data processing, voice recognition (speech to text) technology, and

speech synthesis ability. These systems help her to be more brainy by

collecting information from time to time. The program intelligently

investigates and selects information that permits it to enhance future reactions.

Sophia does not just keep up a keen talk with an individual on any subject,

dialogues as also accompanied by emotional charges that help conversation

between two people more normal.

The concepts work behind Sophia firstly include estimation of awareness of

psychological framework, which uses tonomi phi values while reading and

conversing. Secondly, Sophia is a realistic human-robot that can reproduce

human to human social involvement in an excellent point of interest of

controlled reputability towards patient or customer. Thirdly, Sophia helps in

portraying robot behavior. Sophia uses AI techniques including the following

face, acknowledgment of emotions, and mechanical movements created by a

deep neural network. Sophia's discourse is created by the decision tree

however is incorporated with these outputs exceptionally.

2.1.3 Atlas

Atlas is a bipedal humanoid robot planned by Boston Dynamics, funded by

US DARPA (Defense Organization). It is supplied with two vision systems - a

laser range discoverer and stereo cameras both constrained by an off-board

PC. Atlas has hands with fine engine capabilities and has appendages. It can

13

explore on uneven turf and can climb utilizing arms and legs. It utilizes

sensors in its body and legs to adjust and to evade hindrances, evaluate the

turf, help with routing, manage objects even when continuously moving.

Table 2.1 Body Parameters of Atlas

Parameter Value

DOF 28

Tall 175 cm

Weighs 82 kg

Characteristics Can jump on packages, turn 180° while hopping and doing

a backflip

Atlas utilizes 3D printed parts which give it qualities to weight ratio vital for

jumps of somersaults. To execute control loops inside the period dictated by a

robot, real-time threads of the JNI library were used. Lockless synchronization

natives are utilized to impart between the different threads, avoids garbage

collection. The control arrangement of the robot is implemented on the robot

operating system (ROS) packages(Maniatopoulos et al., 2016).

2.1.4 Manav (Dec 2014)

India's first humanoid robot, Manav is a 3D, two movement head that can nod

and look around, the waist has 1-degree allowing waist movement like

humans. It was designed in 2 months.

Table 2.2 Body Parameters of Manav

Parameter Value

DOF 21

Tall 2 feet

Weighs 2 kg

Characteristics 21 sensors, 2 mikes, 2 cameras on head and eye

It has sound processing, visual processing which helps in responding to

commands. Manav can walk, talk, and dance according to human voice

14

commands. It can perceive depth and perception by binocular vision

processing. Wi-Fi and Bluetooth are used for communication. The

rechargeable lithium-polymer battery used by Manav can drive at least for an

hour when fully charged. Manav responds like a human child.

2.1.5 ASIMO

ASIMO, humanoid robot structured and designed by Honda(Motor, 2007).

ASIMO has a rechargeable 51.8V lithium-ion battery which has one hour

working time. The robot can recognize moving articles stances, expressions,

sound countenance, and a dynamic environment that encompasses them and

connect with humans.

Table 2.3 Body Parameters of ASIMO

Parameter Value

DOF 34, each leg has 6 DOF, each arm has 7 DOF, has 2 DOF

for 4 fingers to grasp the object

Tall 130 cm

Weighs 54 kg and can carry a payload of 1kg

Characteristics 21 sensors, 2 mikes, 2 cameras on head and eye socket

The visual data grabbed with two eyes of camera situated in the head also

evaluates separation and control of object approaching. ASIMO deciphers

voice orders, human motions, recognizes when a handshake is offered or

waved or pointed, and respond accordingly. It can confront an individual when

addressed or look towards a sound. It can sense obstacles in front or rear and

act accordingly.

2.1.6 iCub

iCub was structured by Robot Cub Consortium and assembled by the Italian

Institute of Technology. Cub stands for Cognitive Universal Body. The

motivation was human comprehension like a child learns by collaborating with

its environment. Its robotic platform is adopted by 20 laboratories worldwide

for research and academic development of robotic projects. It is an open

15

cognitive robotic platform. iCub can see and hear and has sensing capabilities

that help in body configuration and movement(Frank et al., 2014).

Table 2.4 Body Parameters of iCub

Parameter Value

DOF 53

Tall 105 cm

Weighs 20.3 kg

Characteristics It has attached 53 motors to control the movement of the

head, legs, waist, arms, and hands

The product library is written in C++, utilizes YARP for outside

correspondence using Gigabit Ethernet. It was not intended for independent

activity thus doesn't have onboard batteries or processor however utilizes an

umbilical link for force and system network connection.

 iCub can crawl utilizing visual direction with an optic marker on the floor,

tackle complex 3D mazes, facial expressions express emotions, grasping small

objects, collision avoidance within a non-static environment, archery. To

compute the physical interaction of a rigid body with environment and object,

the iCub simulator uses an open dynamic engine. An open dynamics engine is

a reliable physics engine, computing physical interaction between objects and

the environment (Tikhanoff et al., 2012.).

2.1.7 POPPY

Poppy is a robust, reliable, and accessible, and 3D printed Humanoid robot.

The open-source software and hardware of robots allow programming and

experimentation of various robotics morphologies. The behaviors of Poppy

were partially dependent on body configuration and controlled using a pre-

wired electronics circuit. The Python programming controls hardware. The

joint motor of Poppy controls its physical interaction. The design of Poppy is

modular and can be easily modified and adapted to particular needs(Lapeyre et

al., 2015). It is used by many schools and universities for exploration and

research. The ideal medium of STEM.

16

Table 2.5 Body Parameters of Poppy

Parameter Value

DOF 25

Tall 83 cm

Weighs 3.5 kg

Characteristics One LCD screen, 2 wide camera attached on its head.

2.1.8 Romeo

The main aim of the development of Romeo humanoid was to assist an elderly

person suffering from a loss of autonomy. The Romeo humanoid interacts

with humans, roaming around human’s physical environment, and helping in

their needs. Romeo is capable able to extract a realistic perception and interact

in -natural way with individuals(Pateromichelakis et al., 2014).

Table 2.6 Body Parameters of Romeo

Parameter Value

DOF 37, a spine with 4 vertebrae

Tall 140 cm

Weighs 40 kg

Characteristics During development, special attention was on facial

movements, voice, and gestures, to increase effectiveness

between human-robot interaction

Different layers of perception have been analyzed in Romeo from sense to

interaction. Sensor and their fusion build a 3D point cloud world. Relevant

information gathered from the 3D point cloud help to learn Romeo to

categorize emotions and instructions(Pandey et al., 2014). Humanoid responds

by natural speech and gestures to perform tasks like closing trash can, cup

lifting with four fingers hand, and retrieving food from the kitchen.

2.1.9 PETMAN (Protection Ensemble Test Mannequin)

PETMAN, an anthropomorphic humanoid designed to test protection against

chemical warfare agents. The embedded chemical sensor inside the skin of the

17

PETMAN humanoid robot measures and detects chemicals in the suit under

controlled temperature and wind conditions. It maintains dynamic balancing

when pushed moderately from the side. PETMAN is a free-standing bipedal

robot powered by hydraulic power separately and its speed is about 7.08

km/hr(Nelson et al., 2012).

Table 2.7 Body Parameters of PETMAN

Parameter Value

DOF 29, sensors for measuring position and force

Tall 175 cm

Weighs 80 kg, can carry a payload of 23 kg

Characteristics Onboard control systems sensing, computing, and

control movement. One passive DOF in each wrist and

foot provide compliant interaction with the

environment.

The robot gives reasonable tests during physical efforts, for example,

controlling temperature, dripping, and dampness inside the protective apparel.

It performs different undertakings powerfully in rising circumstances, for

example, rescue operations in a fire, atomic, and different risky conditions

without human introduction.

2.1.10 NAO (Aug 2008)

An approachable design of the NAO humanoid robot had been kept purposely.

Due to the huge number of degrees of freedom, It offers great mobility. The

open-loop engine controls the walking of the robot. The absence of feedback

arises instability in NAO's movement. The open-loop stabilizer controls the

motion of straight walk and follows arc without falling on the flat and hard

ground(Shamsuddin et al., 2011). It is accessible as an examination robot for

schools, universities, and colleges to train to program and execute exploration

of human interaction.

NAO incorporates four amplifiers for recognition of voice and limitations of

sound and two speakers for content to discourse union, 2 HD cameras for the

18

exterior, and body recognition(Shamsuddin et al., 2012). NAO uses a Linux

based operating system. NAO's programming is done in C++, Python, Java,

MATLAB, C, etc. It also uses Ethernet and Wi-Fi for communication.

Table 2.8 Body Parameters of NAO

Parameter Value

DOF 11 DOF in the lower limb, 14 DOF in the upper part of

the body.

Tall 57 cm

Weighs 5.5 kg

Characteristics The special pelvis kinematics design requires one motor

which can bend forward without movement of legs.

2.1.11 Actroid-SIT (2003)

Actroid, the humanoid robot looks and does move in the direction of an

individual attempting to address her. Actroid has a women-like figure and

possesses 47 DOF. Out of 47 DOF, 29 DOF is provided for body gesture

control and the rest are provided for facial expression control. Since her joints

are controlled by pneumatic actuators, it has very little chance to get damaged.

The flexible gestures in real-time can be generated due to a reconfigurable

motion database. The reconfigurable movement database of Actroid has two

fundamental highlights: motion interruption and its parameterization. At

whatever point there is a disappointment because of speaker interference, it

ends the social undertaking and then switches to the following response. A

human-like movement grouping is acquired from the movement catch

framework(Kondo et al., 2013).

Artificial Intelligence offers the capacity to respond alternately to an

increasingly delicate activity like a pat on arm. It lacks locomotion either

seated or standing. Speech recognition software and verbal responses through

speakers. The robot can react in a restricted manner to non-verbal

communication and manner of speaking by changing its outward appearance,

position, and vocal inflations.

19

2.1.12 Bipedal/ Humanoids of 2020

According to the American Society of Mechanical Engineers (ASME), 10

humanoid robots of 2020 are Robotic Avatar, Robotic Ambassador, Delivery

Robot, Research humanoid (Surena IV), Digital humanoids, Robotic

Bartender, Robotic Actor, Robonauts, Educational Robot, Collaborative

humanoids.

Sophia the smartest robot which uses the most advanced AI technology with a

good sense of humor in the world. She is the world's first robot citizen.

ASIMO is the most advanced and famous social robot and is continuously

developing. MONONOFU is the world's largest robot, ROBOBEE is the

world's smallest flying robot, the strongest industrial robot arm is M-

2000iA/2300.

Total there are 3,053,00 units of the operational robot as per 2020 worldwide

stock.

2.2 Bipedal Robot Motion

Bipedal walking in a humanoid robot is a complex project. Locomotion

problems are because of a large number of degrees of freedom coupled with

non-linear dynamics. The leg movement of the human body is controlled with

the assistance of a biological rhythm called the central pattern generator

(CPG). The central pattern oscillator controls the bipedal movement and

whole humanoid body motion. In an unstructured and unknown environment,

a humanoid robot is unable to control the leg movement.

Projects involving bipedal robots generally study the balancing and

locomotion mechanism in a certain environment for applications where

wheeled robots are completely not suitable. Most research has concentrated on

getting a robot to stay stable when walks straight in a line. Along with the

definite motion, the bipedal robot requires to explore the real uncertain world,

by turning around, lifting one foot, moving sideways, stepping backward, and

these movements issues involved are different from linear walking. This part

of the literature review deals with the movement of bipedal.

20

(Lim & Yeap, 2012) have described the movement in bipedal considering

human characteristics. Six servo motors, acceleration sensor, lithium-polymer

battery pack, and remote control is used in the bipedal robot. Servomotor for

joint movement receives signals from the wireless remote controller. Hence

six push-button switches control the movement of feet. Several experiments

on hardware were conducted to get the values for the correct posture of the

locomotion. These values were given as input to the software further advanced

developments were done.

(J. Park, 2007) used a pattern-based walking planner for ZMP control. A

pattern-based walking planner creates a path of design variables such as

direction and velocity. The desired motion of the pattern was generated by

pattern control which is controlling COM and horizontal angular movement.

Joint servomotors use inverse kinematics. These pattern controllers keep track

of the desired trajectory of bipedal.

(Ken’ichiro, 1997) described an evaluative genetic algorithm and neural

network controller. The camera captures the real-time visuals and

simultaneously generates guided swing motion for the bipedal robot. The

neural network controller uses a multi-layer preceptor, consist of four layers.

The first layer (input layer) comprises two neurons, the second layer (middle

first layer) comprises four neurons, the third layer (middle second layer)

comprises four neurons and the fourth layer (output layer) comprises one

neuron. Synaptic weights and thresholds value are optimized by the execution

of the genetic algorithm, which usually is real values. Simulation is carried out

in the virtual environment considering to be noise disturbance. Execution of

the program was done on parallel computers. The bipedal performs the task by

decoding the gene of the best individual as output this acts as input to a

multilayered neural network designed.

(Yang et al., 2006) described the generation of steps for various sorts of

ground which uses truncated Fourier series formulation. By adjusting ankle-

pitch and knee-pitch angles of both the feet, the stability of bipedal is

maintained. To avoid tooling, a zero-moment point criterion is used for

21

evaluating generated gait given in joint coordinates. The genetic algorithm

helps in maintaining the zero moment point to be within the footprint.

(S. C. Y. Kim & Hutchinson, 2008) proposed a hierarchical planner based on

the workspace decomposition. The workspace decomposition consists of a

passage map, gradient map, obstacle map, navigation map, and a local map.

The greedy hierarchical planner algorithm is used to plan the motion of the

bipedal. The workspace decomposition and connectivity graphs are stored in

the data structure. The hierarchical algorithm consisting of local plans, global

plans, and sub-goals. The decomposition of 3-dimensional maps encoded into

a 2-dimensional workspace. The navigation map computes the passage map

and the obstacle map. The robot is moving only in the free space of the target

environment.

(Niiyama et al., 2010) investigated the musculoskeletal movement in Athlete

bipedal running. The kinematic data patterns and data of muscle activity are

measured for the leg movement. The bi-articular muscles supply torques at

knee and hip joints simultaneously. Activation of knee joints and hip joints

motor command uses parse coding of activation method. The required muscle

force is determined from the desired force. The human electromyography data

extracted for the muscle activation and its pattern are used for activation of the

athlete bipedal robot.

The hereditary calculation balanced CPG boundaries to create control yield

near wanted directions. CPG adjusts to outer signs from the capricious

condition. Yields of CPG come back to characteristic motions, on evacuating

outside signs.

(Inada, 2003) introduced the Matsuoka neuron model in a central pattern

generator (CPG) and investigated for the bipedal movement. The output of

neurons generates target angles of individual joints. The neuron generates

rhythmic oscillation. CPG is usually included in balanced activities like

mobility/ locomotion. The trajectories of each joint are captured from the

human movement. The genetic algorithm adjusted CPG parameters to create

control output near wanted directions and path. CPG adapts to external signals

22

from uncertain conditions. Outputs of CPG return to natural oscillations, on

removing external signals.

(Thuilot et al., 2002) analyzed the conduct of the compass robot walk model

of the easiest bipedal. Bipedal had two indistinguishable legs that were joined

to the hip and mass is concentrated at the hip. In place of knee joints, the

prismatic joints were attached to the lower leg. All the joints in the compass

are passive, they do not require any external power source. The compass gait

is composed of the swing and the transition stages. In the swing stage, the

compass hip is fixed by the point of support of the leg on the ground. Another

leg swings forward. In the transition stage, the support is transferred from one

leg to another. The compass robot makes stable walking on inclined surfaces

also.

(Nishino & Takanishi, 1998) discussed an algorithm for controlled movement

of bipedal and added calculation module to process algorithm which helps in

improving the generality of bipedal. They discussed the control method of

driven joints. Dynamic walking of the humanoid is controlled by the non-

linear spring mechanism. The spring mechanism consists of wires and motors.

The rotatory encoder gives angle feedback to control the tension in the driving

wire. Coordination of motor on both sides, allow humanoid to take a step

forward. One motor controls the spring tension of one side and the other motor

is controlling the joint movement of the other side.

(Inoue & Takanishi, 1999) developed a control method bipedal robot for

dynamic walking. Control framework comprises fifteen Alternate Current

servomotors and 16 DC servomotors controlled through boards. The three-axis

moment is generated by the trunk. Yaw-axis actuator generates moment along

yaw-axis which is attached near the neck of bipedal. The swinging of the

upper limbs generates moments along the pitch and roll axis. The algorithm

computes the motion of the trunk, upper limb, and lower limb arbitrarily. The

control system compensates for the ZMP and yaw-axis moment.

(Komatsu, 2005) proposed a modified central pattern generator (CPG) method

to control the motion and force between the leg and ground for unknown

23

environmental conditions. The control architecture of the hybrid central

pattern generator control method consists of three layers. The first layer is

creating rhythmic motion for the legs. The second layer controls the forces

indirectly between the ground and foot and the third layer control attitude of

the hip. The rhythm generators consist of a neuron model and each neural

model consists of four units of oscillators. The oscillator generates torque for

individual joints.

(Reil & Husbands, 2002) describe an evolutionary algorithm that controls the

stable bipedal movement in a straight line. To achieve this task no perceptive

information is required. The recurrent dynamical neural network-based

controllers are implemented to achieve the desired bipedal motion. The

population parameters of the evolutionary algorithm are deciding the fitness

and weight in the recurrent dynamical neural network. The weight of joint

movement and time remains constant throughout the motion of bipedal. The

fitness function depends on the minimum distance from the origin and does

not allow the hip joint to go beyond a certain height to avoid bending

(forward/ backward) in a bipedal robot. This increases the stability of bipedal.

(Kuffner, 2001) presents a heuristic safe route calculation algorithm for

bipedal in snag arranged environments. The methodology is to assemble a set

of achievable areas of stride by processing stride positions to an obstruction

jumbled environment. The planner generates a sequence of footstep placement

by taking input from the collision-free environment. The polygon-polygon

intersection method is used to avoid the collision for safe navigation.

(Tlalolini et al., 2011) gave an optimal walking movement with flat-foot and

foot-revolution. The methodology is embraced for figuring torque delivered in

the various joints. The optimal trajectory depends on a reasonable set of

parameters. A cubic spline trajectory and constraints have been added to find

the optimal trajectory. The simulation was carried out for the bipedal robot

walk with foot rotation and without foot rotation. They established the

localization technique using stereo vision for a humanoid robot. They found

that the stereo vision creates jerky motion while walking due to noise present

24

in the environment. The feature-based approaches use depth maps for

localization. The stereo vision system mounted on top of humanoids and

obstacles present in the environment are being captured. Motion captures

system creates the elevation map which provides localization to humanoid on

the ground.

(Rostami & Bessonnet, 1998) considered instability during the bipedal

movement for a single support phase (SSP). The approach minimizes the joint

actuating torque which ensures stability. The controlled walking is achieved

by less impact and non-sliding heel touch. The Pontryagin maximum principle

is applied for computing optimal motion synthesis for joint trajectory. During

the swing, the bipedal robot is very unstable, and to overcome this problem,

smooth motion and less energy consumption have been computed.

(Copyright et al., 2007) proposed integrated motion control for walking,

jumping and running. The integrated motion control generates real time-based

motion pattern which is based on dynamics involved in the humanoid. The

adaptive motion control method was implemented for controlling zero

moment point and leg ground contact. The zero-moment point has no

acceleration and the height of the center of mass remains constant. Constraints

had been applied on vertical zero moment point trajectory and angular

momentum. The simulation is carried out on dynamic simulation software of

QRIO humanoid robot and testing is being done for walking, jumping, and

running.

(Caldwel & Bowler, 1997) explore the structure of pneumatic muscle to

reduce energy consumption Internal structure of the pneumatic muscle

actuator is different from the conventional pneumatic actuator. The inner layer

of the pneumatic muscle cylinder is made from rubber tubing and the ends of

the tube sealed by two aluminum plugs. The mechanism of bipedal design

consists of free motion at the hips and knees. The limbs of bipedal are

constructed from steel and aluminum. The actuation is provided to the leg by

antagonistic pneumatic muscle actuators.

25

(Grizzle et al., 2009) introduced the MABEL platform for studying the walk,

run locomotion of bipedal robots. The main purpose of the platform is the

development of a new feedback control system for running and walking on

rough terrain. The second purpose is to create motivation for building a robot

for technology outreach. The mechanical architecture of bipedal is a planar

robot with five links. Two legs with the knee are assembled on the torso and

the legs are terminated in point feet. A real-time computing and data

acquisition system acquires the data from sensors. The software framework

switching controller module and helps in controlling bipedal.

(Y. Kuroki et al., 2004) developed an SDR-4X small bipedal entertainment

robot. This software creates a whole-body motion. The SDR software consists

of a motion creating system and foot trajectory generator system. The upper

body motion was edited and created by the motion editor creator and the lower

body trajectory was created by a foot trajectory generator. Upper body motion

is created by the motion designer by loading the music into the system. The

dance steps are created with the help of a foot trajectory generator.

(Y. Huang et al., 2013) obtained adjustable step length and velocity during

dynamic bipedal walking. The compliance of the joints is controlling the

passive walking to obtain natural motion robot experiments. A kinematic

coupling is used to keep the upper body centered between two legs. Bipedal

walker moves on level ground resembling a real robot. By changing joint

compliance, the walking pattern is observed. The step length and velocity

control the natural dynamics of the walker.

(Garofalo et al., 2012) suggested a periodic walking motion for the spring-

loaded inverted version of a bipedal robot. The controller architecture of the

SLIP bipedal robot consists of an upper layer and lower layer control. The

upper layer control is straightforwardly associated with SLIP and guaranteeing

periodic walking design. The lower layer controller controls the force. The

main function of the controller is to set up an interface between the elements

of a real robot.

26

2.3 Mechanical Design of Humanoid Robot

The human body consists of bones, muscles, cartilages, and joints. Push and

pull of muscles control the movement of the body. It is difficult to develop the

muscular-skeletal system in humanoid robot/ bipedal by mechanical

components. The goal of mechanical design is the development of humanoid/

bipedal robots resembling humans. This part of the literature review deals with

the mechanical design of humanoid/ bipedal robots.

(Yu et al., 2014) presented the mechanical design of a humanoid robot. They

also proposed the control architecture of the control system based on the

multi-channel communication system. The mechanical design of both legs of

the bipedal robot consists of six DOF. The design principle consists of

symmetry of the body like human and high stiffness and lightweight. Link and

the joint was fabricated by mechanical casting. The distributed control

architecture was implemented to control the joint motor movement.

(Borst et al., 2007) developed a research platform for the manipulation of the

two-handed dexterous arm of the humanoid robot. The workspace of 2m was

considered when the arm of the robot was designed. The robotic arm has an

anthropomorphic kinematic configuration which can easily grasp the object

from both the hand. The mechanical design consists of the torso, arms, head,

neck, and fingers. The table is a workspace for the robot. The dexterous arm

has 14 degrees of freedom and the hand has 24 degrees of freedom.

(Kanehira et al., 2003) developed an advanced leg module for rough terrains

and prevent tipping over to protect the damage of the robot/ bipedal body. The

design of the advanced leg consists of six DOF. Three DOF is provided in the

torso and the knee has one DOF and the ankle has two DOF. The upper leg

and lower leg are considered to be of equal length 30cm and the ankle length

is 9.1cm and the length of the torso is 12cm. The total weight of both legs is

17.2 kg and the dummy weight considered on the torso is 22.6 kg. To prevent

tipping over, the design follows the cantilever type structure of the hip joint.

The design mechanism for walking on rough terrain consists of a six-axis

force sensor and rubber bushes.

27

(Oh et al., 2006) developed an android Albert HUBO bipedal robot that has a

height of 137cm and a weight of 57 kg. The actuator of bipedal consists of

gear and DC motor. Planetary gears are used for the finger joint to reduce the

backlash and small errors. Finger and wrist movement does not affect the

stability of whole-body motion. Harmonic gear is used for the arm movement

and leg movement to maintain the system stability and joint position stability.

The weight distribution can be done by keeping all the power source battery

and controller on the torso.

(Iwata & Sugano, 2009) proposed the anthropomorphic design of Twenty-One

human bipedal robots that provide supports to elder women while securing

contact safety. The passive impedance mechanism used in the Twenty-One

bipedal robot. The upper body is attached to the base of the Omni wheel. The

concept design of the Twenty-One bipedal robot started from the setting of the

task scene in daily life. The anthropomorphic design of the upper limb consists

of the arm and trunk. The arm has seven degrees of freedom with one

redundancy and the four-finger hand has thirteen degrees of freedom.

(Fukaya & Toyama, 2000) proposed the novel design of the humanoid hand of

the TUAT /Karlsruhe humanoid arm. The hand of the TUAT /Karlsruhe

consists of 20 degrees of freedom. The first four fingers of the humanoid arm

are identical and each one consist of three joint of four DOF. Palm consists of

two DOF and the little finger moves freely. The joint of the finger is driven by

one actuator. A special mechanism of link rod pulls link plate and finger

moves. One actuator drives all the joints of four fingers which are placed into

or around the hand. When the proximal joint touches the object, the finger

curls around the object, and the adjacent part is moved by link.

(Ogura et al., 2006) describe the development of a bipedal simulator and

design of robot WABIAN-2 bipedal robot. Each leg of this bipedal robot

consists of 7 DOF and 2 DOF to the waist. The target is on designing the

lower body of bipedal. The aluminum alloy is used for the fabrication of the

WABIAN-2 bipedal robot, so that body has low weight and more stiffness.

The 3D -CAD model was used for the design of the bipedal robot.

28

(Akachi et al., 2005) presented the mechanical and electrical features of the

HRP-3P bipedal robot. The mechanical and structural features of HRP-3P

protecting the body of the bipedal robot against water and dust. The

mechanical features include the height, width, and depth of the bipedal robot.

The height of the HRP-3P humanoid robot is 160cm, width 66.4cm, and depth

36.3cm. The total degree of freedom is thirty-six. One of the unique structures

is a cantilever type hip joint and it allows the robot/ bipedal to move the cross

leg.

(Ha et al., 2011) presents the design method of open bipedal platform

DARwIn-OP. The mechanical design of bipedal consists of 20 degrees of

freedom. The center of mass lying between the center of the hip. Frames of a

bipedal robot are hollow in structures so that anyone can put the sensor

between the gap of the frame. The height and weight of the robot are 45.5cm

and 2.8 kg respectively.

(Endo et al., 2008) describe architecture and evaluation of a limited degree of

freedom of head of a bipedal robot for facial expression of the WABIAN-2

bipedal robot. To provide the emotional expression in the bipedal robot, the

ankle joint movement along the yaw axis and the trunk joint along the roll axis

are removed from the bipedal robot. A new head design was proposed for

balancing the head. The lightweight and downsizing of the head are

considered to mount on the body. The wires and torsion spring attached to the

yaw of the eye. The lip is of spindle type and actuated by wires made by using

springs.

(Lohmeier et al., 2009) developed the fast walking bipedal LOLA robot. The

emphasis was given on improving weight to achieve good dynamic

performances. The height of LOLA is 180cm and 55 kg in weight. The

redundant kinematic structure of the leg is lightweight and allows for a natural

and flexible gait. The active toe joint occurs momentarily before the swing leg

comes in contact with the ground thus reducing the joint loading. The toe

contact with the ground stabilizes the bipedal and allow forward movement.

29

(I. W. Park et al., 2005) developed the mechanical design of the KHR-3

bipedal robot without hand. Pulley belt mechanism drives the joint of the

humanoid robot. Belt tension is maintained by changing the motor position.

The hip joint of the robot was designed as a tube-type crossing structure. The

internal part of the tube is almost hollow except for gear actuation assembly.

All the frames of the bipedal robot are 2D in shape. The closed kinematic

configuration of the robot provides more support when it supporting on the

ground. If some position error occurs in the feet then a comparison of the error

in the motor position and the joint motor is done.

(Ambrose et al., 1973) developed space humanoid Robonaut robot which

works in the space environment to assist the astronaut. They focus on the

upper body design of the Robonaut. The arm and finger of Robonaut offer

dexterity and sensing. The hand of Robonaut’s will fit into the astronaut’s

hand gloved. The hand has a total of 14 degrees of freedom consist of the

forearm, wrist with 2 DOF, and the five fingers with 12 DOF similar to the

human arm. The head, consists of two color camera provide virtual reality and

depth perception.

(Yamasaki et al., 2000) proposed the basic architecture and design of the

PINO humanoid robot/ bipedal. The PINO has twenty-six DOF, each leg

consists of 6 DOF, each arm consists of 5 degrees of freedom, the neck

consists of 2 degrees of freedom, and the trunk consists of 2 DOF. All joints

are actuated by a 26 DC motor. The metal gears reinforce against the high

torque.

(Tellez et al., 2008) introduced mechanical stage Reem-B in the field of

assistance robots. The psychological capabilities of the Reem-B bipedal robot

enable dynamic walking and association with individuals. The physical

structure of the bipedal robot comprises feet and a middle body. Stiffness

ought to be high but weight ought to be less. The robot had one hand having

four fingers and 11 degrees of freedom in fingers.

(Tsagarakis et al., 2011) built lower body parts of cCub bipedal robot, the

progression of iCub bipedal. New leg motion system considered in the cCub

30

bipedal robot. The mechanical structure of cCub includes every leg that has

six DOF, three DOF in the hip, one DOF in the knee, and two DOF in the

ankle. The leg has an andromorphic kinematic structure comprise of the hip,

thigh with the knee joint, calf with ankle joint.

(Gienger et al., 2002) manage the structure and control engineering of a

bipedal robot. For human walking movement - pelvic turn, pelvic roll, knee

and ankle cooperation, and relocation of the pelvis are significant

determinants. Joint torques depend on move relies upon the development of

pitch movement profile. Ankle joint actuated by two linear ball screw drives.

(Mohamed & Capi, 2012) built up a versatile humanoid robot for helping

older individuals working at home and clinic. A visual sensor perceives items.

Laser discoverer sensor connected to the lower body. Bipedal starts by moving

towards the target object. The upper part comprises arms, gripper, and head.

The entire upper body is appended on the wheel. It permits the arm to be

checked and imagined simultaneously.

(Wyeth et al., 2001) describe the structure of the humanoid robot. Total CAD

model and explicit motor and transmission chose for building mechanical

structure and are under the progress phase. The mechanical dimension of the

body of bipedal is taken considering the biomechanical property of the human

body scaled to the tallness of 120cm. Self-sufficient bipedal comprise 23

DOF. Feet and abdominal of bipedal comprise 15 DOF and the remaining 8

DOF consists of upper body parts.

(J. Kim et al., 2012) proposed the advancement of biped walking of robot

Robray. The main emphasis is on the advancement of the lower body thinking

about two structures of bipedal. One design includes an exploratory platform

to evaluate torque and force while walking. Another architecture considers

consistent and flexible leg mechanisms to decrease high occurrence. The

kinematic design includes each leg having six DOF, waist with one DOF, and

ankle having two DOF. The extent of the development of the hip joint

expanded by giving a count balance between the axis of the hip joint.

31

2.4 Control Architecture of Bipedal Robot

The controller design of the bipedal robot is very complex as the model

includes inactivity and inverse computation. Second-order responses are

usually loud. A powerful control framework needs to control bipedal

movement along with the entire body of the bipedal robot. Various degree of

freedom in a bipedal framework makes it unstable and incapable of

performing the desired task in unstructured and dynamic condition. This part

of the literature review deals with the controller architecture of humanoid/

bipedal movement control.

(Burghart et al., 2005) present the cognitive design of the humanoid robot.

Cognitive design is a mixture of three-layered leveled structure and behavior

explicit module. The control framework of the humanoid robot is detached

into a different module. Each part has its product and equipment module. The

foremost layer of cognitive control design comprises of sensor and motor. The

data originating from the joint position sensor, force sensor, and tactile are

passed to the next layer for the execution of a task. The second layer perceives

a framework that has access to the database, where information is stored. The

last layer inside recognition is organizing all components data in solitary

methodology.

(Kanda et al., 2002) proposed a valuable methodology for implementing

behaviors in bipedal to connect with individuals. The information got from

intellectual investigations utilized for the design conduct of bipedal and acts as

a manual to coordinate among individuals. To oversee execution request robot

framework executes organized modules and episode controls successively.

The connection between bipedal and individuals is dependent on the situated

module.

(Rosenblatt & Payton,1992.) present a fine-grained layered control system for

robot control. The fine-grained control design gives insightful control

components through a piece of essential. The decision is made based on

behaviors. Every unit of the system model gets contributions from different

units and outer sources. After getting input, organize the process at an

32

actuation level and produce a single yield. The interconnection between

homogeneous units is missing in the structure network.

(Brooks, 1987) adopted a layered methodology control framework for

autonomous bipedal. In this approach, the problem is decomposed into a

parallel task. The robot control framework starts with accomplishing the most

minimal level undertaking and never changes alter framework involves the

zeroth level of control framework. The next layer of the control system builds

and examines data from the low-level system to accomplish a new task. The

low-level system is unaware of upper layer processing. The same processing is

repeated to achieve the new task at the next higher level of the control layer

system. Each processor controls the specific task and runs asynchronously.

(Ly et al., 2004) introduced distributed control engineering for accomplishing

objective assignments for a bipedal robot. The control design is organized into

three levels and maps useful highlights in equipment and programming

modules. The control design comprises of task planning, task coordinating,

and the task execution layer. In task level planning, task description is

received and allocated the subtask by selecting multiple subsystem controllers

of the robot. After the selection of a subsystem controller, actions are

generated by task-level coordination for the execution level to achieve the

desired task.

(Y. Wang & Butner, 1987) depict computer control design to advance the

computational preparation of robot control. The proposed control design

disintegrates simultaneously assigned tasks into the system. The processor gets

data from the sensor and passes direction data to the robotic processor which

is then interpolated by the robotic processors. The interfacing of the control

framework and manipulator actuator is done by the interface card.

Decomposition of the task parallel results in very little time to execute and

hence reducing response time.

(Yoshihiro Kuroki et al., 2003) developed amusement applications in SDR-4X

bipedal. The constant sensor-based versatile control is applied for the bipedal

robot to control body movement on the harsh and unlevel landscape.

33

Balancing movement control builds adjustments of whole-body movement and

produces an obstacle avoidance movement for the upper body. The tendency

and body pose are determined with the assistance of an accelerometer and

force sensor. The adaptive control system realizes deviation and controls the

body posture and prevent from tipping down.

(Simmons & Apfelbaum, 1998) created task description language (TDL) to

control a robot. TDL is an augmentation of C++. The assignment control

design involves three-layered - planning layer, executing layer, and behavior

layer. assignments are characterized in TDL. A class identifier such as

objective, command, monitor, and exception is followed by an argument. TDL

does not have a return value so that control is not returned until the next

command has been taken care of.

(Khatib, 1987) proposed a framework for controlling end-effectors' force in

the constrained environment. The two-level control architecture enhances the

performance of the position and active force control of the robot manipulator.

The real-time position and force control implemented in the operational space

with obstacle programming systems. The end effectors equation is established

in dynamic decoupling. For the stabilization of the redundant manipulator, the

joint force and the dynamic behavior is identified.

(Mansard et al., 2009) presented a system for the execution of a stack of the

task of bipedal to work in a collective environment. The stack comprises of

undertaking definition and taking care of arrangements. The product system

began with substances and their chart, control emphasis must be performed.

An error related to each task is computed. The software scripting framework

interface exists for handling tasks.

(Posadas et al., 2008) designed a portable and modular control architecture for

controlling the mobile bipedal. A distributed blackboard communication was

established between the mobile software agent. The proposed architecture

reduced the temporal problem by separating the elapse communication time

from the execution time. First, the architecture established offline

communication to move the bipedal by real-time soft bus and then process the

34

code. When offline communication terminated, the bipedal robot obtained the

agents. The agent executed the task without any external communication.

(Erhart et al., 2013) developed an impedance control scheme for robot

cooperative manipulation. The cooperative manipulation reduces the internal

stresses on the joint. The kinematic uncertainties arise due to improper

grasping of the object. The impedance control scheme computes the end

effectors' trajectories and removes the kinematic uncertainties. The evaluated

trajectory is compatible with the object's motion. During the manipulation

task, the kinematic coordination is achieved by the closed-loop manipulator

dynamics.

(Asfour et al., 2006) proposed hierarchically control architecture of a bipedal

robot for household activity. Hierarchical control design had three layers

structure - task planning, task coordination, and actuator-sensor levels. In the

first level, tasks are recognized by the client and determine subtask for

bipedal. The corresponding actions are generated by the task coordination

level. The sensory-motor level executes tasks to achieve the desired goal by

the bipedal.

(Feil-Seifer & Matarić, 2008) describe the novel control architecture of B3IA

in an autonomous bipedal system for the behavior intervention of autism

spectrum disorder children. The control architecture of the behavior-based

behavior intervention architecture (B3IA) consists of the sensor and the

interpreter module. This module helps the bipedal to observe and control the

behavior of humans and objects in the environment. The operational decision

is made by the bipedal in the task module. The operation of hardware is

controlled by the effector's module. Human actions and bipedal actions are

stored in the activity history module. The analysis and interaction of the robot

with humans are evaluated in the evaluation module, which can be used as a

bipedal parameter.

(Galindo et al., 2006) implemented the human–robot-integration control

architecture into a robotic wheelchair. This control architecture permits a

person to deliberate the activity. The human-robot control architecture scheme

35

is made up of several elements. Modules are grouped into three layers. The

hierarchical and symbolic representation of the environment is maintained in

the deliberative layer. The internal world model is used to produce plans and

establish communication between human-robot. In the execution layer, the

sequences of the task executed and supervise the information received from

the robot’s sensor. The functional layer controls the navigation and

manipulation between two-point and provides guidance.

(Naumann et al., 2007) deal with the control architecture of process-oriented

programming for robot cells that enables in the production environment. The

interconnector module of the software is taken as input descriptions and

processes. The process-oriented programming is used to trigger the machining

operation. To understand the process command, an ontology was introduced.

Ontology is considered a relevant class of the robotic domain.

(Liu et al., 1989) proposed the adaptive neural network for robot hand control

to grasp the object. The control architecture is based on the prehensile function

of humans. The object analyzer module establishes the relation between

object, shape, and grasping modes. The object analyzer module generates a

suitable grasp mode for the robotic hand. The neural network generates the

eight generic grasp mode for the robotic hand. This approach reduced the

building of device-dependent grassing mode.

(J. Y. Kim et al., 2005) utilized distributed control engineering to control the

joint of bipedal to decrease the computation time of the main controller. This

controller is placed on the back of the bipedal robot, coordinates with the sub-

controller at run time by the controller network area. The controller can

receive and send data to the sub-controller at the same time. The sub-

controller is designed separately for joint motor control and inertia sensor.

(Yokohama & Takashima, 2002) developed an open hardware platform for

humanoid robotics. The virtual bipedal robot platform is compatible with a

real bipedal robot as it is. The OpenHRP has the dynamics computation,

contact and collision computation, and unification of the controller features.

The OpenHRP is implemented on the common object request broker

36

architecture(CORBA), which supports C++ and java programming. The

simulation is controlled by a CORBA client in an integrated simulation

environment.

(Rohmer et al., 2013) introduce virtual robot simulation platforms for the

reconciliation of actuator, sensor, and control. A disseminated control strategy

is utilized in an adaptable and scalable robot simulation platform. Three

techniques were used to achieve the simulation. The first technique is the

execution of the control code on another machine, so that computation time

for simulation is very less. The second technique is the execution of the

control code on the same machine for other processes than the simulation. The

third technique is the execution of the control code on the same machine other

than the simulation loop.

2.5 Reinforcement Learning Control Algorithm

The bipedal robot can understand the unstructured and unknown (dynamic)

environment to perform the desired task. They just learn from the environment

and execute the task without any human programmer or user. The

reinforcement algorithm helps the bipedal robot to decide the critical

condition. This part of the literature review deals with reinforcement learning

in a bipedal robot. This is the current trend that is going on the developing the

bipedal platform for the real environment.

(Weiß, 1995) discussed two distributed learning algorithms that are suggested:

ACE (Action Estimation) and DFG (Dissolution and formation of groups).

Learning achievements rely upon the exploration of an adequate number of

state-action pairs. If the state, action spaces are enormous then it takes too

much time for learning which is impractical.

(Zhou, 2002) proposed a genetic algorithm-based fuzzy reinforcement

learning (GAFRL) agent who learns by using a global optimization technique

can predict the capabilities of the critic network and evaluate the candidate

solutions. Assumption of Fitness function incorporates various observation-

37

based data to GAFRL agent and other machine learning methods for

accelerated learning of robot.

(Pontrandolfo et al., 2002) utilized the RL approach applied to a case model,

organized networked production framework that transverses a few geographic

zones and different coordination stages. Fails as has not considered a huge and

complex global SCM problem.

(Yen & Hickey, 2004) included a forgetting mechanism and used

hierarchically structure RL agents to expanded execution when contrasted

with traditional RL agents exploring in an uncertain environment. It is not

practically implemented in Hardware.

(Ueda et al., 2004) acquired fingertip trajectories by RL dependent on

simulation. The reward function has been designed by considering the friction

between finger and page. This results in perfect turning of pages as there is no

slip between the finger and the paper. It is required to achieve smooth

movement of fingertips and on-line error compensation using visual feedback.

(Y. C. Wang & Usher, 2005) developed an application of agent-based

production scheduling which utilizes RL algorithms to dispatching rules

selection problems to determine whether it can be utilized for enabling

learning of machine agents. It is not applied to complicated agent-based

scheduling like dynamic job shop scheduling.

(Ling & Shalaby, 2005) proposed to automate street car grouping control

utilizing multiple RL agents that follow up on the progression of progressive

signalized crossing points. Multi-agent work in sync to separate road car group

if one is recognized and to construct sensible progress between the matched

road vehicles. It required deciding the optimal number of RL agents and the

best settings and limitations of each agent. The development of state-space

data to catch general vehicular traffic conditions on the major and minor

streets may additionally improve the presentation of agents.

(Tehrani & Kamel, 2005) considered the Robot soccer problem for analyzing

behavior arbitration. It utilized the Sarsa(λ) algorithm with a pseudo-fuzzy

38

strategy for function estimation. Some underlying information is supplied to

the RL learner. Team size considered was ONE learner on each side playing

against each other

(Yasuda et al., 2006) applied RL that embraces the Bayesian discrimination

strategy for sectioning persistent state space and consistent activity space at

the same time. A real robot experiment was not carried out. It did not acquire

more sophisticated cooperative behavior as the obstacle avoidance in the

complex environment.

(Janssens et al., 2007) have done the allocation of neighborhood data in a

simulation of activity-travel design. There is no limitation on the number of

activities and consolidation of sensible travel time. The information does not

reveal a significant relationship between time and the area.

(Duan et al., 2007) uses the Fuzzy Neural Network along with RL (FNN-RL).

The residual algorithm is utilized to figure out the slope of the FNN-RL

technique to ensure convergence and speed of learning. It uses a hierarchical

learning method for robot soccer agents. The specific simulators FIRA 5 is

required and the number of trails is 50.

(Kareem Jaradat et al., 2011) created a Sequential Q-learning algorithm to

manage issues of behavior conflict that emerge in a multi-robot transportation

framework. RL and GA are coordinated to settle on choices when the robots

cooperatively transport an object to the goal location while staying away from

snags. The sequential Q-learning gives good results for the sequential task but

not for concurrent tasks.

(Nanduri & Das, 2009) introduced a computational algorithm to acquire Nash

equilibrium of n-player matrix games. The algorithm utilizes a stochastic-

estimate- based RL approach and can understand n-player network games with

huge player–activity spaces. The proposed algorithm needs hypothetical

evidence for convergence and optimality.

(Quintía et al., 2010) attempted to boost time before the robot fails to acquire a

control strategy that is suitable for desired conduct. It does not consider the

39

contrasts between what the robot predicts and what occurs in the real-time

environment.

(Tamei & Shibata, 2011) introduces the utilization of policy slope kind of RL

for conquering time-varying nature issue by formulating EMG-based active

human-robot cooperative work as objective-oriented errands. Permitting

increasingly broad 3-D movement, and utilization of the way to deal with

progressively complex assignments such as motor learning and recovery.

(Shokri, 2011) suggested for each action of a very large state space, its

associated inverse action is characterized. The state and its inverse action are

defined in the structure of RL to refresh the value function which results in

converging fast. The decision of the RL signal and inverse RL signal is

critical. In certain applications, the inverse is not known inverse actions have

to be reserved during the learning procedure.

(Zeng et. al., 1996) recommended a combination of RL and simulation to

optimize operation schedules for the compartment terminals, which utilizes a

simulation model to build framework conditions and is applied to learn

optimal dispatching rules for various procedures. Designing reward function

for rules and action procedures more effectively and contemplating the

collaboration among various kinds of agents to improve coordination of the

operation system.

(Maravall et al., 2013) examined the impact of group size focused on a group

of the moderate size of the request of 5 and 10 people and the impact of the

lexicon size on the convergence results. It has not used a physical multi-robot

system.

(Gabel & Riedmiller, 2012) proposed that in the learning phase, agents adapt

the parameters using the policy gradient RL, which aims to improve the

performance of the joint policy scheduling objective function. A proposed

lightweight communication system that improves agents' abilities beyond job

dispatching. The policy gradient algorithm proceeds as stochastic gradient

descent and the number of strategy refreshes required to reach a local optimum

40

is expanding. They utilized a comparatively high estimation of E to acquire

reliable gradient estimates.

(Matsubara et al., 2013) proposed a novel RL system for learning motor skills

that communicate with flexible substances. Learning structure centers around

the topological relationship between the configuration of robot and flexible

substances when almost all details of the substance are considered(e.g.

wrinkles) even which are insignificant for doing motor assignments.

(Velentzas et al., 2018) applied the reinforcement algorithm in assistive robots

for the educational application. The child’s gaze provides the information to

the robot. The reinforcement algorithm has a set of the state which are

dimensional features. The action has a finite discrete set of actions and

generates a set of actions for the different states. The Q-learning rule helps to

choose the action depending upon the task. After choosing the action, the

transition takes place, and a reward is associated with the action and learns

from history. The reinforcement algorithm decomposes the task into a set of

discrete actions so that it can be easily understood by children-robot

interaction.

(Katic & Vukobratovic, 2003) presented the hybrid control of an intelligent

control system for the bipedal robot. The reinforcement learning accumulated

the knowledge from the dynamic balance of the bipedal robot and improving

the gait during walking. The control architecture of the gait synthesizer has

three components. The neural network trains the action selection network

using the error signal received from the external reinforcement. For the desired

state, the action evaluation map state and failure into a scalar score. Stochastic

action modifier uses the recommendation action and reinforcement to produce

a dynamic walking.

(Kober & Peters, 2006) worked on episodic reinforcement learning to control

the motor primitives in a dynamic situation. The policy gradient method is

used in the reinforcement algorithm. For the desired control of motor both the

dynamics of the system are chosen for the stable condition. The deterministic

41

mean policy depends on the joint position and the basis function. The basis

function is the motor primitive parameters.

(Kartoun et al., 2010) proposed collaborative interaction between humans and

robots based on reinforcement learning. Learning is based on a collaborative

Q-learning approach and provides a robot with self-awareness and autonomy.

In a collaborative Q learning algorithm, there are two levels of collaboration

between humans and robots. In the first level, the robot decides the action and

updates its state-action values. In the second level of collaboration, the robot

takes the request from the human advisors. The robot is switching from the

autonomous mode to semi-autonomous mode based on the policies.

(Wawrzyński, 2012) demonstrate the reinforcement learning algorithm for

bipedal gait optimization. The actor-critic learning applied for the experience

replay and fixed point method to determine the step size. The Markov decision

process provides the solution for the reinforcement algorithm to control the

bipedal robot gait. The control process of actor-critic works in discrete time to

select the state and select the proper action. The transition between the current

state to the next state happens and a reward is assigned to the state and action.

The stochastic control and the value function updates the learning parameter

based on the data collected.

(Kati & Vukobratovi, 2006) proposed the fuzzy reinforcement hybrid control

algorithm for the bipedal robot locomotion. The controller has two feedback

loops around the zero moment point. The centralized dynamic controller keeps

tracking of the robot’s normal trajectory and fuzzy reinforcement feedback

compensates the dynamic reactions of the ground around the zero moment

point. Fuzzy reinforcement control algorithm structure based on the actor-

critic temporal difference method. The policy represents the set of control

parameters.

(Frank et al., 2014) proposed reinforcement learning which could control the

iCub humanoid robot. iCub learns from its experience the world model and

controlling actual hardware in real-time with some restrictions. Reinforcement

learning discretized the real configuration of the robot in configuration space.

42

The modular behavior environment of the iCub humanoid robot generates the

action and the robot tries to go into the transition state. The Markov model

develops the path planner and connects the state to the near state.

(Christen & Stevˇ, 2019) proposed the deep reinforcement learning algorithm

to train the control policies for the bipedal robot interactions. The control

problem is formalized from the Markov decision process. Input to control

policy is a joint position, velocity, and sensor reading of the hand. The motion

capture system captures the position of the hand. The output of the control

policy actuates the humanoid arm. The reward is provided to correct the end

configuration of the humanoid arm.

(Lober et al., 2016) improve reinforcement learning using Bayesian

optimization for whole-body motion control. It evaluates the cost function in

robotics and optimizes the set of parameters. To ensure a smooth trajectory,

the whole-body control guided by the task in a series of waypoints. Three

components of costar are evaluated for the execution of the task. The

optimization variables are selected from the trajectory waypoint.

(Hester et al., 2010) describe a model-based reinforcement algorithm with a

decision tree to train the bipedal robot to kick goals. In the model-based

reinforcement algorithm, learning takes place aggressively during model

learning. Q-learning approach adopted for the model-free reinforcement

learning. Q-learning update state-action for every state-action pair. RL with

the decision tree take the action with the highest value and entering into a new

state. After entering into a new state, the award will be received in the new

state. Observing new experiences through the model, the algorithm updates the

parameter through the model.

(Riedmiller et al., 2009) work on the application of batch reinforcement

learning in a challenging and crucial domain. Reinforcement learning helps

the robot to gain ideas from the repetitive interaction from the environment.

The batch reinforcement control algorithm consists of sampling experience,

training and batch supervised learning. The training pattern set estimates the

value function. The batch supervised generates a new estimate for value

43

function from the training set pattern. The behavior-based approach is used to

implement the reinforcement algorithm to take the decision.

(Iida, 2004) proposed an adaptive allocation method for the reinforcement

control algorithm for bipedal motion control. Actor-critic learning is adopted

for reinforcement learning. This method has separate memory to represent

policy i.e. independent from value function. The actor calculates the action

value for the bipedal robot when it observes the state in the environment. The

critic receives the reward and provides the temporal difference. The learning is

simulated on the virtual body of the bipedal robot to stand up from a chair.

The bipedal observes the wait, knee, ankle, and pitch angle of the body. The

humanoid robot learns to fall backward. Afterward, it falls forward. Finally, it

stands up and controls its body.

(Sko, 2008) proposed the dynamic control approach for the humanoid bipedal

walking. The controller involves two feedback loops. The computational

torque controller receives the input from the impact force controller and

reinforcement controller. The reinforcement controller maintains the torso

movement with the help of fuzzy feedback. The policy gradient reinforcement

learning controls the trajectory of the dynamic walking of the bipedal robot.

(Danel, 2017) proposed actor-critic neural network architecture for the

continuous action policy of reinforcement learning. The deep deterministic

policy gradient method controls the bipedal body control task. The

deterministic policy was developed by the actor-network. The action value

generates by the critic network. The temporal difference was minimized by the

training of the critic network. The immediate reward is received upon the

action and update the learning parameter to the database of the control

architecture.

(Peters et al., 2003) discussed the different approaches for reinforcement

learning algorithms for a bipedal robot. The natural actor-critic learning

controls the motor of bipedal. The movement plan has a set of joint position

and joint velocity of the bipedal. The system has point-to-point continuous

movement i.e. the episodic task of the reinforcement algorithm. The

44

evaluation of the basis function for the value is done by the actor-critic

network.

(Guenter et al., 2007) developed an algorithm for programming robots by

demonstration. When unexpected perturbations occur, a robot is unable to

perform a task. The teaching of a constrained task to a robot by a learned

speed trajectory. The natural actor-critic network evaluates the policy by

approximating the state-action values. The simulation is carried out for the

cubic box and obstacle. Using reinforcement learning, the system takes 330

trials to achieve the goal.

(Lowrey et al., 2018) developed the control policies in a simulation that can

transfer to the dynamical physical system. The policy gradient learning

method is used in the reinforcement algorithm to optimize the parameters. The

natural policy gradient algorithm pushing the task to learn. Training of policy

determines an action to take and gain a good reward. The structure of training

informs the policy behavior with the time required to execute the desired task.

The reward function reduces the gap between the robot and the target.

(Kober et al., 2011) developed the reinforcement algorithm which maps

circumstances to meta parameters. Motor primitives are used for learning meta

parameters. The dynamical movement of the motor is represented in the first-

order differential equation for the critical damped. The goal parameter is the

function of the amplitude parameter that represents the complex movement.

All degrees of freedom of the system synchronize in the dynamical equation in

the canonical form.

(I. J. Silva et al., 2017) proposed a reinforcement learning algorithm to

optimize parameter values for the generation of gait patterns in bipedal.

Locomotion control achieves by the central pattern generator. The three

oscillators attached to the foot of the bipedal. Each oscillator has six sub-

oscillator related to the axis and configured to the parameters. The parameters

are divided into three groups of offset parameters, oscillation parameters, and

feedback parameters. Two parameters have been selected for the optimization

of the gait.

45

(S. K. Kim et al., 2017) demonstrated the intrinsic interactive reinforcement

learning algorithm for human-robot interaction based on the gesture posture.

The human electroencephalogram generated feedback used for the reward.

The leap motion controller recognizes the human gesture to learn the robot and

simultaneously the robot map the gesture for action. The contextual bandit

approach is used to enable the robot’s action provided by human gestures.

2.6 Research Gaps

After a detailed literature review, the research gap was found out for the

humanoid/ bipedal robot. Issue despite everything exists in the mechanical

structure, movement, and controlling of the Bipedal robot. Some of the gaps

identified are :

 All available systems either use Artificial Neural Network (ANN) or

Artificial Intelligence (AI) for Robot and Humanoid/ Bipedal to design

them for specific tasks/problems.

 The systems defined usually have predefined problems, conditions

(environment), and pre-stated results to define them.

 Self-awareness is a humanoid robot that is missing to decide an

unknown environment.

 Stability in the motion of a humanoid/ bipedal robot isn't accomplished

completely in the dynamic conditions and uneven ground.

 Speedy walk and run in a humanoid robot are questionable. The abrupt

turning of movement is an additionally unsolved issue.

The gaps taken into considerations are designing the framework for bipedal

which used the reinforcement learning algorithm, the environment is dynamic

as an object is placed at different locations and the targeted output is the

smooth trajectory of the bipedal in the unknown and dynamic environment,

the stability is a major concern. The locomotion is considered on a smooth

surface, bipedal learn the walk and then executes which gives bipedal

decision-making characteristics to whether explore more states of the dynamic

environment or exploit the previously used states for fast execution to reach

the goal in the minimum amount of time.

46

2.7 Research Objectives

The main objective for the proposed work is the design and simulation of the

framework for a Bipedal walking robot (Finite State Machine) using a

reinforcement learning algorithm.

The sub-objectives to fulfill the main objectives includes designing and

simulation of algorithms which has the following features:

1.Incorporating of forgetting mechanism into the RL system- An agent

might use the knowledge that has become outdated.

2.Use of feature-based state knowledge in RL system- For reducing the

number of state values to be maintained, and

3.Hierarchical organizing of RL system- for reducing complexity in many

applications

The result of the above objectives will be MAS developed which would

answer two basic questions:

i. How can multiple agents learn which actions must be done simultaneously?

ii. How can multiple agents learn that all sets of simultaneous activities must

be done consecutively?

The success of learning depends upon the exploration of an ample number of

state-action pairs.

The robotics research community tries to implement human thinking behavior

in the bipedal robot, which helps in the understanding environment and in

deciding critical conditions. The reinforcement learning algorithm allows the

bipedal to learn, think, and do the action in an unknown environment. The

development of a reinforcement algorithm for several degrees of freedom is a

very challenging task. Therefore, this research work aims to develop a

reinforcement learning algorithm for vision and motion control in a bipedal

robot by keeping the best options for future use.

2.8 Research Outcomes

This architecture is simulated in SimSpace Multibody implementing a

Forgetting Q-learning algorithm and Feature-based Object Identification

reinforcement learning algorithm to be implemented on the control system of

47

the bipedal walking robot in a hierarchical structuring manner. The Forgetting

Q-Learning algorithm is implemented on a hierarchical structure i.e. Hip joint

is trained first then the knee joint is trained and then the ankle joint of one leg

then after a delay of half of Gait time another leg joints are trained similarly to

complete one Gait or Stride. The self-learning of bipedal to balance at runtime

/online and then navigate to the identified object in the dynamic environment.

48

CHAPTER 3 PROPOSED MODEL

The proposed model considers lower body segments of bipedal. The model

comprises ten degrees of freedom with every leg having five degrees of

freedom. Both ends of the legs are linked to the torso. The torso is an

inflexible body on which both hip joints are attached and have a vision system.

Simulink/ SimSpace Multibody Matlab model is designed for the bipedal. For

designing and developing the lower body of bipedal, the anatomy of the

human lower limb (hip or pelvis joint, thigh, knee joint, calf, ankle joint, and

ground contact forces) is taken into consideration(Agarwal et al., 2015). Table

3.1 shows the lower body parameter of bipedal without considering the upper

body parts like shoulder, hand, and head(Sharma et al., 2020).

Table 3.1 Lower Body Parameter

Parameters Dimension in mm

Foot length 240

Foot width 90

Foot height 100

Lower leg height 380

Lower leg diameter 370

Upper leg height 380

Upper leg diameter 480

Torso length 330

Torso width 150

The human body is designed to support the skeletal system. The bones of

humans are rigid but cartilages make the body flexible. The appendicular

skeleton of a human includes bones of the shoulder girdle, upper limbs, pelvis

49

girdle, and lower limbs. The pelvic forms a supportive framework for the

lower body.

The biomechanical factor is considered for the design of lower parts. The

lower body system of the bipedal robot consists of the left leg, right leg, and

torso. The kinematic configuration includes the degree of freedom of the

joints, motion ranges of all joints, and length of links related to the motion of

the lower body system. The movement of all joints together at a given point

should be such that the motion of each joint should not restrict the motion of

the other joint (Cenciarini & Dollar, 2011). Table 3.2 shows the degree of

freedom of different joints and possible joint range of motion(Hernández-

Santos et al., 2012).

 Table 3.2 Joint Range Degree of Freedom and Motion

Joint Standard Human Leg (in
Degree)

Proposed Humanoid Leg (in
Degree)

Torso Pitch -15 to 130 -15 to 100

 Yaw -45 to 50 -45 to 45

 Roll -30 to 45 0 to 45

Knee Pitch -10 to 150 0 to 100

Ankle Pitch -20 to 50 -20 to 30

3.1 Simulink Model of Bipedal Robot

While designing various parts of the bipedal robot, plane consideration was

taken into account. Torso and hip joint created in the frontal plane of a sketch.

The rest of the part is created in the sagittal plane of the sketch. In the actual

model, the diameter remains constant throughout the height of the lower leg

and the upper leg. The torso is kept fixed for assembling all the parts such as

the pelvis joints of both the limbs. Torso also contains a camera mounted on it

for object identification and vision-based navigation.

Figure 3.1 shows the complete 3D model of the lower parts of the bipedal

robot without the ground.

The ground of the proposed model is created in the MATLAB SimSpace

Multibody toolbox. The SimSpace Multibody toolbox provides the simulation

50

environment for the proposed system. Figure 3.2 shows the MATLAB

Simulink model of the lower body of bipedal without the ground.

Figure 3.1 Proposed 3-D Model of Lower Body

Figure 3.2 Simulink Model without Ground

Figure 3.3 - 3.5 shows the joint, frame, and rigid body MATLAB block

representation of the lower body of the bipedal(Sharma et al., 2020). The

complete combined model is shown in Appendix A.

51

3.2 Simulink Model of Bipedal with Ground

The Simulink model of the lower body of the bipedal with the ground is displayed in Figure 3.6.

Figure 3.3 Simulink Sub-Model of Right Leg of Bipedal

Figure 3.4 Simulink Sub-Model of Right Leg of Bipedal

52

Figure 3.5 Overall Simulink Model of Lower Body of Bipedal

53

Figure 3.6 Simulink Block Diagram of Lower Body of the Bipedal with the Ground

54

The Simulink model of the lower body of the bipedal generated by the

explorer of MATLAB is shown in Figure 3.7. Appendix C gives a

representation of the mathematical expression of dynamic torque in the

MATLAB Simulink model.

Figure 3.7 Simulink Model of Lower Body of the Bipedal with the Ground

3.3 Simulink Model of Bipedal with the Ground and the Contact Forces

The feet of the lower body of the bipedal applying forces on the ground. The

friction force between ground and feet helps bipedal to walk. For creating the

ground in MATLAB Multibody toolbox, a brick element of body block is

chosen. For each body block, two rigid transform blocks are required (M.

Silva et al., 2015). The tangential force empowers bipedal to make a forward

motion on the ground. The normal force ensures that bipedal will consistently

be above ground during the simulation. Figure 3.8 and Figure 3.9 show the

Simulink block for ground and contact forces of foot interaction with the

ground.

After calculating the different forces, the Simulink model of the ground is

made with the help of different Simulink blocks. The detailed parameter of the

ground block, rigid transform, and bipedal parameters are given in Appendix

C.

55

Figure 3.8 Simulink Block Diagram of Contact Forces of Right Leg of the Bipedal with the Ground

56

Figure 3.9 Simulink Block Diagram of Contact Forces of Left Leg of the Bipedal with the Ground

57

Figure 3.10 shows the Simulink model of the lower body falling of bipedal

which falls when tried to walk and could not stand also.

Figure 3.10 Simulink Model of Lower Body of Bipedal with Instability (Falling Down)

Figure 3.11 and Figure 3.12 shows the Simulink model of bipedal with

implementation in which the bipedal prevent itself from falling.

Figure 3.11 Simulink Model of Bipedal in execution with Prevention from Falling

58

Figure 3.12 Simulink Model of Bipedal with Prevention of Falling

59

Figure 3.13 Simulink Model of Bipedal for Smooth Trajectory

60

Figure 3.13 shows how the bipedal trajectory can be smooth without jerks

after once the proposed algorithm is executed, then thereafter the optimal

state-action values are being stored as MATLAB algorithm codes are

executed. Detailed Matlab codes are in Appendix D.

3.4 Simulink Model of Bipedal with the Object Identification and

Localization

Figure 3.15 shows the Simulink model of bipedal with an object (in this case

soccer ball) placed in a dynamic and uncertain environment.

Figure 3.16 and Figure 3.14 exhibit the Simulink model of bipedal with user

define code (Matlab function) for object localization (in this case Soccer ball)

in a dynamic and uncertain environment(Sharma et al., 2020).

Figure 3.14 Simulink Model of Bipedal with Localization Code execution in Dynamic

Environment

61

Figure 3.15 Simulink Model of Bipedal with Object in Dynamic Environment

62

Figure 3.16 Simulink Model of Bipedal with Object Localization Code in the Dynamic Environment

63

CHAPTER 4 BIPEDAL WALKING ROBOT:

ARCHITECTURE

4.1 Overall System is designed to achieve Sub-Objectives

Figure 4.1 shows the general framework which is intended to accomplish the

desired sub-objectives.

Figure 4.1 Overall System Designed to achieve the Sub-Objectives

4.2 Model of the Bipedal for Object Identification and Navigation

Steps followed by the bipedal to identify the object and navigate to the

identified object are:

1. The object is seen by the bipedal through the vision sensor.

2. The object seen is then compared with the objects stored in the

database using the SURF algorithm.

3. The localization of the identified object is carried out.

4. The bipedal now gets the location to reach the object as the goal point.

Image Capturing Object
Identification

Object
Localization

Bipedal
Walking Control

Mechanism

Reinforcement
Learning
Control

Mechanism

Heirarchical
Structured
Learning of

Agents

Reach the
Identified

Object

64

5. The bipedal now start hierarchically learning each joint i.e. first learn

hip joint then knee joint and then ankle joint of each leg.

6. After learning is carried out by reinforcement learning control

algorithm.

7. The control mechanism is implemented on the bipedal joints so that

the bipedal stays in a stable balanced state and walks to the desired

location.

8. Then by using the learned data stored in the lookup table for the same

environment the bipedal walk stably without jerks.

9. For a new dynamic environment, it learns from beginning/ scratch and

stores the optimal actions and policy in the lookup table. These learned

and stored data can be used to execute in the future.

4.3 Flow Diagram of the Overall System

The activities of the overall system include:

1. Self Localization of the bipedal

2. Object Identification

3. Object Localization

4. Distance calculation between bipedal and the object (soccer ball)

5. Bipedal Walking Control Mechanism

a. Gait Design for bipedal

b. Walking Pattern Generator

c. Walking Control Algorithm

6. Reinforcement Learning Control Mechanism

a. Action Selection

b. Reward Calculation

c. Finding the Optimal Action

d. Updation of values

7. Hierarchical Structured Learning Reinforcement learning Agents

a. Implement control mechanism for Hip joint Trajectory

b. Implement control mechanism for Knee joint Trajectory

c. Implement control mechanism for Ankle joint Trajectory

d. Contact force execution on the Foot Sole

8. Reaching Goal Position near the object

65

`

Start

Self Localization of Bipedal

Object (Soccer

Ball) identified ?
Object Localization

Distance calculation between

Bipedal and soccer ball

Yes

No

Bipedal Walking Control Mechanism

Gait Design for Bipedal

 Walking Pattern Planning (Offline)

 Dynamic Posture Stablization (Online)

Walking Pattern Generator

 Walking Cycle

 Lateral Swing Amplitude of Pelvis

 Double Support Ratio (DSP)

 Forward Landing Position Ratio of the Pelvis

Walking Control Algorithm

 Damping Controller

 ZMP Compensator

 Landing Orientation Controller

Capture the Image

A

B
Self Localization of Bipedal

Flag = 0

 Flag = 1

C

66

Figure 4.2 Flow Chart of the Overall System

Reinforcement Learning Control Mechanism

Action Selection Based on Random Number Generator

Reward Penalty Calculation

Finding the Optimal Action

Update the different Values

Hierarchical Structured Learning Reinforcement Learning

Agents

Implement Control Mechanism for Knee Joint

Trajectory

Implement Control Mechanism for Ankle Joint

Trajectory

Implement Control Mechanism for Hip Joint Trajectory

Contact Forces Execution on the Foot Sole

Reached

Soccer Ball?

Stop

Yes

No

B

A

Is Flag =1?

Yes

No

Reached Path

end?

C

No

Yes

67

4.3.1 System Dynamics and Variations

The highly abstract method of modeling is being used here ignoring the fine details

of the dynamic environment. The main work included the self localization of the

bipedal, object localization in the environment, finding the distance between the

bipedal and object (soccer ball) and then reaching the object using the

Reinforcement learning algorithm (forgetting mechanism incorporation in traditional

Q-learning) which follows the optimal policy to reach the object (in this case soccer

ball). In future when more objects along with other players on the ground are being

added in the dynamic environment of a soccer match scenario along with motion

then work has to done in computer vision part of the bipedal.

4.4 Stepwise Execution of the Overall System

Figure 4.3 Stepwise Execution of the Overall System

Image capture
by vision system

Detection of
Interest Point

Description of
Interest point

Matching of
Interest point

Localization of
the Identified

Object

Calculate the
distance

between object
and bipedal

Gait Design of
Bipedal

Walking Pattern
Generation

Walking
Control

Algorithm

Action Selection
based on

random number
generation

Reward/Penalty
Calculation

Finding the
Optimal Action

Update Epsilon
value

RL Control
Mechanism

implemented on
Hip joint

RL Control
Mechanism

implemented on
Knee joint

RL Control
Mechanism

implemented on
Ankle joint

Contact Forces
execution on the

Foot sole

Bipedal Walks
with Stability

Checks if Goal
Point reached
i.e. position of

identified object

68

4.5 Architectural Mechanism of Object Identification

Figure 4.4 Object Identification Mechanism

The image is captured by the vision sensor on the torso. Then captured image

is compared with a stored reference image of an object in the database.

4.6 Mechanism for Localization of the Object

1. The coordinates are evaluated of the captured image of the object

matched on the frame.

2. The bipedal calculates its current position and knows the exact

coordinates of an object identified in a dynamic environment.

3. Bipedal calculates the actual distance by finding the difference

between the current coordinate location and coordinates of the bottom

left corner of the identified object image.

Now, bipedal has to navigate to the identified object using a controlled

reinforcement learning mechanism. While navigating the bipedal joints

have to be trained by the proposed algorithm.

Matching of Interest Points

Nearest Neighbor (Euclidean) Distance Sign of Laplacian

Description of Interest Points

Determination of
Descriptor Size

Get the Orientation
which dominates

Extraction of SURF
Descriptor

Detection of Interest Points

Create Approximation of
Hessian Matrix

Calculate the Responses
of the Kernal used

Find Maximum for Scale
and Space

Create Integral Image of the Captured Image by Vision Sensor

69

4.7 Architectural Model of Control Mechanism of Bipedal

The steps followed for Control Mechanism designing of bipedal includes :

1. Gait Design for Bipedal Walking Robot

2. Walking Pattern Generation

3. Walking Control Algorithm

Figure 4.5 Control Mechanism for Gait of the Bipedal

Usually, an industrial robot has a fixed base. But in the bipedal robot base is

not fixed. The bipedal walking robot moves around with difficulty and may be

critical in dynamic conditions. The motion of the bipedal walking robot

maintains contact between the sole and the ground. In standing condition, the

weight of the body is vertically down and the reaction force acts in a vertically

up direction and there is no horizontal component of a force acting. Hence, the

ZMP is not disturbing, and bipedal is maintaining the static balance.

Gait trajectory is structured offline to make a robot walk. In bipedal

mechanical autonomy look into the field, the gait trajectory produces the

relative position directions of both the feet concerning the pelvis center. Due

to large upper body motions, the robot will fall even after designing a full-

Walking Control Algorithm

Damping Controller ZMP Compensator
Landing Orientation

Controller

Walking Pattern Generation

Walking Cycle
Lateral Swing
Amplitude of

Pelvis

Double Support
Ratio

Forward Landing
Position Ratio of

the Pelvis

Gait Design for Bipedal Walking Robot

Walking Pattern Planning (Offline) Dynamic Posture Stablization (Online)

70

proof walking pattern (Figure 4.6). Due to this the upper body including

shoulders and hands are not taken into consideration in the proposed work.

Zero moment point (ZMP) inspects static and dynamic forces. Numerous

analysts and researchers had suggested techniques dependent on the ZMP

criterion for stable walking (Sutton, 1990). If the control system designed is

capable to keep the position of ZMP within scope or polygon formed of the

soles. This will help the robot to walk steadily (Figure 4.6).

Figure 4.6 Realization of the Bipedal Walking

To enhance the robustness of bipedal robots walking learning methods on

bipedal walking have been studied{(Ogura et al., 2006) (Akachi et al., 2005)

(Ha et al., 2011)(Endo et al., 2008)}. The RL agent collects the training

experiences, which act as experiences for the next coming training set, and

through interaction in the dynamic environment, the learning policy is

updated. The trial and error method is used for the learning process which

helps in obtaining the walking policy instead of using past training experience

in advance. The feedback positions from ZMP are analyzed to find whether

the robot is in a stable state or not and to avoid falling/tipping of bipedal.

The bipedal ought to keep inside a support polygon, which characterizes a

convex hull formed by all contact focuses on the floor. After learning for the

long haul the framework gets a walking policy that fits the current dynamic

and consistently evolving conditions.

71

4.8 Architectural Model of Reinforcement Learning Control Mechanism

4.8.1 Reinforcement Learning Control Mechanism

In a dynamic environment, for bipedal to navigate the following constraints

are considered:

 States are consistently dispersed between Start state (current position

of Bipedal) and Goal state (known set) (position calculated by

localization of object)

 The feasible set of actions A= {0,1} (known set). For certain cases

likewise A= {-1,0,1}

 α (Learning rate) is considered 0.9

 λ (Discount Factor) is considered 0.9

 ε (Exploration probability) is taken 0.5 (1- ε is for exploitation)

 ε-decay is considered 0.98. This is also known as the forgetting factor

which is proposed in current work.

Figure 4.7 Reinforcement Learning Control Mechanism of the Bipedal

 A tradeoff between Exploitation and Exploration is observed - for

exploitation the RL agent responds slowly to the evolving

Action Selection Based on Random
Number Generation

Reward/Penalty Calculation

Finding the Optimal Action

Update Epsilon Value

72

environment, for exploitation the RL agent quickly adapts to the

consistently dynamic environment. The proposed framework is

empowering investigation/ exploration as it is progressively

compelling in managing the consistently dynamic conditions.

4.8.2 Hierarchical Structured Learning of RL Agents

Figure 4.8 Hierarchical Structured Learning of RL Agents

The hierarchical learning of RL agents takes places as shown in Figure 4.8

first the hip joint which is attached to the pelvis is learned, then learning of the

knee joint to maintain the stability of the bipedal, then learning of the ankle

joint is done taking into consideration of damping when the sole is in contact

with the ground.

Reinforcement Learning Control Mechanism
implemented on Hip Joint

Reinforcement Learning Control Mechanism
implemented on Knee Joint

Reinforcement Learning Control Mechanism
implemented on Ankle Joint

Contact Forces execution on the Foot Sole

73

CHAPTER 5 BIPEDAL WALKING ROBOT:

MATHEMATICAL MODEL, CONTROL

5.1 Trajectory of Bipedal

The basics for the trajectory of the bipedal is Biomechanics. Biomechanics is

the field of science that applies the laws of mechanics and physics to the

movement and the structure of all living organisms and their performance.

This field in the special case also deals in the force exerted by muscles and

gravity on the skeletal structure of humans. Biomechanics suggests that a

humanoid should form a closed polygon when it is in motion. The best design

for mechanical stability is a closed-loop polygon. A trajectory is the sequence

of movement of the individual joint. (Figure 5.1)

Figure 5.1 Bipedal Walking Robot

74

The proposed bipedal model has ten degrees of freedom. Every leg has five

degrees of freedom, the torso of bipedal, three degrees of freedom provided

for the fast movement, and to prevent from sudden falling, the knee has one

DOF and ankle has one DOF. Design principle of development of the bipedal

resembling the human body. In the proposed model, the assumption is that

counter generated by the left leg is identical to the counter generated by the

right leg. The upper body weight acts on both feet and which supports the

balancing of the body. The bipedal body is symmetric about the sagittal plane.

5.2 Mathematical Model of Object Identification

SURF interest points are in-plane rotation-invariant, robust to noise, and

overall, extremely fast to calculate. The three steps followed are:

1. Identification of Interest Point

2. Depiction of Interest Point

3. Matching of Interest Point

5.2.1 Identification of Interest Point

Interest point is the points at a specific location that are chosen. The selected

locations in the image are distinct and can be corners, blobs, T-junction.

Detectors should be repeatable, which helps in getting the same interest points

(physically) in different viewing conditions.

5.2.1.1 Integral Images

Integral images are an image whose each pixel is the cumulative sum of all

well-defined space of all pixels of input image I. Sum of areas is represented

by IƩ(X) for location X=(x, y)
T
. Areas are usually bounded by origin (0,0) and

X.

 (5.1)

Integral images are incredibly efficient. It is possible to characterize a region

of the image using three operations and four memory accesses.

75

Figure 5.2 Basics of Integral Image

 (5.2)

5.2.1.2 Hessian-Based Interest Points

In blob detection, part of images is detected which differs in properties- color,

brightness, surrounding regions, and so on. This detector detects blob-like

structures using the determinants where the Hessian is maximum. This gives

good performance accuracy.

Due to discretization repeatability is maximum at multiples of π/2 due to the

square format of filters while at odd multiples of π/4 some repeatability is lost.

The detailed description is in Appendix E.

5.2.1.3 Hessian Approximation

The actual calculation of the Hessian matrix is slow. Instead, Hessian can be

approximated using Box filters. The relative weights w are taken simply for

computational efficiency and balances the Hessian's determinant expression.

Figure 5.3 Interest Point Detection using Discretized and Cropped Gaussian (in the first

part), Box Filter Approximation (in the second part)

76

 (5.3)

Where Dxx is an approximation of 2
nd

 order Gaussian partial derivative in the

X-direction, w is taken 0.9.

5.2.1.4 Representation of Scale Space

To coordinate interest points across various scales, a pyramidal scale space is

created. Instead of serial downsampling, each progressive degree of the

pyramid is developed by scaling up in parallel. This has the advantage of

computational efficiency.

For each new octave, filter size doubles (6-12 to 24-48) resulting in a sampling

interval for interest point extraction to be doubled which reduces computation

time. The detailed description is in Appendix E.

5.2.1.5 Localization of Interest Point

Localization of interest points is done by suppression of non-maximum (non-

maximum pixel are set to 0) points in the neighborhood of 3x3x3.

Interpolation in terms of scale and image space is done for the maximum value

of the Hessian matrix grid determinant. The detailed description is in

Appendix E.

5.2.2 Description of Interest Point

The interest point neighborhood detection for blob response uses 1
st
 order

Haar wavelet reaction in x and y directions. The detailed description is in

Appendix E

5.2.2.1 Orientation Assignment

Orientation assignment reduces the time duration of feature computation and

feature matching which increases robustness. The Haar wavelet responses are

calculated in both directions in a neighborhood defined by a circle within the

radius of 6s. Interest point centers are weighted with Gaussian taking σ = 2s

and plots of directional strengths are made.

77

These plots are divided into sliding orientation windows and local orientation

vectors are computed as the sum of x and y responses within each window.

The dominant orientation is the largest of all such vectors across all windows.

5.2.2.2 Feature Vector

To extract features, an axis orientated 20s sized square window is defined, a

window is subdivided into a 4x4 grid. The horizontal and vertical Haar

wavelet response is calculated over each subdivision and four metrics are

extracted from each subdivision using 5x5 equally spaced points. These

metrics are then summed to produce the local feature vector which is

concatenated to form a 64-element feature vector that describes the interest

point and surrounding neighborhood.

 (5.4)

where dx - the reaction of Haar Wavelet in horizontal axis

 dy- the reaction of Haar Wavelet in the vertical axis.

5.2.3 Matching Interest Points

5.2.3.1 Nearest Neighbor

Features are matched across frames as the nearest neighbor within a distinct

feature threshold. Either Euclidean or Mahalanobis distance may be used to

determine 'nearest'. In this implementation, uniform precision was assumed

and therefore, Euclidean distance was sufficient.

Figure 5.4 Euclidean Distance

78

 (5.5)

 (5.6)

5.2.3.2 Laplacian Indexing

In the matching phase, the Laplacian sign (Tr(H)) is utilized for fast indexing.

Discrimination cascade includes sign. The sign of Laplacian helps in

distinguishing bright/ white blobs on dark/ black backgrounds from the

opposite situation and serves as a meaningful metric to divide the set of all

interest points.

Figure 5.5 Sign of Laplacian

5.3 Mathematical Model of Localization of Object

1. The coordinates are evaluated of the object matched on the frame.

2. The bipedal calculates its current position and knows the position of

the object identified.

3. Bipedal finds the distance by finding the difference between its current

location and the bottom left corner of the object identified.

Now the bipedal has to navigate to the identified object using a controlled

reinforcement learning mechanism.

5.4 Mathematical Model of Control Mechanism of Bipedal

The steps followed for control mechanism designing of bipedal

includes(Sharma et al., 2020) :

1. Gait Design for Bipedal Walking Robot

2. Generating Walking pattern

3. Walking Control Algorithm

79

5.4.1 Generating Walking Pattern

Consider the following four factors for designing the walking pattern of

bipedal (Sharma et al., 2020; Sharma, Singh, Bharadwaj, et al., 2019):

1. Walking cycle (twice of step time)

2. Lateral swing amplitude of pelvis

3. Double support ratio (DSR)

4. Forward landing position ratio of the pelvis

Figure 5.6 ZMP Position of a Biped Walking Sequence

5.4.1.1 Walking Cycle

The walking cycle is set as a regular recurrence of a 2D simple inverted

pendulum model (Figure 5.7). Assuming, frequency of inverted pendulum fn,

Figure 5.7 Inverted Pendulum Model

80

 (5.7)

where l - pendulum length.

5.4.1.2 Lateral/Sideway Swing Amplitude of Pelvis

The sideway swing extent of the pelvis is obtained by the ZMP fluctuation of

IPM. Motion equation of IPM is given as:

 (5.8)

Where T - joint torque, m - point mass and θ- angular displacement.

Divide both sides of equation 5.8 by mg, then the equation becomes

 (5.9)

By substituting Fz= mg and Ymc = lθ into Equation 5.9 assuming θ is very

small (< 5°), then the equation becomes

 (5.10)

Where Fz - ground response force, Ymc - lateral displacement of mass center.

ZMP dynamics is obtained when Fz ground response force is divided by the

torque T by:

 (5.11)

Where Yzmp - lateral ZMP.

While the bipedal is walking, lateral displacement is assumed as Ymc=A sin ωt

(coronal plane), the equation becomes

 (5.12)

In real bipedal walking, as force/torque sensors are attached at ankle joints,

deflection of the compliant results in an increase in amplitude A than the

original value.

81

5.4.1.3 Double Support Ratio (DSR)

During a walking cycle, a double support ratio is given by the ratio of time

when two feet are on the ground in contact with the floor(Sharma et al., 2020)

(Figure 5.8). For humans, this ratio is about over 10 percent (Iwata & Sugano,

2009).

Figure 5.8 Walking Cycle

5.4.1.4 Forward Landing Position

Forward landing position ratio of pelvis γpelvis is the proportion of the position

of the front leg to the rear/back leg when the double support phase begins

(Figure 5.9). That is, in this situation if the proportion of pelvis is close to 1.0,

then the front leg is closer to the pelvis at the beginning of DSP (Figure

5.10). The bipedal acts like an inverted pendulum swinging in the forward

direction.

82

Figure 5.9 Sagittal Plane View

Assuming forward displacement as Xmc=A sin ωt ZMP kinematics becomes

(in the sagittal plane),:

 (5.13)

Where Xmc - forward displacement of the mass center, Xzmp- forward ZMP.

Figure 5.10 Forward Landing Position Ratio of Pelvis

In DSP, phases of Xmc and mc is equal. Xmc is located at zero i.e. at the center

position of swing trajectory and so mc is also nearly zero.

Xzmp is the projected position on the ground if the pelvis is at a certain point

which is at the center position between both feet.

83

5.4.2 Walking Control Algorithm

The walking control algorithm is based on a swapping controller. The walking

cycle is separated into a few phases of walking. Appropriate controllers and

their parameters are initiated during each phase/stage. Figure 5.11 depicts

different stages of walking:

Stage 1 involves lifting the left leg to its maximal bending and elevation.

Stage 2 involves lowering the left leg unless entire contact with the ground is

made.

Stage 3 involves lifting the right leg to its maximal bending and elevation.

Stage 4 involves lowering the right leg unless entire contact with the ground

is made.

Stage 5 involves following the 1st or 3rd stage, bring the bipedal to a stable

standing position when the left and right legs are completely in contact with

the ground.

For stable gait, walking stages 1 to 4 are repeated consistently (Figure 5.11),

so that the bipedal does not fall. In walking stages 2 and 4, a single support

phase (SSP) and the double support phase (DSP) coexist.

Figure 5.11 Walking Stage

A walking control algorithm comprises of three control policies(Bellemare

et al., 2017; Zambaldi et al., 2018),

 Control policy for balancing (real-time),

 Control policy for walking pattern

84

 Control policy for predicted motion.

 .

 Figure 5.12 Different Stages of Left and Right Legs

Each control policy has few controller parameters which are utilized relying

on the goal required.

The force/ torque sensor at the ankle results in sustained oscillations in SSP

which is overcome by damping oscillator parameters. Bipedal is a model of IP

with a compliant joint.

Equation of motion is given by:

 (5.14)

where u - reference joint angle, θ - actual joint angle due to compliance

Damping control law states

 (5.15)

where u - reference joint angle, kd - damping control gain, and uc - joint angle

compensation.

According to ZMP dynamics, ZMP compensator parameters stabilize ZMP.

Torso (middle body) moves back and forth and side by side. Both torso

movement and ZMP are controlled by the following equation

 (5.16)

 Where Ypelvis - lateral displacement of pelvis and YZMP - lateral ZMP.

The landing orientation controller, for comfortable landing, coordinates

torque estimated after some time and stable contact by adjusting ankle joints to

the ground.

Landing orientation control law is given as follows:

85

 (5.17)

where CL - damping coefficient, KL - stiffness, u - reference angle of the ankle,

and uc - reference ankle angle (compensated).

In Table 5.1, bipedal walks stably using a walking control algorithm on the

normal floor(Isbell et al., 2001)(Singh et al., 2005)(Sutton & Barto, 2012).

The landing timing controller helps in achieving a stable walking gait of the

bipedal by updating the walking pattern schedule during landing. This

prevents the biped from falling and walking unstably in the dynamic

environment. The time scheduler pauses the motion if the foot does not land

on the ground, the bipedal sole is not in contact with the ground.

Table 5.1 Summary of Walking Algorithm

Control

Parameters

Real-Time Parameters Aim fulfilled

Balance

Controller

Damping parameters (Stages

1, 3, SSPs of 2, 4)

Reducing oscillations in the upper body

in SSP (ankle joints are imposed by

damping)

ZMP compensator parameters

(Stages 1,3, SSPs of 2, 4)

Maintaining balance dynamically by

horizontal movement of the pelvis

Walking

Pattern Control

Pelvis swing amplitude

controller

(Stages DSPs of 2, 4)

The amplitude of ZMP is considered to

compensate lateral swing amplitude of

the pelvis

Motion Control Landing position parameters

(Stages 2, 4)

Compensate landing position to prevent

unstable landing

5.5 Mathematical Model of Reinforcement Learning Control Mechanism

5.5.1 Reinforcement Learning Control Mechanism

Randomness incorporated by following steps

 Generation of Random number

 if random number < 0.5 then explore (selection of new action is done)

if random number > 0.5 then exploit (selection of greedy action)

86

 Reward/ Penalty given to RL agent builds upon variations in positions of

current state and goal state

 (5.18)

α - learning rate is 0.5

 The learning is continued till the value of epsilon is less than 0.001 the

value of epsilon is updated in each epoch by

 (5.19)

 ε =0.5 ε-decay = 0.98

which incorporates the forgetting mechanism in the bipedal.

Q-learning Algorithm after incorporating the randomness

 (5.20)

r - immediate reward calculated on the fly

α - learning rate (0.5)

λ - discounted factor (0.9)

Q(s,a) - current state s when action a is taken

Q(s', a') - by taking action a' switch to the next subsequent state is s'

87

CHAPTER 6 DESIGNING FEATURE-BASED OBJECT

IDENTIFICATION ALGORITHM FOR THE BIPEDAL

Bipedal can do practically almost all necessary and basic errands assignments/

jobs, which are perilous and risky for a human being. To satisfy the above

stated objective bipedal ought to have a visual framework that helps direct the

bipedal about the routing. This framework/ system helps to recognize the

objects and the controller of the bipedal would have the option to take desired

actions. The algorithm is designed to handle vision-based navigation (VBN) of

the bipedal. Bipedal distinguish objects by utilizing a revised SURF image

detection algorithm. The bipedal controller has an action plan which helps in

navigating in a risky and dynamic environment using the Q-learning RL

algorithm. The bipedal segregates object depending upon already stored

objects in the database and the objective for which the bipedal is designed to

fulfill. The designed feature-based Q learning RL algorithm helps in

decreasing the number of state values and helps in sharing and transmitting

knowledge from one agent to another agent that uses RL to operate them.

Likewise valuable for hurdle avoidance and recognizing hazardous articles

during the exploring period.

6.1 Vision System in Bipedal Walking Robot

Bipedal can do intense and perilous assignments, which are dangerous for the

human being. Bipedal helps humans in a risky environment - fire salvage

activity, chemical ammunition. For performing such jobs basic issue is bipedal

should have vision capabilities. This would help in identifying, detecting, and

comparing objects by the bipedal.

88

Fast vision detection is carried out due to a decrease in cost and an increase in

precision to manage data received by the navigational sensor. Vision systems

are being supplanted by cameras with vision sensors for mission-critical

applications. The bipedal first tallies the image captured online by image

sensors with stored data then explores the dynamic environment. A set of

unique features are derived using interest points from the present object image

of the dynamic environment. At that point, these are coordinated with past

knowledge on the highlights of the features of the stored object.

For comparing the captured image with a stored database, the algorithm ought

to be invariant of scale and rotation of the captured image. Bipedal robots are

autonomous, flexible, should be able to confront genuine circumstances, and

should have the capability to see adjustments in the surrounding environment.

The most crucial issue with bipedal is the selection of activities in the current

scenario. When no specific model of the dynamic environment is available,

Reinforcement Learning (RL) is used on bipedal. Through RL, the bipedal can

figure out the outline of the map to be followed to move to the next state from

the current state by selecting actions and computing the reward earned when

associated with the dynamic environment. The main challenge of using RL in

bipedal is enormous state-action space and vulnerabilities of a dynamic

environment along with the online calculation of reward.

The control framework introduces information related to the state and stores

online captured image data. The vision system of the bipedal captures images

consistently from a dynamic environment (approximately every millisecond).

The sequential frames are examined and the comparison of the current frame

and the previous frame is carried out. If a distinction exists between the frames

then distinct data is transferred to the image controller of the bipedal. The

object recognition algorithm developed in the present research work is

executed by the image controller. The recognition of the object is done. The

further steps to be followed by the bipedal are dictated by the vision system in

the form of information and the walking controller. The algorithm generally

utilized is the Speeded Up Robust Features (SURF) algorithm.

89

6.2 Feature-Based Object Identification in Reinforcement Learning

Desire to know about the feature-based is due to the following reasons :

1) Need to decrease the quantity of state-space values to be managed by Q-

learning Reinforcement Learning algorithm

2) We need to utilize these trained RL agents in an extensive dynamic

environment in real life.

Advantages of utilizing Feature-based Reinforcement Learning algorithm -

recognition of the object, planning the methodology/ approach as per need,

handing over of information from one Reinforcement Learning agent to

another Reinforcement Learning agent.

In the Q-learning RL algorithm, state-space values are dependent on some

distinct features of a dynamic environment. Transferring of information from

one RL agent to another RL agent about similar objects present and how to

tackle them. For example, if in a dynamic environment there are bumps (speed

breakers or rough terrain) and the height of bumps is fixed then what activities

are to be taken to pass bumps to walk without falling can be shared between

the RL agents. In the event of soccer, the robot needs to kick the ball

recognition of soccer ball in the soccer field is the knowledge that can be

shared between RL agents.

Two approaches to execute feature-based object identification are :

1) Simple encoding method, which is utilized to change the immediate

environment of RL agent

2) Apply object recognition/ identification algorithms and then recognize

objects.

Feature detection, extraction, and matching are steps that are usually carried

out to solve machine vision problems. Computer vision problems are solved

90

by object detection, object recognition, and content-based image retrieval

(CBIR).

In the feature extraction step, a reduction in the dimensions of the image is

effectively carried out. The result of this is a compact feature vector. This

helps in rapidly matching and retrieving the images along with effectively

reducing feature representation.

There are several considerations in choosing the number of features to extract:

 More features use more memory and computational time.

 Fewer features can produce poor classifiers.

In this work, we have used a second approach to recognize objects. Object

recognition is done by the revised SURF algorithm.

6.3 Comparative Study of Different Feature Extraction Algorithms

Image processing techniques include the operations on images like smoothing,

sharpening, stretching, and contracting which results in an enhanced image

that is usually used for image comparison in object classification and

recognition steps. Object recognition has always been a computationally

intensive job in real-time object recognition applications. The proposed

method is an object feature detection SURF algorithm one of the image

processing algorithms which is fast robust for local similarity invariant

representation and comparison of images. This algorithm has three steps in a

broader aspect to fulfill: interest point detection, local neighborhood

description, and matching. These three steps include all the steps of other

image processing algorithms: image preprocessing, image enhancement,

image segmentation, image extraction, image classification. This algorithm

uses a Hessian based detector, description based feature vector which is based

on intensity distribution, using several approximations that allow fast

computation without sacrificing accuracy and repeatability. The feature point

of the stored image and the captured image are compared using a k-Nearest

91

Neighbor algorithm and a simple matching rule to identify the object in the

environment.

Figure 6.1 Detailed steps of SURF Image Processing Algorithm

The comparable algorithm for object feature detection algorithms is Scale

Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF),

Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP). Before

using SURF the comparative study of all the algorithms was done on clear and

noisy both types of images.

SURF algorithm outperforms SIFT, HOG, LBP algorithms (Routray et al.,

2017, Raj et al, 2017) on the complete data set. Performance of SURF

algorithm doesn’t drop even in poor conditions like low light photographs, for

photographs where only partial images of objects are found. SURF could

extract up to 90%, the other algorithms could gain much less.

The results are compounded faster for SURF and LBP algorithms. The

performance of SURF is close to SIFT and HOG.

Limitations with LBP, one of the oldest methods is the mean squared error

increases and the performance gradually declines as the data sets get

complicated and the algorithm cannot extract features completely for an

object(Arunmozhi et. al, 2018).

SIFT is stable in terms of feature extraction but it gets slowed very gradually

in feature extraction.

HOG shows its advantages in detecting edge and texture information of an

image. The performance gradually decreases as the data set becomes complex.

It can extract features but not as much efficiently as SURF and SIFT.

92

Figure 6.2 Comparison of Different Feature Detection Algorithm

6.3.1 Speeded-Up Robust Features (SURF) Algorithm

SURF is a powerful image detector/ locator and descriptor. Descriptor depends

on the approximated Hessian model which gives the dissemination of Haar-

wavelet reaction within the vicinity of interest points. Due to the low

dimensionality of a descriptor, identifier and descriptor both diminish the hour

of calculation. Speed, stability, uniqueness, and repeatability qualities of

SURF make it a superior decision than other existing strategies. Interest point

detection is done by Hessian matrix approximation. This determinant decides

the scale and position of the descriptor. Box lets framework is utilized for

fundamental images.

In steps to draw out SURF descriptor for an image - data based on the

orientation of zone around interest points are utilized. These territories are

round in nature, Haar wavelet is utilized to process directions in X and Y

course summarizing Gaussian weights are utilized for horizontal and vertical

reactions, maximum value characterizes direction of descriptors of interest

points. Image scales are utilized as scale-spaces. Gaussian is utilized to

smoothen images iteratively and sub examining results in reaching the next

10.185
10.665 10.856 10.625 10.801

10.085
10.625

10.061

11.697 11.721
10.945 10.723 10.838 10.929 10.81

11.4

2.346

3.521 3.879 3.578 3.528
4.121 3.827 3.71

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

A
ve

ra
ge

 T
im

e

Episodes

Comparison of Feature Detection Algorithms

SURF HOG LBP

93

higher level of the pyramid. Continuously applying a filter is prevented by the

utilization of basic images and box filters. Filter sizes are upscaled. Scale

spaces are divided as octave, which is an arrangement of reaction maps. The

filters are scaled in every one of the octaves by a scale factor of 2. The

detection of interest points is done by indication of Laplacian, which helps in

recognizing the bright spot on dark background and dark spot on a bright

background. Quicker coordination is resulted in inspecting the points if they

are on the same type of background (Lundberg et al., 2015; Okada et al.,

2006). SURF has low dimensionality and reduces the time of computation as it

executes faster.

Table 6.1 A Summary of State-of-Art Feature Detector

Category Classification Methods and Algorithms

Edge-based Differentiation Based Sobel, Canny

Corner-based Gradient Based Harris and its derivatives, KLT, Shi-
Tomasi, LOCOCO,S-LOCOCO

Corner-based Template Based FAST, AGAST, BRIEF, SUSAN,FAST-
ER

Corner-based Contour Based DoG-curve,ACI,Hyperbola Fitting
etc.

Corner-based LearningBased NMX,BEL,SCG,DSC etc.

Blob(interest point) PDE based SIFT and its derivatives, SURF,LoG,
CoG, RLOG,DART,KAZE,WADE etc.

Blob(key point) Template Based ORB, BRISK, FREAK

Blob(interest region) Segmentation based MSER. IBR,EBR,MFD,FLOG, BPLR

6.4 Proposed Algorithm for Feature-Based Object Detection

The proposed algorithm detects the image in the dynamic environment, then

finds the correspondence between the captured image and the referenced

image of the database. The image captured can be out of the plane, can be

scale variant, or can have plane rotation. The algorithm takes care of all these

before matching. The image captured is matched in the gray mode so that the

matching process is fast(Sharma, Singh, Prateek, et al., 2019)

94

6.4.1 Stepwise Approach for Proposed Algorithm

Step 1: Read Images

 Capture the objects from the dynamic environment and extract the

interested objects.

 Read the reference image from the database.

Step 2: Detection of Feature Points

 Identify the feature points (interest points) of both the images.

 Identify the strongest interest (feature) points from the reference

image.

 Identify the strongest interest (feature) points from the captured image.

Step 3: Extraction of Feature Descriptors

 Extract feature vector using interest points in captured and reference

images.

Step 4: Finding of Putative Point Matches

 Matching the features of both images using descriptors of each image.

 Display putatively matched features of both images.

Step 5: Localization of Object in the dynamic environment using Putative

Matched

 Geometric transformation is done which helps in localizing the object

in the environment.

 Eliminate outliers

 Display pairs of matching point after removal of outliers

 Display both objects

 A bounded polygon is obtained for the reference image.

 Polygon is transformed into the Cartesian coordinate system of the

captured image. This transformed polygon helps in localizing objects

in the dynamic environment.

 Display the detected object.

95

CHAPTER 7 DESIGNING OF REINFORCEMENT

LEARNING CONTROLLER ALGORITHM FOR THE

BIPEDAL

7.1 Reinforcement Learning: Introduction

RL is an AI technique (Stone & Sutton, 2001; Sutton & Barto, 2012) in which

usually problems are solved which are goal-oriented in the dynamic

environment. The process of making it stronger. RL is learning

1. What to do - situations are mapped with actions such that numerical

reward signals are maximized.

2. The learner explores the actions which have maximum reward by trial and

error method.

3. The selected actions affect the immediate reward as well as the next action

to be taken along with all subsequent rewards.

A model of Reinforcement Learning consists of

 Set of state space of dynamic environment S which is a discrete set of

state-space of environment S

 Set of action space A which RL agent can take (which is discrete)

 Set of reinforcement signals which is a scalar real value between {0, 1}.

The two major characteristics of RL are: searching by a trial-and-error method

and delayed reward. RL is defined by characterizing a learning problem. In RL

there is always a dilemma between exploitation and exploration. RL agent

exploits previous state and action pairs which resulted in maximum rewards

and explores new pairs to get better selection criteria for the near future.

96

Stepwise execution of basic model of RL

1. Agent receives as input ‘i’, which is at present state (s1) in the dynamic

environment

2. The agent selects an action from a set of actions (A) to generate output

which is in step (3)

3. (a) The action taken by the agent transits to another environment state (s2)

(b) The state transition is informed to agents through a reward/ punishment

signal (r)

Figure 7.1 shows the basic model of the reinforcement signal.

Figure 7.1 Basic Model of RL

Reinforcement learning is used when the environment is dynamic and

uncertain and the agent finds the optimal policy. The agent continuously

interacts with the dynamic and uncertain environment and gets feedback

information which is processed through an appropriate algorithm to get the

near-optimal/ optimal policy through which the agent explored. The

environment in which RL learns can be model-free or model-based. In a

model-free method, the controller is learned without a learning model whereas

in a model-based method(Matarić, 1997; Ng, 2012) first the algorithm is

learned then it is used to derive the controller. Some model-free methods are:

temporal difference methods, Q-learning, average rewards, and model-based

methods are: Certainty equivalent, Dyna, queue Dyna, priority

sweeping(Sharma et al., 2013).

97

Four main subsystems of the RL system are:

a) Policy- reveals behavior at a specific time of the RL agent.

b) Reward function- An objective defined along with RL function is

defined, which affects immediate reward. This is a short term incentive

to the agent.

c) Value function- The reward selection depends on the action taken by

the RL agent in the dynamic environment which affects the subsequent

rewards of the agent. This is a long term reward forecast of the agent.

These are also known as delayed rewards of the RL agent.

d) Model of the environment (optionally) - Resembles the dynamic and

uncertain environment in which the RL agent operates.

RL is learning from a reward signal to choose an optimal (or near-optimal)

action (a) in the present state (st) of the RL agent to optimize the reward (long-

term) of the algorithm. There are algorithms for optimizing the finite horizon,

un-discounted reward V(t0) =
 , the (in)finite horizon discounted

reward V(t0) =

 (γ is the discount factor) or also the average reward

 , but the infinite horizon discounted reward is most

commonly used. The agent learns from trial and error and attempts to adapt his

action selection policy according to the received rewards.

The popularity of reinforcement learning is due to its unsupervised learning

approach. The steps usually followed are - defining the reward function, then

the RL algorithm is learned by choosing the optimal action policy which

maximizes the immediate and the delayed (long-term) reward. It is not that

easy as it sounds. There is a huge variety of RL algorithms.

Commonly used are value-based algorithms or policy search algorithms. The

former agent learns from the expected discounted horizon reward for each of

the next states while in the latter, the search is directly carried out in the

parameters space of the action and next stable state. For policy search

algorithms, any optimization algorithm can be used, so some approaches use

genetic algorithms or simulated annealing to search for a good policy.

98

7.2 Reinforcement Learning: Reasons to use

1. Once the RL agent learns for a specific dynamic environment then it can

use the previously gained knowledge, which helps in adapting to the

system as time passes.

2. For a Model-free system, minimal help of experts is required for a model-

based system more help of an expert is required who possesses application

domain knowledge.

3. The agent learns in a very short span, and hence the solution is acquired.

7.3 Problems of Reinforcement Learning

In practice, a learning problem faces many restrictions to achieve an optimal/

near-optimal policy. Reinforcement Learning algorithms have the following

issues:

1. The curse of dimensionality: Discretization of state space and action

space is required. For some high dimensional control problems,

discretization is practically impossible.

2. Many trials for learning: To train a system with huge state space and

action space take a considerable amount of time, makes it a challenging

task

3. Finding algorithm parameters: The parameters which directly affect the

performance of the RL algorithm should be taken into account then those

parameters are set so that algorithm runs with fewer parameters and give

preferable results.

4. Exploration - Exploitation Dilemma: In the learning trials process, the

agent will become stuck in suboptimal solutions, because the agent has not

searched through the state space thoroughly enough. On the other hand, if

too many exploration steps are used, the agent will not find a good policy

at all.

5. A skilled ‘reinforcement learner’ is needed: Defining the reward

function, and efficient state-space representation, or a good function

approximation, choosing an appropriate algorithm, and setting reasonable

99

parameters of the algorithm are also important for effective execution of

learning algorithm.

7.4 Multi-Agent System

Multi-Agent System (MAS) means a system in which many agents interact

with each other in definite relationships and have different skills and

knowledge about the dynamic and uncertain environment. Each agent has a

sensor, motor, knowledge base, and learning component. Multi-Agent

System uses Artificial Intelligence, intelligent control, computer

technology, and sensor technology (optional).

These components of agents incorporate some restricted activities :

1. The sensor component can know a limited environment.

2. The motor component is specialized in performing only a specific set of

actions.

3. There can be an incompatibility between actions carried out by different

agents of the MAS.

4. Multi-Agent System (MAS) or Finite State machine for this work is a

Bipedal Walking Robot.

7.5 Various Reinforcement Learning Algorithms

7.5.1 Temporal Difference (TD) Learning Algorithm

The Learning Agent learns through every single action it takes rather than on

every episode or reaching the goal or end state(Sharma et al., 2013).

 (7.1)

The value of (Target - OldEstimate) is called Target Error. StepSize is α called

learning rate whose value lies between 0 and 1.

Temporal Difference (TD) learning is a way to learn how to predict a value

depending on the future values of a given state.

Q-learning is a specific way of TD learning for learning Q-values.

100

7.5.2 Q – Learning Algorithm

Q-learning is an off-policy model-free algorithm Reinforcement learning

algorithm. The model-free means the agent learns through experience rather

than the old available experienced data. This helps in handling stochastic

elements and a large sequence of state-action pairs. The learning agent does

not have any idea about the transition system and the rewards awarded. The

agent has to interact with the dynamic and uncertain world.

 (7.2)

Q-learning takes the optimal path. It assumes that the agent is following the

best possible policy without attempting to resolve what is the actual policy. In

Q-learning greedy policy is used. The main goal of Q-learning is to

maximizing the Q-value or use a method that optimizes Q-value.

7.5.3 SARSA (State-Action-Reward-State-Action) Algorithm

SARSA is an on policy temporal difference control method. A policy is a state

action pair tuple that helps in mapping action to be taken at each state. An on

policy control method is applied by letting the agent transition from one state-

action pair to another state-action pair. SARSA take a safe path means it

explores less and exploits more.

 (7.3)

SARSA looks ahead to the next action to see the next step and update the Q-

values of its current state-action pair accordingly. SARSA takes the agent's

actual policy into account.

7.5.4 Deep Q – Network (DQN) Algorithm

A deep Q network leverages a neural network to estimate the Q-value

function. The input for the network is the current while the output is the

corresponding Q-value for each of the actions. Q-learning has the drawback

that it does not have any clue which action to take if the agent has not visited

that state before this problem can be overcome by DQN.

 (7.4)

101

The loss function for the network is defined as the squared error between the

target Q-value and the Q-value output from the network

7.5.5 Deep Deterministic Policy Gradient (DDPG) Algorithm

Deep deterministic policy gradient relies on actor-critic architecture: actor and

critic. An actor tunes the parameter θ for the policy function i.e. decides the

best action for a specific state.

 (7.5)

A critic is used for evaluating the policy function estimated by the actor

according to temporal difference (TD) error.

 (7.6)

Lower case v denotes the policy that the actor has decided.

7.6 Why Q –Learning Method?

Reinforcement Learning and Queue Learning (Q-Learning) are readily being

used in robotics for navigation and exploration of the dynamic environment.

The most widely used Q-learning algorithm is simple, efficient, and is very

adaptive to the uncertain environment. Due to this Q-learning is ideal for

robotics navigation. The aim of current work includes bipedal should learn

goal-oriented navigation strategy and to learn the shortest path to reach goal

state considering obstacles and current coordinates of an object in the dynamic

environment. The search algorithms are modified to suit the way to solve the

problems in a dynamic environment. The main goal is to maximize Q-

learning or optimize the policy or choose the greedy policy(Sharma et al.,

2013).

The bipedal learn the reward function from the task model from repeated

trails. A modified RL algorithm with a forgetting mechanism that optimizes

speed and memory consumption is proposed and implemented in the

MATLAB platform.

102

Table 7.2 Comparison of Reinforcement Leaning Algorithms {(Mahadevan,1996);(Tesauro ,1995)}

 TD Learning Q-Learning SARSA DQN DDPG

Learning

Method used

Learns at each

action taken

Handle Problems

with stochastic

transition and

rewards

Learns with action

performed by the

current policy

Learns by

minimising the

loss

Learns by Q-

learning and Policy

gradient method

Policy Type Off Off On Off Off

Model Based/

Model Free

Model Free RL Model Free RL Model Based RL Model Free RL Model Free RL

Agent

dependency

Independent of

agent

Independent of agent Dependent on agent Independent of

agent

Independent of agent

Learning

Policy

Learns Optimal

Policy with the

help of greedy

policy

Identify optimal

policy for

maximising total

rewards over all

successive steps

Learns from current

action, current

state, reward, next

action, next state.

Trains function

approximator and

uses ε-greedy

policy

Learns by actor

critic model

Calculation

Methods

Estimates rewards

for future actions

and new state is

appended without

actually following

any greedy policy

Computes with the

maximum expected

rewards for an action

taken in a given state

Takes current state

and action to

estimate

Optimal policy is

feed to current

state into optimal

Q-function, takes

action which

maximizes all

future actions

Actor tunes θ

paramneter and

critic uses to

estimate the policy

function by TD error

103

7.6.1 Q – Learning Algorithm

The original Queue Learning is a simple incremental algorithm that was

designed keeping in mind the dynamic programming for delayed rewards. In

the Q-learning algorithm, a two-dimensional lookup table is used which is

indexed by state-action pairs. The bipedal is designed using Markov Decision

Process (MDP).

An MDP is an ordered group of <State(S), Action(A), State Transition

probability(T), Reward Function(R)>.

State S - The set of states should be finite including the start state and terminal

state.

Action A -Finite set of actions, available actions depends on the current state

of bipedal.

State Transition function T- Convey probability p(s΄|s, a) that bipedal will

move from current state s to next optimal state s΄ when an action is taken from

Reward function R - gives immediate reward r(s, a, s΄) real value given to

bipedal when bipedal takes action a while transiting from state s (current state)

to s' (next state). Reward signal is in the form of encouragement/ punishment

to bipedal.

St states at time t, at is the action taken by St at t time, r is an immediate reward

received by bipedal when action a is taken and system transits from present

state St to the next stable state St+1.

Q-learning (Rezende et al., 2014; Sandon et al., 1956) iteratively approximate

value function Q which tracks state-action. The learning of policy and the

value function is carried out simultaneously. The RL algorithm is designed for

the three joints of the leg of the bipedal. MATLAB platform is used to develop

this algorithm. The algorithm is learned offline and online. Q-learning

algorithm (Watkins, 1989)(Watkins & Dayan, 1992)

104

Initialize Q (s, a) Arbitrarily;

Repeat (for each episode);

Initialise s;

Repeat (for each step of episode);

Choose a from s using policy derived from Q;

Take action a, observe r, s’;

Q (s, a) ←Q (s, a) + α [γ max a’ Q (s’, a’) – Q (s, a)];

s ←s’;

until s is terminal,

until all episode’s end.

Figure 7.2 The Q-learning Algorithm

7.7 Reinforcement Learning (RL) Model: Stepwise Approach

Kinematics and dynamics analysis gives real-time information to the

reinforcement controller of a bipedal robot. If any singular position comes

during the movements of the joints, it is bypassed by the trajectory control of

the joint. In the reinforcement control algorithm(Feil-Seifer & Matarić, 2008;

B. Q. Huang et al., 2005; Y. Huang et al., 2013; Martinez-Cantin et al., 2009;

Sternberg & Kaufman, 2016), the action value selection depends on maximum

and minimum values of acceleration of joints. The magnitude of time required

to take action can be too small or too large to switch to the next state. RL does

not state the method in which the task is to be carried out. In RL, agents are

programmed by rewards and punishments. The bipedal senses the next state

with the help of a gyroscope sensor, which gives real-time orientation

feedback about the current position of the joint to the RL controller. The

reinforcement controller's selection of the next action is dependent on the

current state. Further corresponding leg joint is moved to the next stable state.

This process is iteratively carried out until the goal/ target point is reached by

the bipedal. Figure 7.3 shows the basic RL model of the bipedal walking

robot. The present work considers the dynamic environment, bipedal fall in

the forward direction and reverse direction. RL algorithms are designed and

developed for the hip, knee, and ankle of the bipedal robot of each leg.

105

Figure 7.3 Basic RL Model of the Bipedal Walking Robot

After sensing the current position, the signal will process by the reinforcement

controller. The controller looks at the look-up table and compares the next

state of the system. During switching the system sometimes fails to reach the

desired state. In reinforcement learning, the learning parameter decides the

accuracy of the system(Sharma et al., 2020)(Bharadwaj et al., 2019).

7.8 Forgetting Mechanism incorporation into Traditional Q- learning

RL agent when interacts with a dynamic environment sometimes attempts to

utilize prior learned knowledge. This expertise may be outdated as the

environment is dynamic and uncertain which results in a change in the

dynamics of the environment. This may change the exploration and

exploitation dilemma.

 To restrict the use of previously learned knowledge which may be outdated

due to change in dynamics of environment incorporation of forgetting

mechanism is done in traditional Q-learning algorithm.

In a deterministic environment, Q-learning is simple as there is exist mapping

for subsequent states and actions. The state values associated with each action

rather than with each state-action pair are stored. In a dynamic environment,

state-action pairs and the dynamic reward which is calculated in real-time are

stored(Sharma, Singh, Bharadwaj, et al., 2019).

The reward function is maintained by the State value function. The state-value

function is initialized to zeros. When the RL agent explores an uncertain

106

environment, it learns rewards associated with each state of a dynamic

environment. After some steps, it evaluates a tradeoff between the

exploitations of new states, action pair, and exploitation of choosing actions

that have previously resulted in near-optimal/ optimal policy. The Q-value

function is a two-dimensional lookup table that is updated after each run a

particular state is visited. (Figure 7.2) Q-learning is a model-free RL method.

7.9 Action Selection Policy

The generation of a random number between (0,1) results in the selection of

action policy. In the first go, if the value lies in the range (0,0.5), exploitation

of action selection takes place. If the value lies in the range (0.5,1), the

exploration of new action from the set of actions is done. For subsequent goes

the exploitation range is modified to (0,ε*ε-decay) and the exploration range is

modified to (ε*ε-decay,1). RL favors exploration rather than exploitation

which reveals the dynamic nature of the environment. RL agent is trained not

to get stuck in the same state for a long time. ε controls policy updation which

is based on the next state selection. For the current work, ε is assumed to be

0.5, it is usually a scalar value (0,1). Updation is done as ε=ε* ε-decay after

each episode.

If ε→1 shows more dependency on the following state and so less forgetting

occurs. The algorithm behaves like a traditional Q- learning algorithm.

If ε→0 shows large dependency on functions of state transition and reward

calculation and almost all previous rewards are forgotten between episodes.

The exploration of the dynamic environment by the RL agent is carried out

relatively in each episode, hence previously learned knowledge is not utilized.

107

CHAPTER 8 SIMULATION OF REINFORCEMENT

LEARNING ALGORITHMS FOR BIPEDAL

The stepwise approach to achieve the desired objectives:

1. Observe the current state of the bipedal robot. This information is sensed

by sensors which give exact orientations of all three joints along with the

stable standing position of the bipedal.(Ghavamzadeh & Mahadevan,

2007; Lee & Labadie, 2007; Mahadevan, 1996; Palmer, 2007; Schwartz,

1993; Watkins & Dayan, 1992)

2. Identification of object using feature-based extraction by the bipedal robot

in its path of movement. The object in this case is a soccer ball on the path.

The bipedal has to identify the object based on its feature and using an

updated SURF algorithm along with the affine transformation. After

identifying an object in the path bipedal finds its exact location or

Cartesian coordinates in the dynamic environment.

3. Action selection policy, joints are actuated by DC servomotors which

move in full or no speed in both directions. Pulse modulations help in

controlling the speed of the motor. Bipedal is not a preprogrammed robot,

so deciding an action is dependent on the discounted factor (λ), epsilon (ε),

learning rate (α), epsilon-decay, and some random values.

4. Performing action. RL algorithm runs for discrete state values, the time

taken to reach the goal state from the current state depends on the

capabilities of the processor. Practically, no mathematical equation exists

for time calculation. Hence, the time required by the bipedal to reach the

goal point depends on probabilities and randomness to reach to next stable

step. This depends on the action taken and the current state of bipedal.

5. RL reaches the next stable state when an optimal/ near-optimal action is

performed.

108

6. Calculation of random rewards is done when after selecting some optimal

action the bipedal moves to the next stable state. When bipedal

successfully achieve the next stable state, the positive reward is assigned

for that action, and the next state is selected. The reward is dynamic in the

current work and is calculated on the fly. The random reward is calculated

by finding the distance from the present state to the goal state then

multiplying the result so obtained by learning rate (α is considered 0.9 in

this work) then taking the negative exponential of the evaluated value and

then assigning it to the immediate reward. If the goal is not reached, then a

negative reward can be assigned. In current work, no negative rewards are

calculated to state and action as creates the problem in the proposed work.

But when the bipedal robot is falling on the ground, to stand up on both

feet. Robot to stand upright position needs to move both the feet either in

the forward direction or reverse directions.

7. Bipedal learns from experience. The reinforcement controller calculates

the distance from the current state to the goal state by finding the

difference between them. If the distance comes out to be zero then the

bipedal reached the goal state and stops. If the distance is not zero then

bipedal repeats sequence from step two until the goal point is reached. The

optimal actions and policies are stored in the lookup table so that it can be

used in the future if the same scenario exists.

8. The bipedal moves near to the soccer ball and should kick it in any

direction (if possible). Hence the objective is accomplished.

8.1 Stepwise Approach to Desired Objectives (as Incorporated in

Algorithms)

Step 1: 1. Observing the current state of the bipedal robot by sensing with the

 assistance of the sensor.

 2. It is giving the actual/ real directions about the position of the ankle,

 knee, and hip joint.

Step 2: 1. The bipedal robot has to identify a feature-based object in its path of

 movement.

 2. The object, in this case, is the soccer ball on the path

109

 3. Identify the object based on its feature using the SURF algorithm

 along with the affine transformation.

 4. After identifying objects i.e. soccer ball, find their exact location.

Step 3: 1. Involves deciding action.

 2. DC servomotor is utilized to activate the joint.

 3. A not preprogrammed robot, so deciding an action depends on the

rate of learning(α), discounted factor(λ), epsilon-decay, epsilon(ε),

and some randomness values.

Step 4: 1. Involves performing an action.

 2. RL algorithm is substantial for the discrete state between present

state to goal/ target state.

 3. Time is taken to arrive at this state relies upon processor

capabilities.

 4. No scientific conditions are required to compute the time.

 5. Users cannot control the time to reach the bipedal robot to reach the

 goal point.

6. It depends absolutely upon the randomness and probabilities to

reach the following step.

Step 5: RL observes the new state by performing the action.

Step 6: 1. RL calculates random rewards.

 2. Bipedal robot when successfully reaches the following state, a

positive immediate reward assign to action and state. (Negative reward

are not considered)

 3. When the bipedal robot is falling, stand up on both feet. It must

move the feet either in expedite/ invert direction to recover standup

position.

Step 7: 1. Involves learning of bipedal robot from the experience of the

current run of the RL algorithm.

 2. Stores optimal actions, optimal policy in the lookup table which

helps if the scenario of the dynamic environment is the same in the

future.

110

action at
Reward rt

Processed
state sp State St

 St+1

rt+1

 3. If the goal point is accomplished by the bipedal robot,

reinforcement controller separation between current state and goal state

if zero then stop at that point

 3. If it is not achieved the goal then repeat the sequence from step

three until the goal point is reached

Step 8: 1. Involves the movement of the bipedal near to the soccer ball

 2. Kick it in any direction (if possible)

8.2 Model of Proposed Framework/ System

The proposed framework has two principal parts where processing is done.

They are Feature processing and Q-learning RL algorithm. Feature processing

incorporates feature extraction, feature matching, and object identification.

Resultant processed state(sp) is then contributed to the Q-learning algorithm

then the action is captured in the dynamic environment resultant is

following/next state (st+1) alongside dynamic reward generation(rt+1). The

following state(st+1) is then contributed to feature processing through

deferment and the reward generated (rt+1) is input to the Q-learning RL

algorithm through a deferment(Sharma, Singh, Prateek, et al., 2019).

Figure 8.1 Model of the Proposed System (RL agent)

8.3 Implementation of Q-Learning Algorithm

In the current scenario, the research society is attempting to design a self-

selecting proficient robot for a dynamic environment. In pre-programmed

robots, the controller is carrying out the responsibility in a known

environment. But, with the presence of a dynamic environment, because of the

Feature

Processing

Dynamic

Environment

Delay

Q- Learning

 RL algorithm

111

absence of decision-making capabilities, these sorts of controllers neglect to

carry out the responsibility. In such cases, pre-programmed bipedal doesn't

have the foggiest idea of what to do. The reinforcement algorithm assists in

carrying out the task/ responsibility. The reinforcement algorithm(Stone &

Sutton, 2001; Sutton & Barto, 2012) manages the current situation with the

bipedal robot. It is detecting the current state of the bipedal robot and taking

the bipedal to the next state without knowing the mechanics and dynamics of

the framework. So it is a model-free based controller.

The reinforcement control algorithm is completely autonomous from the

mechanics and kinematics of the body of the bipedal robot. But while picking

action it is incompletely reliant on dynamic qualities. While choosing action to

move to the next stable state, torque on joints is changing. Now the joint motor

is fit to deal with these torques. There is some pecularity point while taking

steps towards the following state.

Pecularity/ Singularity is where the controller doesn't have the foggiest idea of

what to do. (Details description in Appendix B and C) So there is a need to

sidestep that point, otherwise, the controller is not sending any data to the

controller to do the next job. The reinforcement control algorithm is dependent

on value function, transition probabilities, and cost function reward. The

reward function is a blend of positive and negative qualities. In the present

work, the positive value of the reward is awarded when the controller is

arriving at the subsequent step effectively. A negative reward isn't awarded to

action since when bipedal falls on the ground, to reach to the goal position,

bipedal ought to bring both feet either in a forward way or reverse way. If a

negative reward is granted to state and action, next time feet aren't doing an

action to carry feet in a reverse direction. The current work is centered around

the balance/ dependability of the lower body of a bipedal robot. When some

slipping condition occurs due to a change in environment, at that point of time

robot isn't capable to come in an underlying state i.e standing position of a

bipedal robot.

112

The reinforcement control algorithm assists with acquiring robots in standing

conditions without any preprogramming of robots. The stability of the walking

pattern of the bipedal is situated on the convex hull formed between the

ground and the feet.

8.4 Proposed Algorithm for Incorporating Forgetting Mechanism

The proposed algorithm proceeds as (Sharma, Singh, Bharadwaj, et al., 2019)

-

1. The environmental parameters are decided: epsilon(ε), learning rate(α),

epsilon decay, discount factor(λ)

2. Q matrix is initialized to zero

3. For every run -

A. Selection of Initial state is conducted (initially received by

sensors, at runtime evaluated by an algorithm)

B. Do while target state has not been reached

 a. Select one among the potential actions for present state utilizing

 random value generator (Exploit/ Explore)

 b. The random reward is computed, using this conceivable action

 c. Moving to the following state is examined, using this conceivable

 action

 d. Maximum Q value for the following state is evaluated, which is

 dependent on all possible actions

 e. Process Q(s,a) value

 f. Write intermediate results, current state, action selected, following

 state, the total time for execution, immediate reward in an excel file

 g. In lookup/query table store the optimal actions, policies, and the

 next state so that can be utilized in future

 h. For every run, intermediate results are stored in a new excel sheet

 end do

C. Express final Q-matrix, optimal strategy, total reward computed,

mean random value generated, total time taken in another excel file.

 D. For each episode, final results are stored in a new excel sheet.

113

4. Store values of each episode and the number of iterations required to

reach the target state along with the total duration for each process in

the third excel file.

5. Plot graphs for comparison of the number of iterations in the learning

and execution phase along with total time for execution in each

episode, total reward awarded in each episode, mean random value

generated in each episode.

8.5 The Proposed System's Characteristics

1. Storing and managing the number of states, action taken and next state

separately decreases memory space. Resulting in a more effective

learning algorithm.

2. When the agent explores it learns reward/ penalty related to every state

which is approximated by the value function of that state.

3. After every step

A. Selection of actions depends upon the generation of random values

B. Computing reward/penalty

C. The next state is assessed with the assistance of the current state and

determines the reward

D. Revision in Q-value (Policy) for visited state

E. Epsilon recalculated by epsilon*epsilon decay

F. Computing total rewards/penalty

G. Computing total execution time

H. The separation between the current state and the goal state assessed

I. How far is an agent from the goal state is tracked

As the agent explores, the value of states arbitrarily remote from goal will

move towards maximum value i.e. reward(max)/penalty(max), Q(max), and

for states close to the goal will move towards a minimum value i.e.

reward(min)/penalty(min), Q(min).

114

Assuming that after the vast period of exploration, all states arbitrarily remote

from goal will accomplish the same value V(max) =

 and V(min)

= reward(min).

8.6 Reinforcement Controller

8.6.1 Model Free Controller: Reason to Use

Model-free reinforcement learning controllers do not rely on any specific

mathematical model of the system. These controllers do not rely on the stored

experience but the online values calculated by the bipedal from the dynamics

of the uncertain environment. The RL controller is solely based on online

measurements collected directly from the dynamics of the bipedal and the

environment. The bipedal finds an optimal policy that acts as a strategy used

by the bipedal to behave in a dynamic environment(Sharma et al., 2020;

Sharma, Singh, Prateek, et al., 2019).

In a stochastic environment, if the bipedal takes an action in a certain state, the

resulting next state of the environment might not necessarily always be the

same. These uncertainties will make the task of finding the optimal policy

harder. The bipedal has to deal with the uncertainties in the environment and

decide the next action to be taken on the fly as the rewards are calculated and

the distance between the current state of bipedal and the goal state (position of

the soccer ball) is also calculated on the fly. This justifies that model-free

controllers estimate the optimal policy without using the transition and reward

functions of the dynamic environment. The Q-learning update rule also does

not have any term of probabilities only the rewards which are being calculated

on the fly and are not fixed to any constant value.

8.6.2 Reinforcement Learning (RL) Controller

A reinforcement controller is executed in the MATLAB platform as shown in

Figure 8.2. Details of the Simulink block is described in Appendix F

The bipedal robot decides on its own by knowing the current state and

switches over to the following state without knowing the kinematics and

115

dynamics of the framework. In the current research work, the lower body of

the bipedal robot is at an assured location and that location is 0° of ankle joint,

-25° of the knee joint, and -15° of the hip joint for the left foot and the

opposite of these values to the right foot.

When these values are detected with the assistance of a gyroscope sensor, a

bipedal robot needs to venture to every part of the goal point. The goal point

for the ankle joint, knee joint, and hip joint are 20°,20°, and 15° individually.

The time taking to arrive at these points is independent of the kinematics and

dynamics computation. In reinforcement controller time taken to reach the

next state, is reliant on processor abilities and generating the control signal.

The reinforcement controller controls the intermediate position of the joint

between the initial point and the goal point.

 Figure 8.3 shows the interaction of the reinforcement controller to the lower

body of bipedal.

The randomness of the controller helps to take the action. The Q-learning

algorithm allows the bipedal to go from one state to another state. The reward

is gain during the switching by the state-action pair. After several running, the

state-action pair of the reinforcement controller keeps the updated values. In

the next time of running the system executes with the old values and tries to

switch to the next state.

116

Figure 8.2 Simulink Block Diagram of Reinforcement Controller

117

-

Figure 8.3 Interfacing of Reinforcement Controller to Lower Body of Bipedal

118

CHAPTER 9 PROGRAMMING, TESTING, AND

VALIDATION OF DESIGNED ALGORITHM

Simulation is carried out for the proposed model as shown in Figure 9.1 in the

SimSpace Multibody dynamics toolbox. Figure 9.1 shows an initial state of

the lower body of the bipedal. After sensing the current state, the lower body

is switching to a goal state without knowing any kinematics and dynamics of

the present system.

Figure 9.1 Bipedal Robot is at Current State

9.1 Experimental Findings of Forgetting Q-learning Algorithm

The simulation of the bipedal was carried out and while learning and

execution results are stored for future study. Firstly, the bipedal was learning

in which exploration was the main aim while in execution exploitation was the

aim.

Two distinct ways of storing the data are:

1. Graphical representation of results as graphs and

2. Store data in the lookup tables for future use.

119

The algorithm is characterized by

1. Q(s,a) updation rule

2. The function which evaluates action to be taken

3. Forgetting Mechanism

4. Randomness in reward/ penalty depending on the current state of RL

agent and goal state(Sharma et al., 2020)ras.

Figure 9.2 Locomotion of Bipedal Robot (Model 1)

The objective is to provide upgraded execution in the dynamic condition

by using exploratory conduct that keeps a larger set of possible solution

then is kept by the traditional Q-learning algorithm.

Figure 9.3 Locomotion of Bipedal Robot (Model 2)

120

In model 2, (Figure 9.3) hip, knee, and ankle joint were less prompt while

the locomotion so slight changes in the diameter of the upper and the

lower leg were done for the bipedal (Figure 9.2)

9.1.1 Simulation Results

Case I- Random value generated between (0,1) Singh, Bharadwaj, et al.,

2019)

The intermediate, final, and graph data of the algorithm is saved in three

different lookup tables along with a header for future use.

The intermediate lookup table contains state, action transitions along with

penalty/ reward, a random value generated in each episode along with the

time required to run each episode, and distance between the current state

of RL agent and goal state which RL agent has to reach.

The final data lookup table has a mean value of random values generated

to reach the goal state from starting/ initial state, final Q(s, a), the optimal

policy obtained along with actions selected in optimal policy, total reward/

penalty to reach initial state to goal state along with total time.

The graph data lookup table contains the number of iteration, mean

random value, mean reward generation, the total time required to execute

each episode. (Figure 9.4 and Figure 9.5)

The graphs are plotted for

1. Target state - current starting state of RL agent in each episode

2. Target state - next state in each episode

3. Mean random value and random value of each episode

4. Distance between the current state of RL agent and goal state

5. Reward/ penalty in each episode

ε value (=ε* ε-decay) in each episode incorporates the forgetting mechanism.

121

Figure 9.4 Case - I Reached the Goal State in 36 Iterations

122

Figure 9.5 Case I- Reached the Goal State in 12 Iterations

123

CASE II When the range of random number generation is fixed (0.4 to 0.6)

With the same state set and action set (known set) and all parameters the

same as the previous simulation, it is observed that it runs the maximum

number of episodes but does not reach the goal state but gets stuck in

between the start state and goal state. This is due to the reason that action of

0 degree is considered due to which bipedal remains in a specific state for an

infinite duration. (Figure 9.6)

CASE III - When considering action deg(0) does not reach the goal as it is

stuck in the same state loop.

Without considering action deg(0) algorithm converges fast and it explores

more as compared to exploit and does not fully exploit decay factor

(Forgetting mechanism) (Figure 9.7)

124

Figure 9.6 Case II - Does not reach Goal State even after Executing 100 episodes

125

Figure 9.7 Case III - Reaches the Goal State in 8 Iterations

126

9.1.2 Data Saved in Lookup Table for the future use

Results found after simulations are stored in the lookup tables. Each episode

stores its value in a different sheet which contains - current state of each

episode, next state, random values generated, series of actions taken to reach

goal state, list of immediate rewards along with delayed rewards, and total

time required to execute current episode and the final result of each episode

are stored for future use. (Table 9.1 - Table 9.6) (Sharma, Singh, Bharadwaj,

et al., 2019).

127

Table 9.1 Case I Final Lookup Table

Mean

Random
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9

Total

Reward

Total

Time

0.574685 0.00036 0.00036 0.00036 0 0 0 0 1 0 1 0 0 0.8248 0.2299

 0.00595 0.00097 0.00595

 0.00898 0.00261 0.00898

 0.01902 0.00701 0.01902

 0 0.01887 0.01887

 0.35006 0.05079 0.35006

 0 0.13669 0.13669

 0 0 0

 0 0 0

Table 9.2 Case II Final Lookup Table

Mean

Random
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9

Total

Reward

Total

Time

0.44249 0.00068 0 0.00068 0 0 2 0 0 0 0 0 0 0.2562 0.15004

0 0 0

0 0 0.00261

0 0 0

0.07744 0 0.07744

0 0 0

0.13669 0 0.13669

0 0 0

0 0 0

128

Table 9.3 Case I Intermediate Lookup Table

Random

Number

Current

state

Current

Action

Next

State Reward Epsilon Time Distance

0.954086903 1 1 1 0.000363 0.49 0.030433 8

0.444338165 2 2 2 0.000363 0.4802 0.083759 7

0.599817138 1 2 2 0.000978 0.470596 0.098299 7

0.842621831 1 2 2 0.000978 0.461184 0.100825 7

0.031200453 1 2 2 0.000978 0.45196 0.105586 7

0.943594399 1 2 2 0.000978 0.442921 0.107787 7

0.947922139 1 2 2 0.000978 0.434063 0.11089 7

0.452984391 1 2 2 0.000978 0.425382 0.11394 7

0.810832551 1 2 2 0.000978 0.416874 0.117054 7

0.928879201 1 2 2 0.000978 0.408536 0.120004 7

0.672717281 1 2 2 0.000978 0.400366 0.122202 7

0.37233228 2 3 3 0.000978 0.392358 0.125802 6

0.438823922 1 3 3 0.002632 0.384511 0.129029 6

0.678649201 1 3 3 0.002632 0.376821 0.130739 6

0.465070329 1 3 3 0.002632 0.369285 0.132765 6

0.953264168 1 3 3 0.002632 0.361899 0.135408 6

0.354697982 2 4 4 0.002632 0.354661 0.138923 5

0.895860047 1 4 4 0.007083 0.347568 0.141278 5

0.545434258 1 4 4 0.007083 0.340616 0.146281 5

0.749283717 1 4 4 0.007083 0.333804 0.149378 5

0.124877199 2 5 5 0.007083 0.327128 0.166131 4

0.074749438 2 6 6 0.019063 0.320585 0.171523 3

0.703651642 1 6 6 0.051303 0.314174 0.176905 3

0.918950568 1 6 6 0.051303 0.30789 0.181696 3

0.660071908 1 6 6 0.051303 0.301732 0.187919 3

0.690104919 1 6 6 0.051303 0.295698 0.194076 3

0.85372361 1 6 6 0.051303 0.289784 0.200103 3

0.467901723 1 6 6 0.051303 0.283988 0.202879 3

0.458478682 1 6 6 0.051303 0.278308 0.206439 3

0.806104187 1 6 6 0.051303 0.272742 0.209979 3

0.824767236 1 6 6 0.051303 0.267287 0.213536 3

0.190436103 1 6 6 0.051303 0.261942 0.21704 3

0.05681496 1 6 6 0.051303 0.256703 0.220601 3

0.171418738 2 7 7 0.051303 0.251569 0.224403 2

0.029515208 2 8 8 0.138069 0.246537 0.229863 1

129

Table 9.4 Case II Intermediate Lookup Table

Random

Number Current

state

Current

Action

Next

State Reward Epsilon Time Distance

0.114789 1 1 1 0.000363 0.49 0.043864 8

0.289081 1 1 1 0.000363 0.4802 0.052354 8

0.323706 3 3 3 0.000363 0.470596 0.062168 6

0.299634 3 5 5 0.002632 0.461184 0.070919 4

0.552771 1 5 5 0.019063 0.45196 0.100299 4

0.554692 1 5 5 0.019063 0.442921 0.103989 4

0.730647 1 5 5 0.019063 0.434063 0.108803 4

0.773625 1 5 5 0.019063 0.425382 0.113474 4

0.900847 1 5 5 0.019063 0.416874 0.124663 4

0.138167 3 7 7 0.019063 0.408536 0.144453 2

0.189413 1 8 8 0.138069 0.400366 0.150035 1

Table 9.5 Case III Intermediate Result Sheet

Random

Number

Current

state

Current

Action

Next

State Reward Epsilon Time Distance

0.503135 1 2 2 0.000363 0.49 0.010173 7

0.454399 1 3 3 0.000978 0.4802 0.060253 6

0.579907 1 4 4 0.002632 0.470596 0.068851 5

0.581739 1 5 5 0.007083 0.461184 0.074326 4

0.520729 1 6 6 0.019063 0.45196 0.104072 3

0.473047 1 7 7 0.051303 0.442921 0.111539 2

0.519718 1 8 8 0.138069 0.434063 0.11716 1

9.2 Experimental Results of Feature-Based RL Agent

Figure 9.8 Soccer ball with 200 strongest points identified

130

Table 9.6 Case III Final Lookup Table

ean

Random
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9

Total

Reward

Total

Time

0.518954

0.00036 0

0.00036 1 1 1 1 1 1 1 1 1 0.21949 0.1172

0.000968 0 0.000968

0.002606 0 0.002606

0.007013 0 0.007013

0.018872 0 0.018872

0.050790 0 0.050790

0.136689 0 0.136689

0 0 0

131

Figure 9.8 shows an image to be compared to a soccer ball. The colored image

is converted to the gray image than 200 strongest points were identified which

help in feature matching(Sharma, Singh, Prateek, et al., 2019).

Figure 9.9 Soccer ball on the ground, its gray image and 400 strongest points identified

Figure 9.9 shows the image of the ground where the ball is present. The

colored image is first converted to the grayscale image than 400 strongest

points were identified which help in feature matching. The strongest point

identification reveals that the ball has more points identified and less on the

ground.

132

.

Figure 9.10 Top - Matched Points including Outliners

 Bottom - Matched Point including only Inliers

Figure 9.10 matches the feature obtained from Figure 9.8 and Figure 9.9. The

left side is Figure 9.8 strongest point image and the right-hand side is Figure

9.9 strongest point identified image. These two images are affine feature

matched top figure shows including outliers on SURF algorithm and lower

figure shows including only inliers on SURF algorithm.

Figure 9.11 shows ball identification on the ground in both gray and colored

images. Hence, the feature is processed, and the result states (position) of a

soccer ball on the ground. The soccer ball is identified on the ground. The

position of the ball is calculated in Cartesian coordinates and passed to the Q-

learning RL algorithm. The controller then sends an instruction to bipedal

joints to move the bipedal robot to reach the soccer ball accordingly(Sharma,

Singh, Prateek, et al., 2019).

133

9.3 Hierarchical Structuring of RL System

Training the hip joint for the forward movement is done then the knee joint is

trained using forgetting mechanism Q-learning algorithm then the ankle joint

is trained similarly considering the contact forces of the feet too.

Figure 9.11 Soccer Ball identification done in Gray and Color Image

The bipedal is trained, in first-run Bipedal walks with jerks as seen in each of

the joints and takes more execution time i.e. more iterations of the proposed

training algorithm. But when a simulation is executed repeatedly then the

trajectory of the bipedal is smooth and moves fast. As the Gait cycle is fixed it

reaches a goal point at the approximately same time. Previously when the

simulation started the learning of the bipedal is being carried out.

For a few steps of the learning phase, the optimal data is stored in the lookup

table. The optimal action, next state, rewards, and optimal policy values are

stored in the excel file. After the completion of the learning phase, these data

134

are further utilized for further execution of the bipedal in the same dynamic

environment. This results in a considerable amount of reduction in the number

of iterations. In the learning phase, the maximum number of iterations was 51-

52 or 46 depending upon the joint and the initial and goal state and eventually

reduced to 21-23 as a minimum after the learning phase was completed. In the

execution phase, the maximum number of iterations is 18 and eventually

reduces to 2 as a minimum, This is so by using the optimal action and the next

state values in the lookup table rewards are calculated on the fly.

Figure 9.12 Locomotion of Bipedal Robot after Object Identification

9.3.1 Proposed Assumption

At the beginning of the research, the learning phase was based on the number

of strides or the number of episodes to be executed but later it was based on

the range of the number of iterations, which when reaches a minimum range

(21-25) the learning phase or the exploitation stage of bipedal comes to end.

This leads to the starting of the execution phase or the exploitation stage

where the bipedal uses the stored data in the lookup table if the scenario of the

dynamic environment is the same. The same scenario is justified by the object

identifications in the dynamic environment, the Cartesian coordinate of the

object is calculated when these are the same as one stored in the database, then

only the execution phase has to be carried out using the stored lookup data.

135

When Cartesian coordinates stored vary then the scenario is a new one and has

to start from scratch means to continue the learning phase(Sharma et al.,

2020).

In the learning and execution phase, the main concerned area is the maximum

and a minimum number of iterations in both these phases along with the total

time required in the learning and execution phase of each episode/ stride.

9.3.2 Learning Phase

In the learning phase, learning is done starting from 25 strides, 50 strides, 75

strides, 100 strides, 150 strides, 200 strides. The trends observed in these

strides in all three joints are almost the same.

For 25 strides the variation in random values, total time, and the number of

iterations has a zigzag pattern, this shows that they do not reach some stable

range of value.

For 50 strides, 75 strides, 100 strides the variation in the values of random

values, total time and the number of iterations takes a range starting from a

maximum of 51-52 to a minimum of 21-23. In most cases the number of

iterations comes out to be between 21-23 and the time taken is in milliseconds

to complete the iterations. Mean random values usually vary between 0.4 to

0.6 which shows a dilemma between exploration and exploitation. There is

some variation in total execution time which includes the time of executing the

iteration as well as writing optimal data in the lookup table. As the number of

strides increases, table size also increases as well as if some condition has

occurred previously then data is not stored again in the lookup table. This is a

time-consuming task as first have to search if data is already stored if yes the

skip if data does not exist then go to the end of the lookup table and store data.

For 150 strides and 200 strides the learning time is very less but storing data in

lookup takes time and so the total execution time of the episodes increases.

The values of random values, total time, and the number of iterations take a

range starting from a maximum of 51-52 to a minimum of 21-23.

136

9.3.3 Execution Phase

In the execution phase, execution starts from 25 strides, 50 strides, 75 strides,

100 strides, 150 strides, 200 strides. The trends observed in these strides in all

three joints are almost the same. There are many variations in the number of

iterations in the execution phase, the bipedal reads the current position of the

joint and then searches in the lookup table for the defined angle, the optimal

actions, the next probable state, and the optimal policy and reaches the goal

state or the subsequent stable state for the corresponding joint.

For 25 strides the variation in random values, total time, and the number of

iterations has a zigzag pattern, this shows that they do not reach some stable

range of value.

For 50 strides, 75 strides, 100 strides the variation in the values of random

values, total time, and the number of iterations takes a range starting from a

maximum of 18 to a minimum of 2. In most cases, the time taken is in

milliseconds to complete the iterations but the total execution time is

considerable, mean random values usually vary between 0.4 to 0.6 which

shows a dilemma between exploration and exploitation. There are some

variations in total execution time which include the time of executing the

iteration as well as searching and reading optimal data from a lookup table.

As the number of strides increases, the time consumed in the task of searching

the data in the lookup table is considerably more. This, in turn, increases the

execution time which results in the approximately same time for the execution

phase as the learning phase.

For 150 strides and 200 strides, the execution time is more as searching data in

lookup takes time and so the total execution time of the episodes increases.

The values of random values, total time, and the number of iterations take a

range starting from a maximum of 18 to a minimum of 2.

137

9.4 Value comparison of Hip, Knee and Ankle Joints in Learning and

Execution Phase

For Hip Joint (Sharma et al., 2020)

In the first episode goal of walking stable is achieved in 47 iterations

The starting angle of the hip joint is -45
o

For Knee Joint

In the first episode goal of walking stable is achieved in 51 iterations

The starting angle of the hip joint is 0
o

For Ankle Joint

In the first episode goal of walking stable is achieved in 51 iterations

The starting angle of the hip joint is -30
o

9.4.1 Comparison for Number of Iterations in 1
st
 Episode

For Hip, Knee, and Ankle Joint

In the 1
st
 episode goal of walking stable is achieved in 51-43 iterations for

each of the joints. Table 9.7, 9.8, 9.9 shows the reduced number of iteration in

the 1
st
 episode for each of the joints.

9.4.2 Comparison for Number of Iterations in 200
th

 Episode

For Hip, Knee, and Ankle Joint

In the 200
th

 episode goal of walking stable is achieved in 21-23 iterations for

each of the joints. Table 9.10, 9.11, 9.12 shows the reduced number of

iteration in the 200
th

 episode for each of the joints.

138

Table 9.7 Hip Joint (Final Data Episode 1)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

43 0.47244 1.39685 0.10581 0 2.49E-09 2.49E-09 1 0 0

6.83E-09 0 6.83E-09

1.84E-08 0 1.84E-08

4.86E-08 4.86E-08 4.86E-08

1.32E-07 0 1.32E-07

6.69E-07 3.52E-07 6.69E-07

0 9.47E-07 9.47E-07

0 2.55E-06 2.55E-06

0 6.86E-06 6.86E-06

1.85E-05 0 1.85E-05

0 4.97E-05 4.97E-05

0.000136 0 0.000136

0.000367 0 0.000367

0.000987 0 0.000987

0 0.002606 0.002606

0.007146 0 0.007146

0.019231 0 0.019231

0.051756 0 0.051756

0.139287 0 0.139287

0.699304 0 0.699304

0 0 0

139

Table 9.8 Knee Joint (Final Data Episode 1)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

51 0.55394 1.4022 0.21696 4.74E-09 2.49E-09 4.74E-09 0 0 0

6.71E-09 0 6.71E-09

1.84E-08 0 1.84E-08

4.86E-08 4.86E-08 4.86E-08

1.32E-07 0 1.32E-07

3.59E-07 0 3.59E-07

9.65E-07 0 9.65E-07

0 2.55E-06 2.55E-06

6.99E-06 0 6.99E-06

1.88E-05 0 1.88E-05

0 4.97E-05 4.97E-05

0.000136 0 0.000136

0.000367 0 0.000367

0.000987 0 0.000987

0.002655 0 0.002655

0.007146 0 0.007146

0.019231 0 0.019231

0.051756 0 0.051756

0.139287 0 0.139287

0.699304 0 0.699304

0 0 0

140

Table 9.9 Ankle Joint (Final Data Episode 1)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

51 0.55394 1.4022 0.18134 4.74E-09 2.49E-09 4.74E-09 0 0 0

6.71E-09 0 6.71E-09

1.84E-08 0 1.84E-08

4.86E-08 4.86E-08 4.86E-08

1.32E-07 0 1.32E-07

3.59E-07 0 3.59E-07

9.65E-07 0 9.65E-07

0 2.55E-06 2.55E-06

6.99E-06 0 6.99E-06

1.88E-05 0 1.88E-05

0 4.97E-05 4.97E-05

0.000136 0 0.000136

0.000367 0 0.000367

0.000987 0 0.000987

0.002655 0 0.002655

0.007146 0 0.007146

0.019231 0 0.019231

0.051756 0 0.051756

0.139287 0 0.139287

0.699304 0 0.699304

0 0 0

141

Table 9.10 Hip Joint (Final Data Episode 200)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

21 0.49883 0.96286 0.00161 0.483517 0.537241 0.537241 1 1 1

0.537241 0.596934 0.596934

0.596934 0.66326 0.66326

0.736226 0.736956 0.736956

0.736964 0.81884 0.81884

0.909813 0.909822 0.909822

1.009902 1.010913 1.010913

1.010914 1.123235 1.123235

1.246801 1.248036 1.248036

1.385326 1.386699 1.386699

1.386731 1.540756 1.540756

1.540841 1.711896 1.711896

1.900058 1.901956 1.901956

1.904653 2.112881 2.112881

2.116832 2.346559 2.346559

2.601829 2.604363 2.604363

2.619011 2.885866 2.885866

2.918133 3.185337 3.185337

3.482238 3.482259 3.482259

3.715767 0 3.715767

0 0 0

142

Table 9.11 Knee Joint (Final Data Episode 200)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

21 0.54280 0.96286 0.00615 0.483516 0.537241 0.537241 1 1 1

0.537241 0.596934 0.596934

0.59694 0.66326 0.66326

0.66399 0.736956 0.736956

0.736955 0.81884 0.81884

0.81974 0.909822 0.909822

0.910823 1.010912 1.010912

1.010914 1.123235 1.123235

1.123252 1.248036 1.248036

1.249421 1.386699 1.386699

1.386731 1.540756 1.540756

1.710202 1.711895 1.711895

1.714003 1.901956 1.901956

2.110799 2.112881 2.112881

2.114535 2.346559 2.346559

2.604338 2.604363 2.604363

2.619011 2.885866 2.885866

3.182664 3.185337 3.185337

3.272123 3.482259 3.482259

3.715767 0 3.715767

0 0 0

143

Table 9.12 Ankle Joint (Final Data Episode 200)

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3

23 0.52326 0.23914 0.00097 8.55E-09 1.17E-05 1.17E-05 1 1 1

4.87E-06 3.11E-05 3.11E-05

3.1E-05 8.46E-05 8.46E-05

1.98E-07 0.000229 0.000229

0.000256 0.000611 0.000611

0.000286 0.001645 0.001645

0.000687 0.004444 0.004444

0.001832 0.011983 0.011983

0.011947 0.032218 0.032218

0.002313 0.086632 0.086632

0.014933 0.348896 0.348896

0.629748 0.390436 0.629748

0.634336 0.93425 0.93425

0.000987 1.231763 1.231763

0.007109 1.468888 1.468888

1.521333 1.733414 1.733414

1.748164 2.1041 2.1041

1.960922 2.323825 2.323825

2.204555 2.525091 2.525091

2.652246 0 2.652246

0 0 0

144

9.4.3 Comparison of Reduction in Number of Iterations in Successive

Episodes For Hip, Knee, and Ankle Joint

In all three joints number of iterations reduces in the execution phase as

compared to previous learning phase episodes. After a point of time, it stays in

between a specific range from 21 - 25 iterations per episode for the learning

phase. This shows that the bipedal is learning from its experience of previous

episodes and using that in learning further(Sharma et al., 2020).

These values are stored for a run as execute, the algorithm for next gait of the

bipedal process all values are reset, and it restarts its learning as the

environment is dynamic. After a few episodes, the bipedal starts using the

optimal actions from the action set as they are stored in the lookup table. The

values are retrieved and the scenarios are compared if the position of an object

in the coordinate system is the same then the dynamics of the system are

known to the bipedal. The bipedal exploits the previous knowledge data which

it has learned in the learning phase and trains fast in the execution phase and

reached the soccer ball.

If the scenario changes mean the dynamics of the environment are changing

then the RL agent executes the proposed learning algorithm from scratch. The

execution of the proposed forgetting mechanism RL algorithm depends on the

execution of the RL based object identification algorithm whose result is the

dynamics of the environment. The dynamics of the environment are calculated

then compares if the same scenario exists in the previously learned knowledge,

then executes that same sequence of steps that were successful and gave

optimal policy to follow and stored in the lookup table. If such a scenario does

not exist means no such data is found in the lookup table then bipedal run in

the dynamics of the environment and store the successful and exploited state-

action pair in the state action lookup table.

145

Table 9.13 Comparison of Reduction in Number of Iterations in Successive Episodes

HIP JOINT KNEE JOINT ANKLE JOINT

Episodes Iterations Episodes Iterations Episodes Iterations

1 43 1 49 1 51

2 37 2 45 2 35

3 29 3 41 3 31

4 33 4 43 4 31

5 33 5 37 5 29

6 29 6 30 6 29

7 31 7 25 7 27

8 29 8 27 8 27

9 25 9 25 9 25

10 23 10 23 10 23

11 21 11 23 11 22

12 25 12 23 12 23

13 27 13 21 13 22

14 27 14 21 14 23

15 25 15 25 15 22

16 23 16 23 16 23

17 21 17 22 17 25

18 23 18 22 18 25

19 23 19 21 19 25

20 23 20 23 20 27

21 24 21 22 21 23

22 26 22 23 22 25

23 25 23 23 23 27

24 22 24 21 24 25

146

9.4.4 Comparison of Number of Iterations Vs Episodes in Learning and

Execution phase for all joints

Number of Iterations Vs Episodes (Hip Joint)

Figure 9.13 Comparison of Hip for 25, 50, 75, 100, 150, 200 strides

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
0

10

20

30

40

50

60

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

10

20

30

40

50

60

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

10

20

30

40

50

60

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

147

Figure 9.13 shows that in the learning phase as strides increases from 25 to

200 number of minimum iterations required to learn decreases from 51 to 21.

This reveals that the bipedal is using the lookup data when the dynamics of the

system is not changing. In the executing phase as strides increases from 25 to

200 number of minimum iterations required to execute varies from 2 to 18

depending on the start angle of the hip joint.

As the knee is attached with the pelvis whose center is usually COM of the

biped. To learns the stable position of the hip joint is relatively easy as

compared to the knee and ankle joint. Biped to be stable has some

approximate angle so that the COM of the biped is in between both legs.

Figure 9.14 shows that in the learning phase as strides increases from 25 to

200 number of minimum iterations required to learn decreases from 47 to 21.

This reveals that the bipedal is using the lookup data when the dynamics of the

system is not changing. In the executing phase as strides increases from 25 to

200 number of minimum iterations required to execute varies from 2 to 18

depending on the start angle of the knee joint. The knee joint angle varies as

the gait proceeds, but to reach an angle at which the knee joint is stable and

the bipedal does not get tumbled or imbalanced the current joint angle value

plays an important role. After getting the current state and knows the goal state

(approximately) different actions have opted means different options of how

the knee joint should reach a stable angle.

148

Number of Iterations Vs Episodes (Knee Joint)

Figure 9.14 Comparison of Knee for 25, 50, 75, 100, 150, 200 strides

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

0

10

20

30

40

50

1 5 9 13 17 21 25 29 33 37 41 45 49

0

10

20

30

40

50

60

1 7 13 19 25 31 37 43 49 55 61 67 73 0

10

20

30

40

50

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

10

20

30

40

50

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

10

20

30

40

50

60

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

149

Figure 9.15 shows that in the learning phase as strides increases from 25 to

200 number of minimum iterations required to learn decreases from 51 to 21.

This reveals that the bipedal is using the lookup data when the dynamics of the

system is not changing. In the executing phase as strides increases from 25 to

200 number of minimum iterations required to execute varies from 2 to 18

depending on the start angle of the ankle joint. The most difficult joint to train

is the ankle joint.

The system follows the hierarchical structure first to train the hip joint to reach

a stable position than train the knee joint to reach a stable position so that

bipedal remains stable. Last but not least ankle joint is trained which has to

control the damping and ZMP of the bipedal so has to adjust the ankle joint of

the bipedal taking them into account. The ankle joint is calculated considering

that the sole is in contact with the ground. When the sole touches the ground

the damping comes into the picture as there will be jerks when the sole

touches the ground and the angle of the ankle is adjusted in real-time to keep

the bipedal stable. This stability is checked by the calculation of ZMP which

should lie in the convex hull of the gait.

Figures 9.13, 9.14, 9.15 show a remarkable decrease in the number of

iterations in the execution phase of the hip, knee, and ankle joint as compared

to the number of iterations in the learning phase of the bipedal.

150

Number of Iterations Vs Episodes (Ankle Joint)

Figure 9.15 Comparison of Ankle for 25, 50, 75, 100, 150, 200 strides

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
0

10

20

30

40

50

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

0

10

20

30

40

50

60

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

10

20

30

40

50

60

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

151

9.4.5 Comparison of Total Time for Learning and Execution phase for

Hip, Knee, and Ankle Joint

Total Time Vs Episodes (Hip Learning)

Figure 9.16 Total Time Vs episodes for Hip Learning

As seen in figure 9.16, for hip joint learning there are variations in the hip

joint learning as the number of strides/episodes increases. These are visible in

100, 150 strides before, and after that, they have a straight-line graph.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.02

0.04

0.06

0.08

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.05

0.1

0.15

0.2

0.25

0.3

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.01

0.02

0.03

0.04

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.02

0.04

0.06

0.08

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.05

0.1

0.15

0.2

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

152

Total Time Vs Episodes (Hip Execution)

Figure 9.17 Total Time Vs episodes for Hip Execution

As seen in Figure 9.17, the variations are more in the execution phase as

compared to the learning phase. In the execution phase, the variations are

visible from 50 strides and followed in 75, 100, 150 strides. A stable graph is

visible for 25 and 200 episodes.

0

0.01

0.02

0.03

0.04

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.01

0.02

0.03

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.1

0.2

0.3

0.4

1 7 13 19 25 31 37 43 49 55 61 67 73

0

0.01

0.02

0.03

0.04

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.02

0.04

0.06

0.08

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.02

0.04

0.06

0.08

0.1

0.12

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

153

Total Time Vs Episodes (Knee Learning)

Figure 9.18 Total Time Vs episodes for Knee Learning

As the learning of the joints is done hierarchically first the stable angle of the

hip is fixed then the knee joint is learning. The variations of hip joint learning

are propagated in the learning of the knee joint. As seen in figure 9.18, the

variations are more as compared to the hip joint in all the strides of learning of

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.01

0.02

0.03

0.04

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.01

0.02

0.03

0.04

0.05

0.06

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.02

0.04

0.06

0.08

0.1

0.12

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.01

0.02

0.03

0.04

0.05

0.06

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.1

0.2

0.3

0.4

0.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

154

the knee joint. There are large deviations in the values of the total execution

time for almost all strides that are visible in the graph.

Total Time Vs Episodes (Knee Execution)

Figure 9.19 Total Time Vs episodes for Knee Execution

As the executing of the joints is also carried out the hierarchically first stable

angle of the hip is fixed then the knee joint is executed. The variations of the

hip joint executions are propagated in the execution of the knee joint. As seen

in figure 9.19, the variations are more as compared to the hip joint in all

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.05

0.1

0.15

1 6 11 16 21 26 31 36 41 46

0

0.02

0.04

0.06

0.08

0.1

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.02

0.04

0.06

0.08

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.01

0.02

0.03

0.04

0.05

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.05

0.1

0.15

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

155

strides of execution of the knee joint. There are large deviations in the values

of the total execution time for almost all strides that are visible in the graph.

Total Time Vs Episodes (Ankle Learning)

Figure 9.20 Total Time Vs episodes for Ankle Learning

As seen in figure 9.20, the learning phase is far stable as compared to that of

hip joint and knee joint as ankle joint also have contact forces to adjust and the

zmp compensator at the runtime to stabilize ankle joint angle.

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.02

0.04

0.06

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.02

0.04

0.06

0.08

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.02

0.04

0.06

0.08

0.1

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.1

0.2

0.3

0.4

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.02

0.04

0.06

0.08

0.1

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

156

Total Time Vs Episodes (Ankle Execution)

Figure 9.21 Total Time Vs episodes for Ankle Execution

As seen in figure 9.21 there is the least variation in the execution phase as zmp

compensator and the contact forces and torques are acting at run time. If the

leg is not in contact with the ground then variation in angle is more and the leg

should not hit the ground with force to avoid damages in bipedal.

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.02

0.04

0.06

0.08

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.005

0.01

0.015

0.02

0.025

1 7 13 19 25 31 37 43 49 55 61 67 73

0

0.02

0.04

0.06

0.08

0.1

0.12

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.02

0.04

0.06

0.08

0.1

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.01

0.02

0.03

0.04

0.05

0.06

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

157

9.4.6 Random Values Generations for 200 Episodes

Action selection depends on the generation of random values. If random value

generated < 0.5 then random actions are selected from a defined action set.

Hence, bipedal explores the dynamic environment.

Hip Joint

Knee Joint

Ankle Joint

Figure 9.22 Comparison of Random Value Generation for all Three Joints

If the random value generated is greater than 0.5 then greedy (optimal) action

is selected from the defined action set. Greedy or optimal actions are actions

that are chosen frequently by the bipedal. Hence, bipedal exploits a dynamic

environment. This helps bipedal to learn fast and reach the optimal policy with

maximum immediate reward. Due to this bipedal has a smooth and stable

trajectory without jerks.

158

9.4.7 Mean Random Values, Total Rewards calculation of Learning and

Execution Phase for Hip Joint, Knee Joint, Ankle Joint

Mean Random Value, Total Rewards Vs Episodes (Hip Joint Learning)

Figure 9.23 Comparison of Learning Phase of Reward Generation of Hip Joint

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.5

1

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73

0

0.5

1

1.5

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

0

0.5

1

1.5

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.5

1

1.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

159

Figure 9.23 shows that in the learning phase as strides increases from 25 to

200 randomness in rewards generation increases which reveals that bipedal if

exploring more optimal actions to reach the goal but, in end, uses greedy

actions i.e. exploits greedy action.

Mean Random Value, Total Rewards Vs Episodes (Hip Joint Execution)

Figure 9.24 Comparison of Executing Phase of Reward Generation of Hip Joint

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.5

1

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.5

1

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73

0

0.5

1

1.5
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.5

1

1.5

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.5

1

1.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

160

Figure 9.24 shows that in execution phase as strides increases from 25 to 200

randomness in rewards generation is almost constant which reveals that

bipedal if exploiting optimal actions to reach the goal but there are some

spikes which are exception or error which shows that hip joint goes to near

about its original start position and so randomness in rewards is there.

Mean Random Value, Total Rewards Vs Episodes (Knee Joint Learning)

Figure 9.25 Comparison of Learning Phase of Reward Generation of Knee Joint

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.5

1

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.2

0.4

0.6

0.8

1

1.2

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.5

1

1.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

0

0.5

1

1.5

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

161

Figure 9.25 shows that in the learning phase as strides increases from 25 to

200 randomness in rewards generation increases which reveals that bipedal if

exploring more optimal actions to reach the goal but, in end, uses greedy

actions i.e. exploits greedy action.

Mean Random Value, Total Rewards Vs Episodes (Knee Joint Execution)

 Figure 9.26 Comparison of Executing Phase of Reward Generation of Knee Joint

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.5

1

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.5

1

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.5

1

1.5
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.5

1

1.5

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.5

1

1.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

162

Figure 9.26 shows that in execution phase as strides increases from 25 to 200

randomness in rewards generation is almost constant which reveals that

bipedal if exploiting optimal actions to reach the goal but there are some

spikes which are exception or error which shows that knee joint goes to near

about its original start position and so randomness in rewards is there. The

randomness in the knee is more as compared to the hip joint as joints are

trained hierarchically if randomness is there at the hip joint in that stride then

it is propagated to the knee joint. More spikes in the graph can be seen of 200

steps.

Mean Random Value, Total Rewards Vs Episodes (Ankle Joint Learning)

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.5

1

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.5

1

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

0

0.5

1

1.5

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

163

 Figure 9.27 Comparison of Learning Phase of Reward Generation of Ankle Joint

Figure 9.27 shows that in the learning phase as strides increases from 25 to

200 randomness in rewards generation increases which reveals that bipedal if

exploring more optimal actions to reach the goal but, in end, uses greedy

actions i.e. exploits greedy action.

Figure 9.28 shows that in execution phase as strides increases from 25 to 100

randomness in rewards generation is almost constant which reveals that

bipedal if exploiting optimal actions to reach the goal but there are some

spikes which are exception or error which shows that ankle joint goes to near

about its original start position and so randomness in the rewards is there. The

randomness of the hip and knee is carried out to the ankle joint as joints are

trained hierarchically. If randomness is there at hip and knee joints in that

stride, then it is propagated to the ankle joint. But the ankle joint has a

damping controller and ZMP controller which helps in minimizing this

propagated error so that the stability of the bipedal is not affected.

Bipedal is more stable due to the execution of these controllers in real-time,

resulting in fewer spikes in the graph of different strides.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

164

Mean Random Value, Total Rewards Vs Episodes (Ankle Joint Execution)

Figure 9.28 Comparison of Executing Phase of Reward Generation of Ankle Joint

9.5 Comparison of Combined Episodes for Hip, Knee and Ankle Joints in

Learning and Execution Phase

The total episodes or number of iterations for the hip, knee, and ankle joint in

the learning phase is evaluated by adding up all the individual numbers of

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.5

1

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49

0

0.5

1

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73

0

0.5

1

1.5

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

0

0.2

0.4

0.6

0.8

1

1.2

1

7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

0

0.5

1

1.5

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

165

iterations required to achieve the goal for each joint. Similarly, the total

episodes for the execution phase are evaluated by combining the number of

iterations of the hip, knee, and ankle. These values are then compared for each

of 25, 50, 75, 100, 150, and 200 strides.

Number of Iterations Vs Episodes (All Joint)

Figure 9.29 Comparison of Learning and Executing Phase of all Joint Data

0

50

100

150

Ep
is

o
d

es
 3

6

9

1
2

1
5

1
8

2
1

2
4

 0

50

100

150

200

Ep
is

o
d

es
 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

50

100

150

200

Ep
is

o
d

es

7

1
4

2

1

2
8

3
5

4

2

4
9

5
6

6

3

7
0

 0

50

100

150
Ep

is
o

d
es

 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

0

50

100

150

200

Ep
is

o
d

es

6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2

1
0

8

1
1

4

1
2

0

1
2

6

1
3

2

1
3

8

1
4

4

1
5

0

0

50

100

150

200

Ep
is

o
d

es

8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

166

9.6 Comparison of Total Time for Hip, Knee, and Ankle Joints in

Learning and Execution Phase

The total time required for the learning of the hip, knee, and ankle joint in the

learning phase is evaluated by adding up all the individual time required to

achieve the goal for each joint. Similarly, the total time required for the

execution phase is evaluated by combining the total time required for the hip,

knee, and ankle. These values are then compared for each of 25, 50, 75, 100,

150, and 200 strides

Total Time Vs Episodes (All Joint)

0

0.05

0.1

0.15

0.2

0.25

Ep
is

o
d

es
 3

6

9

1
2

1
5

1
8

2
1

2
4

 0

0.05

0.1

0.15

0.2

0.25

Ep
is

o
d

es
 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

0.1

0.2

0.3

0.4

0.5

Ep
is

o
d

es

7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

0

0.1

0.2

0.3

0.4

Ep
is

o
d

es

9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Ep
is

o
d

es
 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2

1
0

8

1
1

4

1
2

0

1
2

6

1
3

2

1
3

8

1
4

4

1
5

0

167

Figure 9.30 Comparison of Total Time for Learning and Executing Phase of all Joint

Data

9.7 State of Art Algorithm: Computer Vision

The present work can be to some extend be compared with a computer

vision state-of-the-art algorithm.

From a broader point of view, the main steps for computer vision are object

classification, object identification, and object tracking.

Looking into the broader aspect, the present work has also performed these

tasks along with some other tasks which makes them different from state of

art algorithm.

The Bipedal first performs self-localization means finding its position in the

world frame, then Bipedal identifies the object (soccer ball) using object

feature detection SURF algorithm, then localizes the soccer ball concerning

world frame, then calculated the distance between itself and the soccer ball.

The above stated four steps are the same as performed in computer vision

with a slight difference. For object identification, deep leaning or deep Q

learning (DQN) algorithms are not used to reduce computation overheads

and wanted to keep a clear difference between reinforcement and deep

learning.

The next step of the proposed work was the reinforced learning of bipedal

to walk stably and efficiently with minimal jerks and losses. For this, the

forgetting mechanism was incorporated in the Q-learning algorithm. Some

major changes were made in the traditional Q-leaning algorithm so that the

results are as expected in the dynamic environment. The changes to list

down are - incorporation of forgetting mechanism so that bipedal does not

-0.1

6E-16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ep
is

o
d

es
 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0

8

1
1

7

1
2

6

1
3

5

1
4

4

1
5

3

1
6

2

1
7

1

1
8

0

1
8

9

1
9

8

168

use out of date knowledge in the dynamic and uncertain environment, the

rewards were not fixed/ constant but were calculated on the fly, discount

factor was also changing in each go exponentially and for every 30ms the

distance between the soccer ball and the bipedal is calculated. Some offline

fixations are done in the algorithm and some online corrections are made to

have a stable gait. In the online mode, compensators are considered along

with foot adjustment for contact forces and ankle, knee, and hip joint angle

calculation. After this, the bipedal has a stable gait.

Computer vision uses deep learning or DQN for these works which are

supervised training algorithms.

The bipedal walk towards the soccer ball taking into consideration all

dynamic and uncertain environmental conditions and stops once it reached

the localized soccer ball position. At present only one bipedal is in the

environment due to the constraint handling of concurrency control of

bipedal.

Bipedal to some extent is using computer vision for object detection and

localization as it reached the object but the method used in movement and

reaching soccer ball involves a reinforcement mechanism.

169

CHAPTER 10 CONCLUSION AND FUTURE SCOPE

10.1 Conclusion

The reinforcement controller for the bipedal trains the hip joint first then the

knee joint is trained then the training of the ankle joint is carried out. This

training helps the bipedal to move from its current state to the next stable state.

After training for a stable standing position then bipedal is ready for

movement searches/ looks for the object to identify in its dynamic

environment. If the object is present then the bipedal calculates the distance in

terms of cartesian coordinates and then walks according to the trained

trajectory from the previous step, and then walks near to the identified object

i.e. soccer ball in this case to kick it.

The previous knowledge is not used to train the joints of bipedal as the

knowledge is outdated as the environment is dynamic and uncertain. The

training of the bipedal depends on the dynamics of the system. Bipedal is

trained and knowledge gained is used for exploration or exploitation steps

which depends on the random value which is incorporated in the algorithm

then after that, the forgetting mechanism is also implemented by setting the

value of variable large so that it forgets the old information and gains new

states depending on dynamics of the current system. The reward function is

also not predefined or has a constant value but it is calculated on the fly by

evaluating the distance between the goal and the current state and doing some

algebraic and exponential operations. The bipedal is trained not to stick in any

position for more than specific iterations of the training algorithm i.e. should

be off the stuck position in few seconds and also trained not to change its

value drastically so that it would harm the hardware of the bipedal system like

170

servomotor, sensors, etc by passing too high or too low values to the

individual parts and should not stop abruptly that is standing still or fall.

The training duration of the bipedal is not fixed it varies depending on the path

followed which in turn relies on random optimized actions taken by bipedal.

Bipedal was preliminary trained for 25, 50, 75, 100, 150, and 200 episodes on

each joint, and the values of each iteration were stored in excel files. The

individual files are created for each intermediate data and the final optimal

policy reached after training is being completed by the bipedal is also

recorded. Intermediate data for each episode is stored in individual sheets of

an excel file so that it can be passed to the lookup table to train the bipedal

joint movement individually in a hierarchical manner or maybe in a parallel

manner.

Bipedal used a feature-based object identification algorithm which reduces the

state space to store and hence increases the speed of object identification. In

this algorithm the strongest specific amount of points are detected like 200,

400, etc then the matching is done using an affine transformation, and the

updated SURF algorithm in which the image is used as an integral image and

the boxlets are used to divide the image. The octave used in the pyramids

helps in the filter of the increasing size usually by a factor of 2. The sign of

Laplacian is used for interest point detections. Laplacian Sign helps in

differentiating shiny blobs on black backgrounds and vice versa. Faster

matching takes place when the same types of blobs are compared i.e. with the

same type of background.

After the bipedal has learned the optimal actions and policies to take after

being trained for 200 episodes for a specific dynamic environment. If bipedal

runs in the same environment then it does not need to train itself again but

uses the previously trained data and so in the execution phase, the iterations

have been reduced from 21 of the learning phase to 2 iterations of the

execution phase.

171

The rewards generated in learning phase varies a lot as it is randomly

generated depending on the present state and target/ goal state of bipedal. But

in the learning phase, bipedal is near about its goal state but that state cannot

be the goal state all the time and so requires to execute some iterations but the

values are near about the same as seen by the straight line as compared to the

high mounted and valleyed lines of the learning phase.

This reveals that the bipedal has learned in an uncertain environment and is

using that learned knowledge in the same environment. As the scenario of the

environment changes the bipedal learn again, then walks to the object

identified.

The bipedal identifies objects then follows the trajectory to reach the soccer

ball for kicking it.

The object localization step is being performed in current work and is

observed at regular interval of time to avoid a collision as soon as bipedal

reaches the ball it stops to adjust the ankle and other angles to kick the ball.

The main challenge in the proposed work was not object-localization but was

the reinforced learning of bipedal to walk. The walk has to be stable so that the

bipedal does not harm itself and the trajectory of the walk should be smooth

with minimal jerks so that joint servo motors don't get damaged.

The lower body parts play a major role in the gait of the bipedal but the upper

body part also has a role to play while the gait of bipedal is considered. The

lower body part was considered to take into account the sub-objective of

hierarchical training of all the joints (Hip, Knee, and Ankle) along with the

sole placement. The complexity of the algorithm in designing the parameters

was more as the reinforcement Q-Learning algorithm along with forgetting

mechanism incorporation was considered. Only the upper body joints which

affect the ZMP of the bipedal when running the proposed algorithm were

taken into account.

172

10.2 Future Scope

Every work has a further step to go and each thing made has some limitations

which can be improved. The bipedal has a limitation of the degree of freedom

not considering the upper part of the body which also plays an important role

in the gait of the bipedal.

Hands and shoulders joint and their movements are not considered. The

bipedal has the limitation of the angle to move on each joint.

The designed and developed finite-state framework considers the bipedal

robot as a finite state model. The bipedal has to perform self-localization as

well as to object (soccer ball in this case) localization to reach the object.

Bipedal on reaching the soccer ball can kick it in any direction depending on

the dynamic environment. When the bipedal is playing a soccer match has to

perform - self-localization, soccer ball localization, team member localization,

goal post localization after these steps it would walk in the direction of the ball

and try to reach it without colliding with any other player on the ground.

The autonomous bipedal system has to adapt to situations it has not previously

encountered. Therefore, it needs to infer properties of its surroundings using

sensors, learn from experience, and be robust to disturbances. There can be an

infinite number of positions of the players on the ground and the goal post will

always have a goalkeeper to reach the position in minimal time and efficiently

is purpose.

The object identification is also with the limitation of identifying only the

soccer ball that too in a straight line in front, other objects are not considered

and in other angle directions.

The execution phase is sometimes executing 18 iterations which require a

considerable amount of time and show variations in the graph of rewards

generation. This can be minimized more as in some cases it reached 2

iterations but not always.

173

REFERENCES JOURNAL

Agarwal, S., Hyder, S., Zaidi, H., & Agarwal, S. K. (2015). Correlation of

body height by foot length and knee height measurements in population of

north india. Inter, 3(3), 1225–1229. https://doi.org/10.16965/ijar.2015.197

Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M.,

Kajita, S., & Kanehiro, F. (2005). Development of humanoid robot HRP-3P.

Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid

Robots, 2005, 50–55. https://doi.org/10.1109/ICHR.2005.1573544

A. Arunmozhi and J. Park(2018), Comparison of HOG, LBP and Haar-Like

Features for On-Road Vehicle Detection, 2018 IEEE International Conference

on Electro/Information Technology (EIT), Rochester, MI, 2018, pp. 0362-

0367, doi: 10.1109/EIT.2018.8500159.

Ambrose, R. O., Aldridge, H., Askew, R. S., Burridge, R. R., Bluethmann, W.,

Diftler, M., Magruder, D., Rehnmark, F., & Johnson, N. (1973). Robonaut :

NASA ’ s Space Humanoid.

Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke,

K., Schröder, J., & Dillmann, R. (2008). Toward humanoid manipulation in

human-centred environments. Robotics and Autonomous Systems, 56(1), 54–

65. https://doi.org/10.1016/j.robot.2007.09.013

Asfour, T., Regenstein, K., Azad, P., Schröder, J., Bierbaum, A., Vahrenkamp,

N., & Dillmann, R. (2006). ARMAR-III: An integrated humanoid platform for

sensory-motor control. Proceedings of the 2006 6th IEEE-RAS International

Conference on Humanoid Robots, HUMANOIDS, 169–175.

https://doi.org/10.1109/ICHR.2006.321380

Bellemare, M. G., Dabney, W., & Munos, R. (2017). A distributional

perspective on reinforcement learning. 34th International Conference on

Machine Learning, ICML 2017.

Bharadwaj, D., Prateek, M., & Sharma, R. (2019). Development of

reinforcement control algorithm of lower body of autonomous humanoid

robot. International Journal of Recent Technology and Engineering, 8(1),

915–919.

Borst, C., Ott, C., Wimbck, T., Brunner, B., Zacharias, F., B??uml, B.,

Hillenbrand, U., Haddadin, S., Albu-Sch??ffer, A., & Hirzinger, G. (2007). A

humanoid upper body system for two-handed manipulation. Proceedings -

174

IEEE International Conference on Robotics and Automation, April, 2766–

2767. https://doi.org/10.1109/ROBOT.2007.363886

Brooks, R. A. (1987). A hardware retargetable distributed layered architecture

for mobile robotcontrol. CH2413-3/87/3000/0106~3~.03 0 1987 IEEE.

Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T., Holzapfel, H., Steinhaus,

P., & Dillmann, R. (2005). A Cognitive Architecture for a Humanoid Robot :

A First Approach. 5th IEEE-RAS International Conference on Humanoid

Robots, 2005., 357–362. https://doi.org/10.1109/ICHR.2005.1573593

Caldwel, D. G., & Bowler, C. J. (1997). Investigation of Bipedal Robot

Locomotion using Pneumatic Muscle Actuators. Proceedings of the 1997

IEEE International Conference on Robotics and Automation.

Cenciarini, M., & Dollar, A. M. (2011). Biomechanical considerations in the

design of lower limb exoskeletons. IEEE International Conference on

Rehabilitation Robotics, 1–6. https://doi.org/10.1109/ICORR.2011.5975366

Christen, S., & Stevˇ, S. (2019). Demonstration-Guided Deep Reinforcement

Learning of Control Policies for Dexterous Human-Robot Interaction. AIT

Lab, Department of Computer Science, ETH Zurich, 8092 Zurich,

Switzerland, i, 2161–2167.

Copyright, F. R., Company, F. S., & Only, F. E. (2007). Integrated Motion

Control. Proceedings of Lthe 2004 IEEE Lnternatlonal Conference on

Robotics & Automation, C, 2005–2007.

Dahl, T., & Boulos, M. (2013). Robots in Health and Social Care: A

Complementary Technology to Home Care and Telehealthcare? Robotics,

3(1), 1–21. https://doi.org/10.3390/robotics3010001

Danel, M. (2017). Reinforcement Learning for Humanoid Robot Control.

POSTER,PRAGUE, 1–5.

Duan, Y., Liu, Q., & Xu, X. H. (2007). Application of reinforcement learning

in robot soccer. Engineering Applications of Artificial Intelligence.

https://doi.org/10.1016/j.engappai.2007.01.003

Endo, N., Momoki, S., Zecca, M., Saito, M., Mizoguchi, Y., Itoh, K., &

Takanishim, A. (2008). Development of whole-body emotion expression

humanoid robot. Proceedings - IEEE International Conference on Robotics

and Automation, 2140–2145. https://doi.org/10.1109/ROBOT.2008.4543523

Erhart, S., Sieber, D., & Hirche, S. (2013). An impedance-based control

architecture for multi-robot cooperative dual-arm mobile manipulation. IEEE

175

International Conference on Intelligent Robots and Systems, 315–322.

https://doi.org/10.1109/IROS.2013.6696370

Feil-Seifer, D., & Matarić, M. J. (2008). B3IA: A control architecture for

autonomous robot-assisted behavior intervention for children with autism

spectrum disorders. Proceedings of the 17th IEEE International Symposium on

Robot and Human Interactive Communication, RO-MAN, 328–333.

https://doi.org/10.1109/ROMAN.2008.4600687

Frank, M., Leitner, J., Stollenga, M., Forster, A., & Schmidhuber, J. (2014).

Curiosity driven reinforcement learning for motion planning on humanoids.

Frontiers in Neurorobotics, 7(JAN), 1–15.

https://doi.org/10.3389/fnbot.2013.00025

Fukaya, N., & Toyama, S. (2000). Design of the TUAT / Karlsruhe Humanoid

Hand. Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems, March, 1754–1759.

Gabel, T., & Riedmiller, M. (2012). Distributed policy search reinforcement

learning for job-shop scheduling tasks. International Journal of Production

Research. https://doi.org/10.1080/00207543.2011.571443

Galindo, C., Gonzalez, J., & Fernández-Madrigal, J. A. (2006). Control

architecture for human-robot integration: Application to a robotic wheelchair.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

36(5), 1053–1067. https://doi.org/10.1109/TSMCB.2006.874131

Garofalo, G., Ott, C., & Albu-Schäffer, A. (2012). Walking control of fully

actuated robots based on the bipedal SLIP model. Proceedings - IEEE

International Conference on Robotics and Automation, 1456–1463.

https://doi.org/10.1109/ICRA.2012.6225272

Ghavamzadeh, M., & Mahadevan, S. (2007). Hierarchical average reward

reinforcement learning. Journal of Machine Learning Research.

Gienger, M., Loffler, K., & Pfeiffer, F. (2002). Towards the design of a biped

jogging robot. 4140–4145. https://doi.org/10.1109/robot.2001.933265

Grizzle, J. W., Hurst, J., Morris, B., Park, H., & Sreenath, K. (2009). MABEL

, A New Robotic Bipedal Walker and Runner. 2009 American Control

Conference, 2030–2036. https://doi.org/10.1109/ACC.2009.5160550

Guenter, F., Hersch, M., Calinon, S., & Billard, A. (2007). Reinforcement

learning for imitating constrained reaching movements. Advanced Robotics,

21(13), 1521–1544. https://doi.org/10.1163/156855307782148550

176

Ha, I., Tamura, Y., Asama, H., Han, J., & Hong, D. W. (2011). Development

of open humanoid platform DARwIn-OP. Annual Conference of the Society of

Instrument and Control Engineers of Japan (SICE), 2178–2181.

Hernández-Santos, C., Rodriguez-Leal, E., Soto, R., & Gordillo, J. L. (2012).

Kinematics and dynamics of a new 16 DOF humanoid biped robot with active

toe joint. International Journal of Advanced Robotic Systems, 9.

https://doi.org/10.5772/52452

Hester, T., Quinlan, M., & Stone, P. (2010). Generalized model learning for

reinforcement learning on a humanoid robot. Proceedings - IEEE

International Conference on Robotics and Automation, May, 2369–2374.

https://doi.org/10.1109/ROBOT.2010.5509181

Huang, B. Q., Cao, G. Y., & Guo, M. (2005). Reinforcement learning neural

network to the problem of autonomous mobile robot obstacle avoidance. 2005

International Conference on Machine Learning and Cybernetics, ICMLC

2005. https://doi.org/10.1109/icmlc.2005.1526924

Huang, Y., Vanderborght, B., Van Ham, R., Wang, Q., Van Damme, M., Xie,

G., & Lefeber, D. (2013). Step length and velocity control of a dynamic

bipedal walking robot with adaptable compliant joints. IEEE/ASME

Transactions on Mechatronics, 18(2), 598–611.

https://doi.org/10.1109/TMECH.2012.2213608

Iida, S. (2004). Humanoid Robot Control Based on Reinforcement Learning.

Micro-Nanomechatronics and Human Science, 2004 and The Fourth

Symposium Micro-Nanomechatronics for Information-Based Society, 2004.,

353–358. https://doi.org/10.1109/MHS.2004.1421274

Inada, H. (2003). Behavior Generation of Bipedal Robot Using Central Pattern

Generator(CPG) (1st Report: CPG Parameters Searching Method by Genetic

Algorithm). Proceedings 01 the 2003 IEEWRSJ Lntl Conterence on Ntell Gent

Robots Ana Systems Las, October, 2179–2184.

Inoue, S., & Takanishi, A. (1999). Development of a Bipedal Humanoid

Robot - Control Method of Whole Body Cooperative Dynamic Biped Walking

-. Proceedings of the 1999 EEE International Conference on Robotics &

Automation Detroit, Michigan May 1999 -, May, 368–374.

Isbell, J., Shelton, C. R., Kearns, M., Singh, S., & Stone, P. (2001). A social

reinforcement learning agent. Proceedings of the International Conference on

Autonomous Agents. https://doi.org/10.1145/375735.376334

177

Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot TWENDY-

ONE. Proceedings - IEEE International Conference on Robotics and

Automation, 580–586. https://doi.org/10.1109/ROBOT.2009.5152702

Janssens, D., Lan, Y., Wets, G., & Chen, G. (2007). Allocating time and

location information to activity-travel patterns through reinforcement learning.

Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2007.01.008

Kagami, S., Nishiwaki, K., Kuffner, J. J., Kuniyoshi, Y., Inaba, M., & Inoue,

H. (2003). Online 3D vision, motion planning and bipedal locomotion control

coupling system of humanoid robot: H7. October, 2557–2562.

https://doi.org/10.1109/irds.2002.1041655

Kanda, T., Hiroshi, I., Imai, M., Ono, T., & Mase, K. (2002). A constructive

approach for developing interactive humanoid robots. Proceedings of the 2002

IEEElRSJ Intl. Conference on Intelligent Robots and Systems EPFL,

Lausanne, Switzerland, October, 1265–1270.

Kanehira, N., Kawasaki, T. U., Ohta, S., Ismumi, T., Kawada, T., Kanehiro,

F., Kajita, S., & Kaneko, K. (2003). Design and experiments of advanced leg

module (HRP-2L) for humanoid robot (HRP-2) development. 2(October),

2455–2460. https://doi.org/10.1109/irds.2002.1041636

Kareem Jaradat, M. A., Al-Rousan, M., & Quadan, L. (2011). Reinforcement

based mobile robot navigation in dynamic environment. Robotics and

Computer-Integrated Manufacturing.

https://doi.org/10.1016/j.rcim.2010.06.019

Kartoun, U., Stern, H., & Edan, Y. (2010). A human-robot collaborative

reinforcement learning algorithm. Journal of Intelligent and Robotic Systems:

Theory and Applications, 60(2), 217–239. https://doi.org/10.1007/s10846-010-

9422-y

Kati, D., & Vukobratovi, M. (2006). Control Algorithm for Humanoid

Walking Based on Fuzzy Reinforcement Learning Model of the Robot ’ s

Mechanism. SISY 2006 • 4th Serbian-Hungarian Joint Symposium on

Intelligent Systems, 81–93.

Katic, D., & Vukobratovic, M. (n.d.). Intelligent control techniques for

humanoid robots. Robotics Laboratory, Mihailo Pupin Institute P.O.Box 15,

Volgina 15, 11000 Belgrade, Yugoslavia, 1839–1844.

https://doi.org/10.23919/ecc.2003.7085233

Ken’ichiro, N. (1997). Acquisition of Visually Guided Swing Motion Based

on Genetic Algorithms and Neural Networks in Two-Armed Bipedal.

178

Proceedings of the 1997 IEEE Lntemational Conference on Robotics and

Automation, April, 2944–2949.

Khatib, O. (1987). A Unified Approach for Motion and Force Control of

Robot Manipulators: The Operational Space Formulation. IEEE Journal on

Robotics and Automation, 3(1), 43–53.

https://doi.org/10.1109/JRA.1987.1087068

Khatib, O. (1999). Robotics and Autonomous Systems Mobile manipulation:

The robotic assistant. Robotics and Autonomous Systems, 26, 175–183.

Kim, J., Lee, Y., Kwon, S., Seo, K., Kwak, H., Lee, H., & Roh, K. (2012).

Development of the Lower Limbs for a Humanoid Robot. 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 4000–4005.

https://doi.org/10.1109/IROS.2012.6385728

Kim, J. Y., Park, I. W., Lee, J., Kim, M. S., Cho, B. K., & Oh, J. H. (2005).

System design and dynamic walking of humanoid robot KHR-2. Proceedings

- IEEE International Conference on Robotics and Automation, 2005(April),

1431–1436. https://doi.org/10.1109/ROBOT.2005.1570316

Kim, S. C. Y., & Hutchinson, S. (2008). An Improved Hierarchical Motion

Planner for Humanoid Robots. 2008 8th IEEE-RAS International Conference

on Humanoid Robots December 1 -- 3, 2008 / Daejeon, Korea, 654–661.

Kim, S. K., Kirchner, E. A., Stefes, A., & Kirchner, F. (2017). Intrinsic

interactive reinforcement learning-Using error-related potentials for real world

human-robot interaction. Scientific Reports, 7(1), 1–16.

https://doi.org/10.1038/s41598-017-17682-7

Kober, J., Oztop, E., & Peters, J. (2011). Reinforcement learning to adjust

robot movements to new situations. IJCAI International Joint Conference on

Artificial Intelligence, 2650–2655. https://doi.org/10.5591/978-1-57735-516-

8/IJCAI11-441

Kober, J., & Peters, J. (2006). PolicySearchforMotorPrimitivesinRobotics.

Max Planck Institute for Biological Cybernetics Spemannstr.38 72076

Tübingen, Germany, 2(1), 87–99. https://doi.org/10.2217/1745509X.2.1.87

Komatsu, T. (2005). Dynamic Walking and Running of a Bipedal Robot Using

Hybrid Central Pattern Generator Method. IEEE International Conference

Mechatronics and Automation, 2005, 2(July), 987-992 Vol. 2.

https://doi.org/10.1109/ICMA.2005.1626686

Kondo, Y., Takemura, K., Takamatsu, J., & Ogasawara, T. (2013). A Gesture-

Centric Android System for Multi-Party Human-Robot Interaction. Journal of

179

Human-Robot Interaction, 2(1), 133–151.

https://doi.org/10.5898/jhri.2.1.kondo

Kuffner, J. J. (2001). Footstep Planning Among Obstacles for Biped Robots.

Proeocdings of the 2001 IEEE/RSJ International Conference on Intelligent

Robots and System Maui, Hawaii, USA, 500–505.

Kuroki, Y., Kato, K., Nagasaka, K., Miyamoto, A., Ueno, K., & Yamaguchi,

J. (2004). Motion creating system for a small biped entertainment robot.

October, 3809-3814 Vol.4. https://doi.org/10.1109/robot.2004.1308862

Kuroki, Yoshihiro, Fujita, M., Ishida, T., Nagasaka, K., & I, J. Y. (2003). A

Small Biped Entertainment Robot Exploring Attractive Applications.

Proceedings of the 2003 IEEE Lnternatiooal Conference on Robotics &

Automation, 471–476.

Lapeyre, M., N’Guyen, S., Le Falher, A., & Oudeyer, P. Y. (2015). Rapid

morphological exploration with the Poppy humanoid platform. IEEE-RAS

International Conference on Humanoid Robots, 2015-Febru, 959–966.

https://doi.org/10.1109/HUMANOIDS.2014.7041479

Lee, J. H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir

systems via reinforcement learning. Water Resources Research.

https://doi.org/10.1029/2006WR005627

Lim, S. C., & Yeap, G. H. (2012). The locomotion of bipedal walking robot

with six degree of freedom. Procedia Engineering, 41(Iris), 8–14.

https://doi.org/10.1016/j.proeng.2012.07.136

Ling, K., & Shalaby, A. S. (2005). A reinforcement learning approach to

streetcar bunching control. Journal of Intelligent Transportation Systems.

https://doi.org/10.1080/15472450590934615

Liu, H., Iberall, T., & Bekey, G. A. (1989). Neural Network Architecture for

Robot Hand Control. IEEE Control Systems Magazine, 5(April), 183–190.

Lober, R., Padois, V., Sigaud, O., Lober, R., Padois, V., Sigaud, O.,

Reinforcement, E., Lober, R., Padois, V., & Sigaud, O. (2016). Efficient

Reinforcement Learning for Humanoid Whole-Body Control. IEEE-RAS

International Conference on Humanoid Robots, Nov 2016, Cancun, Mexico.

Hal-01377831 HAL.

Lohmeier, S., Buschmann, T., & Ulbrich, H. (2009). Humanoid robot LOLA.

Proceedings - IEEE International Conference on Robotics and Automation,

775–780. https://doi.org/10.1109/ROBOT.2009.5152578

180

Lowrey, K., Kolev, S., Dao, J., Rajeswaran, A., & Todorov, E. (2018).

Reinforcement learning for non-prehensile manipulation: Transfer from

simulation to physical system. 2018 IEEE International Conference on

Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR

2018, 35–42. https://doi.org/10.1109/SIMPAR.2018.8376268

Lundberg, I., Björkman, M., & Ögren, P. (2015). Intrinsic camera and hand-

eye calibration for a robot vision system using a point marker. IEEE-RAS

International Conference on Humanoid Robots.

https://doi.org/10.1109/HUMANOIDS.2014.7041338

Ly, D. N., Regenstein, K., & Asfour, T. (2004). A Modular and Distributed

Embedded Control Architecture for Humanoid Robots. Proceedings 01 2004

IEEWRSJ Lnternstional Conference on IntelligentRobots and Systems Sendai,

Japan, 2775–2780.

Mahadevan, S. (1996). Average reward reinforcement learning: foundations,

algorithms, and empirical results. Machine Learning.

https://doi.org/10.1007/BF00114727

Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D. C., & Kress-gazit, H.

(2016). Reactive High-level Behavior Synthesis for an Atlas Humanoid Robot.

2016 IEEE International Conference on Robotics and Automation (ICRA),

4192–4199. https://doi.org/10.1109/ICRA.2016.7487613

Mahadevan, S.(1996) Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Mach Learn 22, 159–195.

https://doi.org/10.1007/BF00114727

Mansard, N., Stasse, O., Evrard, P., & Kheddar, A. (2009). A versatile

Generalized Inverted Kinematics implementation for collaborative working

humanoid robots: The Stack Of Tasks. Advanced Robotics, 2009. ICAR 2009.

International Conference On, 8, 1–6.

Maravall, D., De Lope, J., & Domínguez, R. (2013). Coordination of

communication in robot teams by reinforcement learning. Robotics and

Autonomous Systems. https://doi.org/10.1016/j.robot.2012.09.016

Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J., & Doucet, A.

(2009). A Bayesian exploration-exploitation approach for optimal online

sensing and planning with a visually guided mobile robot. Autonomous

Robots. https://doi.org/10.1007/s10514-009-9130-2

Matarić, M. J. (1997). Reinforcement Learning in the Multi-Robot Domain.

Autonomous Robots. https://doi.org/10.1023/A:1008819414322

181

Matsubara, T., Shinohara, D., & Kidode, M. (2013). Reinforcement learning

of a motor skill for wearing a T-shirt using topology coordinates. Advanced

Robotics. https://doi.org/10.1080/01691864.2013.777012

Maurtua, I., Ibarguren, A., Kildal, J., Susperregi, L., & Sierra, B. (2017).

Human-robot collaboration in industrial applications: Safety, interaction and

trust. International Journal of Advanced Robotic Systems, 14(4), 1–10.

https://doi.org/10.1177/1729881417716010

Michel, P., Chestnutt, J., Kuffner, J., & Kanade, T. (2005). Vision-guided

humanoid footstep planning for dynamic environments. Proceedings of 2005

5th IEEE-RAS International Conference on Humanoid Robots, 2005, 13–18.

https://doi.org/10.1109/ICHR.2005.1573538

Mohamed, Z., & Capi, G. (2012). Development of a New Mobile Humanoid

Robot for Assisting Elderly People. 41(Iris), 345–351.

https://doi.org/10.1016/j.proeng.2012.07.183

Motor, H. (2007). Asimo. Public Relations Division, September.

Nanduri, V., & Das, T. K. (2009). A reinforcement learning algorithm for

obtaining the Nash equilibrium of multi-player matrix games. IIE

Transactions (Institute of Industrial Engineers).

https://doi.org/10.1080/07408170802369417

Naumann, M., Wegener, K., Schraft, R. D., & Ipa, F. (2007). Control

Architecture for Robot Cells to Enable Plug ’ n ’ Produce. IEEE International

Conference on Robotics and Automation, April, 10–14.

Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D.,

Lee, C., Playter, R., & Raibert, M. (2012). PETMAN: A Humanoid Robot for

Testing Chemical Protective Clothing. Journal of the Robotics Society of

Japan, 30(4), 372–377. https://doi.org/10.7210/jrsj.30.372

Ng, A. (2012). 12. Reinforcement Learning and Control. Machine Learning.

Niiyama, R., Nishikawa, S., & Kuniyoshi, Y. (2010). Athlete Robot with

Applied Human Muscle Activation Patterns for Bipedal Running. 2010 10th

IEEE-RAS International Conference on Humanoid Robots, 498–503.

https://doi.org/10.1109/ICHR.2010.5686316

Nishino, D., & Takanishi, A. (1998). Development of a Bipedal Humanoid

Robot Having Antagonistic Driven Joints and Three DOF Trunk. Roceedings

of the 1998 IEEE/RSJ Htl. Conference on Intelligent Robots and Systems

Victoria, B.C., Canada October 1998, October, 96–101.

182

Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.

O., & Takanishi, A. (2006). Development of a new humanoid robot

WABIAN-2. Proceedings - IEEE International Conference on Robotics and

Automation, 2006(May), 76–81.

https://doi.org/10.1109/ROBOT.2006.1641164

Oh, J. H., Hanson, D., Kim, W. S., Han, I. Y., Kim, J. Y., & Park, I. W.

(2006). Design of android type humanoid robot Albert HUBO. IEEE

International Conference on Intelligent Robots and Systems, 1428–1433.

https://doi.org/10.1109/IROS.2006.281935

Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., & Inaba, M. (2006).

Vision based behavior verification system of humanoid robot for daily

environment tasks. Proceedings of the 2006 6th IEEE-RAS International

Conference on Humanoid Robots, HUMANOIDS, 00, 7–12.

https://doi.org/10.1109/ICHR.2006.321356

Ott, C., Eiberger, O., Friedl, W., Bäuml, B., Hillenbrand, U., Borst, C., Albu-

Schäffer, A., Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R.,

Suppa, M., Wimböck, T., Zacharias, F., & Hirzinger, G. (2006). A humanoid

two-arm system for dexterous manipulation. Proceedings of the 2006 6th

IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS,

276–283. https://doi.org/10.1109/ICHR.2006.321397

Palmer, V. (2007). Scaling reinforcement learning to the unconstrained multi-

agent domain. ProQuest Dissertations and Theses.

Pandey, A. K., Gelin, R., Alami, R., Viry, R., Buendia, A., Meertens, R.,

Chetouani, M., Devillers, L., Tahon, M., Filliat, D., Grenier, Y., Maazaoui,

M., Kheddar, A., Lerasle, F., & Duval, L. F. (2014). Romeo2 project:

Humanoid robot assistant and companion for everyday life: I. situation

assessment for social intelligence. CEUR Workshop Proceedings,

1315(November), 140–147.

Park, I. W., Kim, J. Y., Lee, J., & Oh, J. H. (2005). Mechanical design of

humanoid robot platform KHR-3 (KAIST humanoid robot - 3: HUBO).

Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid

Robots, 2005, 321–326. https://doi.org/10.1109/ICHR.2005.1573587

Park, J. (2007). General ZMP Preview Control for Bipedal Walking. EEE

International Conference on Robotics and Automation Roma, Italy, 10-14

April 2007, April, 10–14.

Pateromichelakis, N., Mazel, A., Hache, M. A., Koumpogiannis, T., Gelin, R.,

Maisonnier, B., & Berthoz, A. (2014). Head-eyes system and gaze analysis of

183

the humanoid robot Romeo. IEEE International Conference on Intelligent

Robots and Systems, Iros, 1374–1379.

https://doi.org/10.1109/IROS.2014.6942736

Peters, J., Vijayakumar, S., & Schaal, S. (2003). Reinforcement Learning for

Humanoid Robotics. Third IEEE-RAS International Conference on Humanoid

Robots, Karlsruhe, Germany.

Pontrandolfo, P., Gosavi, A., Okogbaa, O. G., & Das, T. K. (2002). Global

supply chain management: A reinforcement learning approach. International

Journal of Production Research. https://doi.org/10.1080/00207540110118640

Posadas, J. L., Poza, J. L., Simó, J. E., Benet, G., & Blanes, F. (2008). Agent-

based distributed architecture for mobile robot control. Engineering

Applications of Artificial Intelligence, 21(6), 805–823.

https://doi.org/10.1016/j.engappai.2007.07.008

Quintía, P., Iglesias, R., Rodrguez, M. A., & Regueiro, C. V. (2010).

Simultaneous learning of perception and action in mobile robots. Robotics and

Autonomous Systems. https://doi.org/10.1016/j.robot.2010.08.009

Reil, T., & Husbands, P. (2002). Evolution of Central Pattern Generators for

Bipedal Walking in a Real-Time Physics Environment. IEEE

TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2,

APRIL 2002, 6(2), 159–168.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic

backpropagation and approximate inference in deep generative models. 31st

International Conference on Machine Learning, ICML 2014.

Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (2009). Reinforcement

learning for robot soccer. Autonomous Robots, 27(1), 55–73.

https://doi.org/10.1007/s10514-009-9120-4

Robinson, H., MacDonald, B., & Broadbent, E. (2014). The Role of

Healthcare Robots for Older People at Home: A Review. International

Journal of Social Robotics, 6(4), 575–591. https://doi.org/10.1007/s12369-

014-0242-2

Rohmer, E., Singh, S. P. N., & Freese, M. (2013). V-REP: A versatile and

scalable robot simulation framework. IEEE International Conference on

Intelligent Robots and Systems, 1321–1326.

https://doi.org/10.1109/IROS.2013.6696520

Rosenblatt, J. K., & Payton, D. W. (n.d.). A Fine-Grained Alternative to the

Subsumption Architecture for Mobile Robot Control. Hughes Artificial

184

Intelligence Center Hughes Research Laboratories 301 1 Malibu Canyon

Road Malibu, California 90265.

Rostami, M., & Bessonnet, G. (1998). Impactless sagittal gait of a biped robot

during the single support phase. Proceedings of the 1998 IEEE International

Conference on Robotics L? Automation, May, 1385–1391.

Routray, S., Ray, A. K., & Mishra, C. (2017). Analysis of various image

feature extraction methods against noisy image: SIFT, SURF and HOG.

Proceedings of the 2017 2nd IEEE International Conference on Electrical,

Computer and Communication Technologies, ICECCT 2017.

https://doi.org/10.1109/ICECCT.2017.8117846

Sandon, F., Bush, R. R., & Mosteller, F. (1956). Stochastic Models for

Learning. The Mathematical Gazette. https://doi.org/10.2307/3609656

Sawasaki, N., Nakajima, T., Shiraishi, A., Nakamura, S., Wakabayashi, K., &

Sugawara, Y. (2004). Application of humanoid robots to building and home

management services. 2992–2997.

https://doi.org/10.1109/robot.2003.1242050

Schwartz, A. (1993). A Reinforcement Learning Method for Maximizing

Undiscounted Rewards. In Machine Learning Proceedings 1993.

https://doi.org/10.1016/b978-1-55860-307-3.50045-9

Shamsuddin, S., Ismail, L. I., Yussof, H., Zahari, N. I., & Bahari, S. (2011).

Humanoid Robot NAO : Review of Control and Motion Exploration. 2011

IEEE International Conference on Control System, Computing and

Engineering, 511–516. https://doi.org/10.1109/ICCSCE.2011.6190579

Shamsuddin, S., Yussof, H., Robots, H., & Hurobs, B. (2012). Initial

Response of Autistic Children in Human-Robot Interaction Therapy with

Humanoid Robot NAO. 2012 IEEE 8th International Colloquium on Signal

Processing and Its Applications, 188–193.

https://doi.org/10.1109/CSPA.2012.6194716

Sharma, R., Prateek, M., & K. Sinha, A. (2013). Use of Reinforcement

Learning as a Challenge: A Review. International Journal of Computer

Applications, 69(22), 28–34. https://doi.org/10.5120/12105-8332

Sharma, R., Singh, I., Bharadwaj, D., & Prateek, M. (2019). Incorporating

forgetting mechanism in q-learning algorithm for locomotion of bipedal

walking robot. International Journal of Innovative Technology and Exploring

Engineering, 8(7), 1782–1787.

185

Sharma, R., Singh, I., Prateek, M., & Pasricha, A. (2019). Implementation of

feature based object identification in Bipedal walking robot. International

Journal of Engineering and Advanced Technology, 8(5), 110–113.

Sharma, R., Singh, I., Prateek, M., & Pasricha, A. (2020). Comparative study

of learning and execution of bipedal by using forgetting mechanism in

reinforcement learning algorithm. Journal Europeen Des Systemes

Automatises, 53(3), 335–343. https://doi.org/10.18280/jesa.530304

Shokri, M. (2011). Knowledge of opposite actions for reinforcement learning.

Applied Soft Computing Journal. https://doi.org/10.1016/j.asoc.2011.01.045

Silva, I. J., Perico, D. H., Costa, A. H., & Bianchi, R. A. (2017). Using

Reinforcement Learning To Optimize Gait Generation. XIII Simp´osio

Brasileiro de Automac¸a˜o Inteli ente, 288–294.

Silva, M., Barbosa, R., & Castro, T. (2015). Multi-legged walking robot

modelling in MATLAB/simmechanics TM and its simulation. Proceedings -

8th EUROSIM Congress on Modelling and Simulation, EUROSIM 2013, 226–

231. https://doi.org/10.1109/EUROSIM.2013.50

Simmons, R., & Apfelbaum, D. (1998). Task Description Language for Robot

Control. Proceedings of the 1998 IEEEYRSJ Intl. Conference on Intelligent

Robots and Systems, October, 1931–1937.

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated

reinforcement learning. Advances in Neural Information Processing Systems.

https://doi.org/10.21236/ada440280

Sko, D. U. (2008). Reinforcement learning control algorithm for humanoid

robot walking. International journal of Information of Informatics and systems

sciences, 4(2), 256–267.

Song, A., Song, G., Constantinescu, D., Wang, L., & Song, Q. (2015). Sensors

for Robotics 2015. Journal of Sensors, 2015, 1–2.

https://doi.org/10.1155/2015/412626

Sternberg, R. J., & Kaufman, J. C. (2016). Intelligence. In The Curated

Reference Collection in Neuroscience and Biobehavioral Psychology.

https://doi.org/10.1016/B978-0-12-809324-5.03075-3

Stone, P., & Sutton, R. (2001). Scaling reinforcement learning toward

RoboCup soccer. Icml.

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and

Reacting Based on Approximating Dynamic Programming. In Machine

186

Learning Proceedings 1990. https://doi.org/10.1016/b978-1-55860-141-

3.50030-4

Sutton, R. S., & Barto, A. G. (2012). Reinforcement learning: An Introduction

Second edition. Learning.

Tamei, T., & Shibata, T. (2011). Fast reinforcement learning for three-

dimensional kinetic human-robot cooperation with an EMG-to-activation

model. Advanced Robotics. https://doi.org/10.1163/016918611X558252

Tanaka, Y., Lee, H., Wallace, D., Jun, Y., Oh, P., & Inaba, M. (2017). Toward

deep space humanoid robotics inspired by the NASA Space Robotics

Challenge. 2017 14th International Conference on Ubiquitous Robots and

Ambient Intelligence, URAI 2017, 14–19.

https://doi.org/10.1109/URAI.2017.7992877

Tehrani, A. M., & Kamel, M. S. (2005). Behavior arbitration using a fuzzy

reinforcement learning approach. Intelligent Automation and Soft Computing.

https://doi.org/10.1080/10798587.2005.10642903

Tellez, R., Ferro, F., Garcia, S., Golnez, E., Jorge, E., Mora, D., Pinyo, D.,

Oliver, J., Torres, O., Velazquez, J., & Faconti, D. (2008). Reem-B: an

autonomous lightweight human-size humanoid robot. 2008 8th IEEE-RAS

International Conference on Humanoid Robots December 1 -- 3, 2008/

Daejeon, Korea WP1-25, 462–468.

Thuilot, B., Goswami, A., & Espiau, B. (2002). Bifurcation and chaos in a

simple passive bipedal gait. Proceedings of the 1997 IEEE International

Conference on Robotics and Automation Albuquerque, New Mexico - April

1997 Bifurcation, April, 792–798. https://doi.org/10.1109/robot.1997.620131

Tikhanoff, V., Fitzpatrick, P., Nori, F., Natale, L., Metta, G., & Cangelosi, A.

(n.d.). The iCub Humanoid Robot Simulator. 1.

Tlalolini, D., Chevallereau, C., & Aoustin, Y. (2011). Human-Like Walking :

Optimal Motion of a Bipedal Robot With Toe-Rotation Motion. IEEE/ASME

TRANSACTIONS ON MECHATRONICS, 16(2), 310–320.

Tsagarakis, N. G., Li, Z., Saglia, J., & Caldwell, D. G. (2011). The design of

the lower body of the compliant humanoid robot “cCub.” Proceedings - IEEE

International Conference on Robotics and Automation, 2035–2040.

https://doi.org/10.1109/ICRA.2011.5980130

Tesauro, G. J., (1995) Temporal difference learning and

TDGammon.Commun. ACM 38, 58–68 (1995).

187

Ueda, J., Negi, R., & Yoshikawa, T. (2004). Acquisition of a page turning skill

for a multifingered hand using reinforcement learning. Advanced Robotics.

https://doi.org/10.1163/156855304322753326

Velentzas, G., Tsitsimis, T., Rañó, I., Tzafestas, C., & Khamassi, M. (2018).

Adaptive reinforcement learning with active state-specific exploration for

engagement maximization during simulated child-robot interaction. Paladyn,

9(1), 235–253. https://doi.org/10.1515/pjbr-2018-0016

Wang, Y., & Butner, S. E. (1987). A New Architecture for Robot Control.

CH2413-3/87/0000/0664$01.00 Q 1987 IEEE 664, 08421415, 664–670.

Wang, Y. C., & Usher, J. M. (2005). Application of reinforcement learning for

agent-based production scheduling. Engineering Applications of Artificial

Intelligence. https://doi.org/10.1016/j.engappai.2004.08.018

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning.

https://doi.org/10.1007/bf00992698

Wawrzyński, P. (2012). Autonomous reinforcement learning with experience

replay for humanoid gait optimization. Procedia Computer Science, 13, 205–

211. https://doi.org/10.1016/j.procs.2012.09.130

Weiß, G. (1995). Distributed reinforcement learning. Robotics and

Autonomous Systems. https://doi.org/10.1016/0921-8890(95)00018-B

Wyeth, G., Kee, D., Wagstaff, M., Brewer, N., & Art, P. (2001). Design of an

Autonomous Humanoid Robot. Proc.2001 Australian Conference on Robotics

and Automation,Sydney, November, 14–15.

Yamasaki, F., Matsui, T., Miyashita, T., & Kitano, H. (2000). PINO The

Humanoid that Walk. Proceedings of the First IEEE-RAS International

Conference on Humanoid Robots (HUMANOIDS2000).

Yang, L., Chew, C. M., & Poo, A. N. (2006). Adjustable Bipedal Gait

Generation using Genetic. Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems October 9 - 15, 2006, Beijing,

China, 4435–4440.

Yasuda, T., Ohkura, K., & Ueda, K. (2006). A homogeneous mobile robot

team that is fault-tolerant. Advanced Engineering Informatics.

https://doi.org/10.1016/j.aei.2006.01.002

Yen, G. G., & Hickey, T. W. (2004). Reinforcement learning algorithms for

robotic navigation in dynamic environments. ISA Transactions.

https://doi.org/10.1016/s0019-0578(07)60032-9

188

Yokohama, P., & Takashima, T. (2002). Open Architecture Humanoid

Robotics Platform. Proceedings of the 2002 IEEE International Conference on

Robotics & Automation Washington, DC, 24–30.

Yu, Z., Huang, Q., Ma, G., Chen, X., Zhang, W., Li, J., & Gao, J. (2014).

Design and Development of the Humanoid Robot BHR-5. Advances in

Mechanical Engineering, 2014. https://doi.org/10.1155/2014/852937

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I.,

Tuyls, K., Reichert, D., Lillicrap, T., Lockhart, E., Shanahan, M., Langston,

V., Pascanu, R., Botvinick, M., Vinyals, O., & Battaglia, P. (2018). Relational

deep reinforcement learning. In arXiv.

Zhou, C. (2002). Robot learning with GA-based fuzzy reinforcement learning

agents. Information Sciences, 145(1), 45–68.

https://doi.org/https://doi.org/10.1016/S0020-0255(02)00223-2

189

APPENDIX A

A.1 Simulink combined model of the Bipedal

190

APPENDIX B

B.1 Simulink Block of Dynamic Torque for each joint

Dynamics torque is obtained for the joint trajectory of the individual joint. The

maximum values of the torque are obtained for the selection of DC

servomotor.

191

B.2 Simulink Block Diagram of Computed Torque Control

192

APPENDIX C

C.1 Simulink block of ground force contact

193

C.2 Contact Force Logging

C.3 Angle and Torque measurement for all joints

194

195

APPENDIX D

MATLAB CODES

bipedalparameters.m

%foot dimension

density = 1000; foot_x_cor = 8;foot_y_cor = 6;foot_z _cor= 1;

foot_offset_cor = [-1 0 0]; foot_density=2000;

%% Leg parameters radius, lower length, upper length

leg_rad = 0.75; low_leg_length_par = 10;up_leg_length_par = 10;

%% parameters of Torso

torso_y = 10; torso_x = 5;torso_z = 8;torso_offset_z = -2;

torso_offset_x = -0.5; height_plane=.05;

init_height = foot_z + lower_leg_length + upper_leg_length + torso_z/2 +

 torso_offset_z + height_plane/2;

 joint_damping = 1; joint_stiffness = 1; motion_time_constant = 0.01;

gaitPeriod = 0.8; time = linspace(0,gaitPeriod,7)

hip_rad = deg2rad([-10, -7.5, -15, 10, 15, 10, -10]');

knee_rad = deg2rad([10, -5, 2.5, -10, -10, 15, 10]');

ankle_rad = deg2rad([-7.5 10 10 5 0 -10 -7.5]');

ankle_rad= ankle; knee_rad= knee; hip_rad= hip;

curveData = createSmoothTrajectory(ankle,knee,hip,gaitPeriod);

contact_point_radius=1e-4; contact_stiffness = 2500;

contact_damping = 100; mu_k = 0.6; mu_s = 0.8;mu_vth = 0.1;

plane_x=25; plane_y =2.5; height_plane=.02; world_damping_value= 0.25;

world_rot_damping_value = 0.25; k_pen=5; b_penvel=3;

plane_depth = 0.025; vis_len_plaBz=plane_depth; vis_opc=1;

vis_opc_en=1; vis_clr=[0.1 0.3 0.7]; world_damping_value = 0.25;

world_rot_damping_value = 0.25;

evalSmoothTrajectory.m

function out = evalSmoothTrajectory(params,t)

% Wrap the time value on every cycle of the trajectory

tEff = mod(t,params.gaitPeriod);

ind = find(tEff >= params.gaitTime(1:end-1)); indx = ind(end);

dt1 = tEff - params.gaitTime(indx); out_param = zeros(3,1);

out_param(1) = params.a0_ankle(indx) + params.a1_ankle(indx)*dt 1+ ...

 params.a2_ankle(indx)*dt1^2 + params.a3_ankle(indx)*dt1^3;

out_param(2) = params.a0_knee(indx) + params.a1_knee(indx)*dt 1+ ...

196

 params.a2_knee(indx)*dt1^2 + params.a3_knee(indx)*dt1^3;

out_param(3) = params.a0_hip(indx) + params.a1_hip(indx)*dt1 + ...

 params.a2_hip(indx)*dt1^2 + params.a3_hip(indx)*dt1^3;

end

createSmoothTrajectory.m

function curveData = createSmoothTrajectory(ankle,knee,hip,period)

%% Create necessary values for calculations

numPoints = numel(hip); curveData.gaitPeriod = period;

curveData.gaitTime = linspace(0,period,numPoints);

dt = period/(numPoints-1);

%% Calculate derivatives .Assume zero derivatives at start and end

hip_der = [0; 0.5*(diff(hip(1:end-1)) + diff(hip(2:end)))/dt; 0];

knee_der = [0; 0.5*(diff(knee(1:end-1)) + diff(knee(2:end)))/dt; 0];

ankle_der = [0; 0.5*(diff(ankle(1:end-1)) + diff(ankle(2:end)))/dt; 0];

%% Do cubic spline fitting

curveData.a0_hip = hip(1:end-1); curveData.a1_hip = hip_der(1:end-1);

curveData.a2_hip = 3*diff(hip)/(dt^2) - 2*hip_der(1:end-1)/dt -

 hip_der(2:end)/dt;

curveData.a3_hip = -2*diff(hip)/(dt^3) + (hip_der(1:end-1) +

 hip_der(2:end))/(dt^2);

curveData.a0_knee = knee(1:end-1);

curveData.a1_knee = knee_der(1:end-1);

curveData.a2_knee = 3*diff(knee)/(dt^2) - 2*knee_der(1:end-1)/dt -

 knee_der(2:end)/dt;

curveData.a3_knee = -2*diff(knee)/(dt^3) + (knee_der(1:end-1)+

 knee_der(2:end)) / (dt^2) ;

curveData.a0_ankle = ankle(1:end-1);

curveData.a1_ankle = ankle_der(1:end-1);

curveData.a2_ankle = 3*diff(ankle)/(dt^2) - 2*ankle_der(1:end-1)/dt -

 ankle_der (2:end) /dt;

curveData.a3_ankle = -2*diff(ankle)/(dt^3) + (ankle_der(1:end-1) +

 ankle_der(2:end))/(dt^2);

plotSmoothTrajectory.m

% Plots cubic spline trajectory, defined by the 'curveData' variable

%% Define vectors for plots

N = 500; t1 = linspace(0,curveData.gaitPeriod,N);

197

ankle_curve = zeros(size(t1)); knee_curve = zeros(size(t1));

hip_curve = zeros(size(t1));

%% Loop over all points

for indx = 1:N

trajPts = evalSmoothTrajectory(curveData,t1(indx));

ankle_curve(indx) = trajPts(1); knee_curve(indx) = trajPts(2);

hip_curve(indx) = trajPts(3); end

figure

subplot(3,1,1)

plot(t1,rad2deg(ankle_curve),'b-', ... curveData.gaitTime,

rad2deg([curveData.a0_ankle;curveData.a0_ankle(1)]),'ro');

title('Gait')

xlabel('Time in seconds '); ylabel('Ankle Angles in degree ');

subplot(3,1,2)

plot(t1,rad2deg(knee_curve),'b-',... curveData. gaitTime,

rad2deg([curveData.a0_knee;curveData.a0_knee(1)]),'ro');

xlabel('Time in seconds '); ylabel('Knee Angles in degree ');

subplot(3,1,3)

plot(t1,rad2deg(hip_curve),'b-', ... curveData.gaitTime,

rad2deg([curveData.a0_hip;curveData.a0_hip(1)]),'ro');

xlabel('Time in seconds'); ylabel('Hip Angles in degree');

Qlearm_episodic_HIP_100.m

close all; clear all; clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

learnRate = 0.99; % learning rate

epsilon = 0.5; % exploration probability(1-epsilon= exploit/epsilon = explore)

epsilonDecay = 0.98; successRate = 1;

maxEpi = 100; % maximum number of the iterations

initialPoint = -45; % the initial state to begin from

finalPoint = 45; time=0;

state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

% initialization

198

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;

count=0; iter_reward =0; iter_time =0; epsilon = 0.5;

start_state = initialPoint; goal_state = finalPoint;

startState_idx = find(state==start_state);

endState_idx= find(state==goal_state);

Imm_array=[]; disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state)

tic; r=rand();

if (r > epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:));

cnt3=cnt3+1; current_action = action(umax);

else

current_action=datasample(action,1); cnt4=cnt4+1; end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx))

i=i+1; if (i>=3)

next_state = state(startState_idx+1); i=0; end end

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx)

next_state = state(startState_idx+1);

else

next_state = endState_idx; disp('goal state reached'); break; end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

 % random reward calculation depending on current state

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

if (next_start_state_idx < startState_idx)

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx)

disp('reached goal'); cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

break; end cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

 (next_reward + discount* max(Q(next_start_state_idx,:)) -

Q(startState_idx,action_idx)); cnt6=cnt6+1;

199

epsilon_decay(cnt6)=epsilon; epsilon = epsilon*epsilonDecay;

cnt5=cnt5+1; reward(cnt5)=next_reward;

iter_reward = iter_reward + next_reward; iter_time= iter_time+toc;

distance_state = endState_idx-startState_idx;

cnt2=cnt2+1; DISTANCE(cnt2)=distance_state;

count = count+1; random_value(count)=r; toc ;

Imm_array(count,:) =[r, action(action_idx), state(startState_idx),

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001)

disp('epsilon <0.00001') break; end end Imm_array

header_array =["Random Number","Current Action","Current State","Next

State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100 \

 Intermediate_HIP_learning_100.xls' ,header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\HIP_100\

 Intermediate_HIP_learning_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value);

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q)

[C,I]=max(Q,[],2) ; % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1)); Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1)); Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1)); Final_Table.OptPol20=action(I(20,1));

200

Final_Table.OptPol21=action(I(1,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value; Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Header_Final_Data,episode);

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{3},episode,'G2');

201

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{5},episode,'I2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{9},episode,'M2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{23},episode,'R2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{27},episode,'V2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{33},episode,'AB2');

202

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',action_label,episode,'A27');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',next_state_label,episode,'A30');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Final_HIP_learning_100.xls',Final_array{19},episode,'A31');

iter(episode)= count; total_reward(episode) = iter_reward;

total_time(episode) = iter_time; time = time +iter_time

randomValue(episode) =mean_random;

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,

iter_reward, iter_time]; end Iteration_header_arrayValue

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total

Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning \HIP\ HIP_100\

 Graph_HIP_learning_100.xls',Iteration_header_array,1,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\

 Graph_HIP_learning_100.xls',Iteration_header_arrayValue,1,'A2');

x=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations');

figure; p=plot(x,randomValue,'m',x,total_reward,'b--');

p(1).LineWidth = 2; p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',

 'NumColumns', 2);

figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now') dt = between(t1,t2,'Time')

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required '); disp(dt); disp('end');

QLearn_episodic_KNEE_100.m

close all; clear all; clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

203

learnRate = 0.99; % learning rate

epsilon = 0.5; epsilonDecay = 0.98; successRate = 1;

maxEpi =100; % maximum number of the iterations

initialPoint = 0; % the initial state to begin from

finalPoint = 90; time=0;

state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

% initialization

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;

count=0;i=0; iter_reward =0; iter_time =0; epsilon = 0.5;

start_state = initialPoint; goal_state = finalPoint;

startState_idx = find(state==start_state);

endState_idx= find(state==goal_state);

Imm_array=[]; disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state) tic; r=rand() ;

if (r>epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:)); disp('in Exploit'); cnt3=cnt3+1;

current_action = action(umax);

else current_action=datasample(action,1);

cnt4=cnt4+1; disp('in Explore'); end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

disp('startState_idx <= endState_idx-1 && startState_idx>=initialPoint');

 next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx))

disp('next_state ==state(startState_idx)'); i=i+1;

if (i>=3)

next_state = state(startState_idx+1); disp('in same state for 3 iterations ');

i=0; end end

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx)

disp('startState_idx >= endState_idx-1 && startState_idx < endState_idx-1')

next_state = state(startState_idx+1);

else

next_state = endState_idx; disp('goal state reached'); break; end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

 % random reward calculation depending on current state

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

204

if (next_start_state_idx < startState_idx)

disp('in if next_start_state < startState_idx');

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx) disp('reached goal');

cnt1=cnt1+1; next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

break; end cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

(next_reward + discount* max(Q(next_start_state_idx,:)) -

 Q(startState_idx,action_idx));

cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon; epsilon = epsilon*epsilonDecay ;

cnt5=cnt5+1; reward(cnt5)=next_reward;

iter_reward = iter_reward + next_reward; iter_time= iter_time+toc;

distance_state = endState_idx-startState_idx; cnt2=cnt2+1;

DISTANCE(cnt2)=distance_state; count = count+1;

random_value(count)=r; toc ;

Imm_array(count,:) =[r, action(action_idx), state(startState_idx),

state(next_start_state_idx),next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001)

disp('epsilon <0.00001') break; end end

 header_array =["Random Number","Current Action","Current State","Next

State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Intermediate_KNEE_learning_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Intermediate_KNEE_learning_100.xls',Imm_array,episode,'A2');

Imm_array

header_array =["Random Number","Current Action","Current State","Next

State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Intermediate_KNEE_learning_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Intermediate_KNEE_learning_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value)

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q)

205

[C,I]=max(Q,[],2) ; % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1));

Final_Table.OptPol21=action(I(21,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value; Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

206

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Header_Final_Data,episode);

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{3},episode,'G2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{5},episode,'I2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{9},episode,'M2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{23},episode,'R2');

207

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{27},episode,'V2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{33},episode,'AB2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',action_label,episode,'A27');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',next_state_label,episode,'A30');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Final_KNEE_learning_100.xls',Final_array{19},episode,'A31');

iter(episode)= count; total_reward(episode) = iter_reward;

total_time(episode) = iter_time; time = time +iter_time

randomValue(episode) =mean_random;

Iteration_header_arrayValue(episode,:)

 =[episode,count,mean_random,iter_reward,iter_time];

end Iteration_header_arrayValue

Iteration_header_array =["Episodes","Iterations","Mean Random","Total

Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Graph_KNEE_learning_100.xls',Iteration_header_array,1,'A1');

208

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\

 Graph_KNEE_learning_100.xls',Iteration_header_arrayValue,1,'A2');

x=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations'); figure;

p=plot(x,randomValue,'m',x,total_reward,'b--'); p(1).LineWidth = 2;

p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location',

 'northwest','NumColumns',2);

figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now') dt = between(t1,t2,'Time')

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required '); disp(dt); disp('end');

QLearn_episodic_ANKLE_100.m

close all; clear all;clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

learnRate = 0.99; % learning rate

epsilon = 0.5; epsilonDecay = 0.98; successRate = 1;

maxEpi =100; % maximum number of the iterations

initialPoint = -30 % the initial state to begin from

finalPoint = 30; time=0;

state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

epiStartTime = datetime('now');

% initialization

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0;i=0;

iter_reward =0; iter_time =0; epsilon = 0.5;

start_state = initialPoint; goal_state = finalPoint;

startState_idx = find(state==start_state);

endState_idx= find(state==goal_state); Imm_array=[];

disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state) tic; r=rand();

if (r>epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:));

209

cnt3=cnt3+1; current_action = action(umax);

else

current_action=datasample(action,1); cnt4=cnt4+1; end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx))

i=i+1; if (i>=3) next_state = state(startState_idx+1);

i=0; end end

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx)

next_state = state(startState_idx+1); else

next_state = endState_idx; disp('goal state reached'); break; end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

% random reward calculation depending on current state

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

if (next_start_state_idx < startState_idx)

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx)

disp('reached goal'); cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

break; end cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

 (next_reward + discount* max(Q(next_start_state_idx,:)) -

 Q(startState_idx,action_idx));

cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon;

epsilon = epsilon*epsilonDecay ; cnt5=cnt5+1;

reward(cnt5)=next_reward; iter_reward = iter_reward + next_reward;

iter_time= iter_time+toc; distance_state = endState_idx-startState_idx;

cnt2=cnt2+1; ISTANCE(cnt2)=distance_state;

count = count+1; random_value(count)=r; toc ;

Imm_array(count,:) =[r, action(action_idx), state(startState_idx),

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001)

disp('epsilon <0.00001') break; end end Imm_array

210

header_array =["Random Number","Current Action","Current State","Next

State", "Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Intermediate_ANKLE_learning_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Intermediate_ANKLE_learning_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value)

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q)

[C,I]=max(Q,[],2) ; % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1));

Final_Table.OptPol21=action(I(21,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

211

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value; Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Header_Final_Data,episode);

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{3},episode,'G2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{5},episode,'I2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{9},episode,'M2');

212

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{23},episode,'R2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{27},episode,'V2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{33},episode,'AB2');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',action_label,episode,'A27');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',next_state_label,episode,'A30')

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Final_ANKLE_learning_100.xls',Final_array{19},episode,'A31');

213

iter(episode)= count; randomValue(episode) =mean_random;

total_reward(episode) = iter_reward;

total_time(episode) = iter_time; time = time +iter_time

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,

 iter_reward, iter_time];

end Iteration_header_arrayValue

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total

Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Graph_ANKLE_learning_100.xls',Iteration_header_array,1,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\

 Graph_ANKLE_learning_100.xls',Iteration_header_arrayValue,1,'A2');

x=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations'); figure;

p=plot(x,randomValue,'m',x,total_reward,'b--');

p(1).LineWidth = 2; p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',

 'NumColumns',2);

 figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now'); dt = between(t1,t2,'Time');

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required execute and plot values '); disp(dt); disp('end');

QLearn_execution_HIP_100.m

close all; clear all; clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

learnRate = 0.99; % learning rate

epsilon = 0.5; epsilonDecay = 0.98; successRate = 1;

maxEpi = 100; % maximum number of the iterations

initialPoint = -45; % the initial state to begin from

finalPoint = 45; time=0;

state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

214

% initialization

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0;

iter_reward =0; iter_time =0; epsilon = 0.5; size_state =size(state(2:19),2);

rand_State = randsample(size_state,1)

start_state = state(rand_State) ; goal_state = finalPoint;

startState_idx = find(state==start_state);

endState_idx= find(state==goal_state);

Imm_array=[]; disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state) tic; r=rand();

if (r>epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:)); cnt3=cnt3+1;

current_action = action(umax);

else

current_action=datasample(action,1); cnt4=cnt4+1; end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx))

i=i+1; if (i>=3) next_state = state(startState_idx+1); i=0; end end

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx)

next_state = state(startState_idx+1);

else

next_state = endState_idx; disp('goal state reached'); break; end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

if (next_start_state_idx < startState_idx)

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx)

disp('reached goal'); cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);break; end

cnt1=cnt1+1; next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

(next_reward + discount* max(Q(next_start_state_idx,:)) -

Q(startState_idx,action_idx)); cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon;

epsilon = epsilon*epsilonDecay; cnt5=cnt5+1; reward(cnt5)=next_reward;

iter_reward = iter_reward + next_reward; iter_time= iter_time+toc;

215

distance_state = endState_idx-startState_idx; cnt2=cnt2+1;

DISTANCE(cnt2)=distance_state; count = count+1;

random_value(count)=r; toc ;

Imm_array(count,:) =[r, action(action_idx), state(startState_idx),

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001) disp('epsilon <0.00001') break; end end Imm_array

header_array =["Random Number","Current Action","Current State","Next

 State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Intermediate_HIP_execution_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Intermediate_HIP_execution_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value);

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q)

[C,I]=max(Q,[],2) ; % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1));

Final_Table.OptPol21=action(I(21,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

216

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value;Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Header_Final_Data,episode);

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{3},episode,'G2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{5},episode,'I2');

217

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{9},episode,'M2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{23},episode,'R2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{27},episode,'V2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100 \

 Final_HIP_execution_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{33},episode,'AB2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',action_label,episode,'A27');

218

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',next_state_label,episode,'A30');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Final_HIP_execution_100.xls',Final_array{19},episode,'A31');

iter(episode)= count; total_reward(episode) = iter_reward;

total_time(episode) = iter_time; time = time +iter_time

randomValue(episode) =mean_random;

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,

iter_reward, iter_time]; end Iteration_header_arrayValue

Iteration_header_array =["Episodes","Iterations","Mean Random","Total

 Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Graph_HIP_execution_100.xls',Iteration_header_array,1,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\

 Graph_HIP_execution_100.xls',Iteration_header_arrayValue,1,'A2');

x=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations'); figure;

p=plot(x,randomValue,'m',x,total_reward,'b--'); p(1).LineWidth = 2;

p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',

 'NumColumns',2);

figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now'); dt = between(t1,t2,'Time')

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required '); disp(dt); disp('end');

QLearn_Execution_KNEE_100.m

close all; clear all; clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

learnRate = 0.99; % learning rate

epsilon = 0.5; epsilonDecay = 0.98; successRate = 1;

maxEpi =100; % maximum number of the iterations

initialPoint = 0; % the initial state to begin from

219

finalPoint = 90; % the final state to reach to

time=0; state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

% initialization

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7= count=0;i=0;

iter_reward =0; iter_time =0; epsilon = 0.5; size_state =size(state(2:19),2);

rand_State = randsample(size_state,1); start_state = state(rand_State);

goal_state = finalPoint; startState_idx = find(state==start_state);

endState_idx= find(state==goal_state); Imm_array=[];

disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state) tic; r=rand() ;

if (r>epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:)); disp('in Exploit'); cnt3=cnt3+1;

current_action = action(umax);

else

current_action=datasample(action,1); cnt4=cnt4+1; end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

disp('startState_idx <= endState_idx-1 && startState_idx>=initialPoint');

next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx))

disp('next_state ==state(startState_idx)'); i=i+1; if (i>=3)

next_state = state(startState_idx+1); disp('in same state for 3 iterations ');

i=0; end end

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_id

disp('startState_idx >= endState_idx-1 && startState_idx < endState_idx-1')

next_state = state(startState_idx+1);

else

next_state = endState_idx; disp('goal state reached'); break; end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

if (next_start_state_idx < startState_idx)

disp('in if next_start_state < startState_idx');

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx) disp('reached

goal');cnt1=cnt1+1; next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

220

break; end cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

 (next_reward + discount* max(Q(next_start_state_idx,:)) -

 Q(startState_idx,action_idx));

cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon;

epsilon = epsilon*epsilonDecay ;cnt5=cnt5+1;reward(cnt5)=next_reward;

iter_reward = iter_reward + next_reward; iter_time= iter_time+toc;

distance_state = endState_idx-startState_idx; cnt2=cnt2+1;

DISTANCE(cnt2)=distance_state; count = count+1;

random_value(count)=r; toc;

Imm_array(count,:) =[r,action(action_idx), state(startState_idx),

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001) disp('epsilon <0.00001') break; end end

header_array =["Random Number","Current Action","Current State","Next

 State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Intermediate_KNEE_execution_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\

KNEE_100\Intermediate_KNEE_execution_100.xls',Imm_array,episode,'A2');

Imm_array

header_array =["Random Number","Current Action","Current State","Next

 State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Intermediate_KNEE_execution_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Intermediate_KNEE_execution_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value)

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q);[C,I]=max(Q,[],2) ; % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

221

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1));Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1)); Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1)); Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1)); Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1)); Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1)); Final_Table.OptPol20=action(I(20,1));

Final_Table.OptPol21=action(I(21,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value; Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Header_Final_Data,episode);

222

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{3},episode,'G2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{5},episode,'I2')

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{9},episode,'M2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{23},episode,'R2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution \ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{27},episode,'V2');

223

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{33},episode,'AB2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',action_label,episode,'A27');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',next_state_label,episode,'A30');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Final_KNEE_execution_100.xls',Final_array{19},episode,'A31');

iter(episode)= count; total_reward(episode) = iter_reward;

total_time(episode) = iter_time; time = time +iter_time

randomValue(episode) =mean_random;

Iteration_header_arrayValue(episode,:)

 =[episode,count,mean_random,iter_reward,iter_time];

end Iteration_header_arrayValue

Iteration_header_array =["Episodes","Iterations","Mean Random","Total

Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Graph_KNEE_execution_100.xls',Iteration_header_array,1,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\

 Graph_KNEE_execution_100.xls',Iteration_header_arrayValue,1,'A2');

=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations');

figure; p=plot(x,randomValue,'m',x,total_reward,'b--');

p(1).LineWidth = 2; p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',

 'NumColumns',2);

224

figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now'); dt = between(t1,t2,'Time')

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required '); disp(dt); disp('end');

QLearn_Execution_ANKLE_100.m

close all; clear all; clc;

global count total_rewards total_time % global parameters

t1= datetime('now')

% learning parameters

discount = 0.9; % discount factor

learnRate = 0.99; % learning rate

epsilon = 0.5; epsilonDecay = 0.98; successRate = 1;

maxEpi =100; % maximum number of the iterations

initialPoint = -30 % the initial state to begin from

finalPoint = 30; time=0;

state =linspace(initialPoint,finalPoint,21) % state

action = [0,1]; % actions

Q = zeros(length(state),length(action)); Final_Table = table;

% main program

for episode = 1:maxEpi

epiStartTime = datetime('now');

% initialization

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0;i=0;

iter_reward =0; iter_time =0; epsilon = 0.5; size_state =size(state(2:19),2);

rand_State = randsample(size_state,1)

start_state = state(rand_State); goal_state = finalPoint;

startState_idx = find(state==start_state);

endState_idx= find(state==goal_state);

Imm_array=[]; disp(['Episode: ' num2str(episode)]);

while(start_state < goal_state) tic; r=rand();

if (r>epsilon || episode == maxEpi) && r<=successRate

[~,umax]=max(Q(startState_idx,:)); cnt3=cnt3+1;

current_action = action(umax);

else

current_action=datasample(action,1); cnt4=cnt4+1; end

action_idx = find(action==current_action);

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint)

next_state = state(startState_idx+current_action) ;

if (next_state ==state(startState_idx)) i=i+1; if (i>=3)

next_state = state(startState_idx+1); i=0; end end

225

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx)

next_state = state(startState_idx+1);

else

next_state = endState_idx; disp('goal state reached'); break;end

next_start_state_idx = find(state==next_state);

next_reward = exp(-learnRate*(endState_idx-startState_idx));

cnt=cnt+1; start_stateARR(cnt)=startState_idx;

start_stateARR_Value(cnt)=state(startState_idx);

if (next_start_state_idx < startState_idx)

next_start_state_idx = startState_idx+1;

elseif(next_start_state_idx == endState_idx) disp('reached goal');

cnt1=cnt1+1; next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

break; end cnt1=cnt1+1;

next_start_stateARR(cnt1)=next_start_state_idx;

next_start_stateARR_value(cnt1)=state(next_start_state_idx);

cnt7=cnt7+1; actionARR(cnt7)=action_idx;

actionARR_value(cnt7)=action(action_idx);

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *

 (next_reward + discount* max(Q(next_start_state_idx,:)) -

 Q(startState_idx,action_idx));

cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon;

epsilon = epsilon*epsilonDecay ; cnt5=cnt5+1; reward(cnt5)=next_reward;

iter_reward = iter_reward + next_reward;

iter_time= iter_time+toc; distance_state = endState_idx-startState_idx;

cnt2=cnt2+1; DISTANCE(cnt2)=distance_state;

count = count+1; random_value(count)=r; toc ;

Imm_array(count,:) =[r, action(action_idx), state(startState_idx),

state(next_start_state_idx),next_reward,epsilon,iter_time,distance_state];

startState_idx = next_start_state_idx;

if (epsilon <0.00001) disp('epsilon <0.00001') break; end end Imm_array

header_array =["Random Number","Current Action","Current State","Next

 State","Reward","Epsilon","Time","Distance"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Intermediate_ANKLE_execution_100.xls',header_array,episode,'A1');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Intermediate_ANKLE_execution_100.xls',Imm_array,episode,'A2');

mean_random = mean(random_value)

disp(['Total Iteration: ' num2str(count) ' Total exploit: ' num2str(cnt3) '

Total explore: ' num2str(cnt4)]);

disp('Final Q matrix : '); disp(Q);[C,I]=max(Q,[],2); % finding the max values

disp('Q(optimal):'); disp(C); disp('Optimal Policy');

226

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1))

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1))

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1))

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1))

action(I(21,1))]);

Final_Table.Episode=episode; Final_Table.Iteration=count;

Final_Table.Mean_Random=mean_random;

Final_Table.Total_Rewards = iter_reward;

Final_Table.Total_Time= iter_time;

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1));

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1));

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1));

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1));

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1));

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1));

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1));

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1));

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1));

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1));

Final_Table.OptPol21=action(I(21,1)); Final_Table

Final_array{1,1} =mean_random; Final_array{1,2}=Q;

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1));

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1));

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1));

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1));

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1));

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time;

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR;

Final_array{1,17}=next_start_stateARR;

Final_array{1,18}=start_stateARR_Value;

Final_array{1,19}=next_start_stateARR_value;

Final_array{1,20}=actionARR_value; Final_array{1,21} =count;

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1));

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1));

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1));

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1));

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1));

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1));

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action

227

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action

16","Action 17","Action 18","Action 19","Action 20","Action 21"];

start_state_label(1,:) =["Start State :",""];

action_label(1,:) =["Action Taken :",""];

next_state_label(1,:) =["Next State :",""];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ANKLE_100\

 Final_ANKLE_execution_100.xls',Header_Final_Data,episode);

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{21},episode,'A2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{1},episode,'B2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{13},episode,'C2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{14},episode,'D2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{2},episode,'E2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{3},episode,'G2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{4},episode,'H2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{5},episode,'I2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{6},episode,'J2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{7},episode,'K2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{8},episode,'L2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{9},episode,'M2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{10},episode,'N2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{11},episode,'O2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{12},episode,'P2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{22},episode,'Q2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{23},episode,'R2');

228

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{24},episode,'S2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{25},episode,'T2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{26},episode,'U2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{27},episode,'V2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{28},episode,'W2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{29},episode,'X2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{30},episode,'Y2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{31},episode,'Z2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{32},episode,'AA2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{33},episode,'AB2');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',start_state_label,episode,'A24');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',action_label,episode,'A27');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',next_state_label,episode,'A30');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{18},episode,'A25');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{20},episode,'A28');

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Final_ANKLE_execution_100.xls',Final_array{19},episode,'A31');

iter(episode)= count; randomValue(episode) =mean_random;

total_reward(episode) = iter_reward; total_time(episode) = iter_time;

time = time +iter_time

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,

 iter_reward, iter_time];

end Iteration_header_arrayValue

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total

 Rewards", "Total Time"];

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

 Graph_ANKLE_execution_100.xls',Iteration_header_array,1,'A1');

229

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\

Graph_ANKLE_execution_100.xls',Iteration_header_arrayValue,1,'A2');

x=1:episode; figure; plot(x, Iteration_header_arrayValue(:,2),'k o-');

xlabel('Episode'); ylabel('iterations'); figure;

p=plot(x,randomValue,'m',x,total_reward,'b--'); p(1).LineWidth =

2;p(2).Marker = '*';

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',

 'NumColumns',2);

figure; plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time ');

t2= datetime('now'); dt = between(t1,t2,'Time');

disp(['Total number Episode: ' num2str(maxEpi)]);

disp('Total time required execute and plot values ');

disp(dt); disp('end');

ball_Feature_matching.m

close all; clear all; clc; disp('hello')

ballImageRGB = imread('C:\Users\rashmi\Desktop\MATLAB-RL-

Fearturebased\feature extraction\foot_ball.png');

[rows, cols, numOfBands] = size(ballImageRGB)

groundImage = imread('C:\Users\rashmi\Desktop\MATLAB-RL-

Fearturebased\feature extraction\soccer ball_ground.png');

groundImageRGB = imresize(groundImage,0.8);

[rows, cols, numOfBands] = size(groundImageRGB)

ballImageGRAY= rgb2gray(ballImageRGB);

[rows, cols, numOfBands] = size(ballImageGRAY)

groundImageGRAY = rgb2gray(groundImageRGB);

[rows, cols, numOfBands] = size(groundImageGRAY)

ballPoints = detectSURFFeatures(ballImageGRAY);

groundPoints = detectSURFFeatures(groundImageGRAY);

figure('Name','Ball in RGB, Gray and 200 Strongest Points');

subplot(1,3, 1); imshow(ballImageRGB); title('Image of a Ball');

subplot(1,3,2); imshow(ballImageGRAY); title('Image of a GRAY Ball');

subplot(1,3,3); imshow(ballImageGRAY);

title('200 Strongest Feature Points from Ball Image'); hold on;

plot(selectStrongest(ballPoints, 200));

figure('Name','Ball in Ground in RGB, Gray and 400 Strongest Points');

subplot(3,1,1); imshow(groundImageRGB);

title('Image of a Ground with Ball');

subplot(3,1,2);

230

imshow(groundImageGRAY); title('Image of a GRAY Ground with Ball');

subplot(3,1,3); imshow(groundImageGRAY);

title('400 Strongest Feature Points from netball Image'); hold on;

plot(selectStrongest(groundPoints, 400));

[ballFeatures, ballPoints] = extractFeatures(ballImageGRAY, ballPoints);

[groundFeatures, groundPoints] = extractFeatures(groundImageGRAY,

groundPoints);

ballPairs = matchFeatures(ballFeatures, groundFeatures)

ballPairs_1 = matchFeatures(ballFeatures, groundFeatures,'Method',

'Threshold')

numMatchPoints = int32(size(ballPairs_1,1));

matchedBallPoints = ballPoints(ballPairs(:, 1), :);

matchedGroundPoints = groundPoints(ballPairs(:, 2), :);

matchedBallPoints_1 = ballPoints(ballPairs_1(:, 1), :);

matchedGroundPoints_1 = groundPoints(ballPairs_1(:, 2), :);

figure('Name','Ball matched features with ball in ground');

subplot(2, 2, 1);

showMatchedFeatures(ballImageGRAY, groundImageGRAY,

matchedBallPoints,matchedGroundPoints, 'montage');

title('Putatively Matched Points (Including Outliers) SURF')

[tform, inlierBallPoints, inlierGroundPoints,status] =

estimateGeometricTransform(matchedBallPoints, matchedGroundPoints,

'affine')

subplot(2, 2, 2);

showMatchedFeatures(ballImageGRAY, groundImageGRAY,

inlierBallPoints, inlierGroundPoints, 'montage');

title('Matched Points (Inliers Only)SURF');

subplot(2, 2, 3);

showMatchedFeatures(ballImageGRAY, groundImageGRAY,

matchedBallPoints_1,matchedGroundPoints_1, 'montage');

title('Putatively Matched Points (Including Outliers) SURF');

[tform1, inlierBallPoints1, inlierGroundPoints1,status] =

estimateGeometricTransform(matchedBallPoints_1, matchedGroundPoints_1,

'affine')

subplot(2, 2, 4);

showMatchedFeatures(ballImageGRAY, groundImageGRAY,

inlierBallPoints, inlierGroundPoints, 'montage');

title('Matched Points (Inliers Only)SURF');

ballPolygon = [1, 1; size(ballImageGRAY, 2), 1;size(ballImageGRAY, 2),

size(ballImageGRAY, 1);1, size(ballImageGRAY, 1);1, 1]

newBallPolygon = transformPointsForward(tform, ballPolygon)

newBallPolygon_1 = transformPointsForward(tform1, ballPolygon)

231

figure('Name','Ball detected in gray and RGB image');;

subplot(2, 1, 1); imshow(groundImageGRAY); hold on; axis on;

rectangle('Position', [310,180,150,150],'Edgecolor', 'r');

line(newBallPolygon(:, 1), newBallPolygon(:, 2), 'Color', 'red','LineStyle','--

','Marker' ,'o');

line(newBallPolygon_1(:, 1), newBallPolygon_1(:, 2), 'Color',

'green','LineStyle','--','Marker' ,'o');

title('Detected Ball in Gray');

subplot(2, 1, 2); imshow(groundImageRGB); hold on; axis on;

rectangle('Position', [310,180,150,150],'Edgecolor', 'r');

line(newBallPolygon(:, 1), newBallPolygon(:, 2), 'Color', 'red','LineStyle','--

','Marker' ,'o');

line(newBallPolygon_1(:, 1), newBallPolygon_1(:, 2), 'Color',

'green','LineStyle','--','Marker' ,'o');

title('Detected Ball in RGB ');

disp('END')

232

APPENDIX E

Mathematical Model of Object Identification

E.1 Detection of Interest Point

E.1.1 Hessian-Based Interest Points

In the image (IMG) point A = (x, y) is considered whose matrix of Hessian

H(A, σ) on point A taking scale σ is given by

 (E.1)

Where Lxx(A,σ) - convolution of 2
nd

 order Gaussian derivative at point A of

an image I.

Similarly, Lyy(A,σ) and Lxy(A,σ) are calculated.

For discretization and cropping of an image Gaussians(σ=2s) are required.

They are optimal for the analysis of scale space.

Img(x, y) = Img(x, y) + Img(x-1, y) + Img(x, y-1) - Img(x-1, y-1) (E.2)

E.1.2 Scale Space Representation

Box filters of specific dimensions (9x9, 15x15, 27x27, and so on) are

convolved for each scale. Box filters preserve the high-frequency components

which get lost in zooming-out of the image. This limits scale invariance.

Scale-space is further divided into a set of filter responses, octaves. Each

octave is scaled by a factor of 2. For each successive level increase in a

minimum of 2 pixels which means one on each side. This keeps the size odd

and ensures the central pixel should be present which results in increasing

mask size by 6 pixels.

233

Figure E.1 Scale Space Representation

E.1.3 Localization of Interest Point

Localization of interest points is done by suppression of non-maximum points

in the neighborhood of 3x3x3. Interpolation in terms of scale and image space

is done for the maxima of the Hessian matrix determinant.

Figure E.2 Interest Point Localization using 3D Non-Maximum Suppression Concept

E.2 Description of Interest Point

E.2.1 Feature Vector

The horizontal and vertical Haar wavelet response is calculated over each

subdivision and four metrics are extracted from each subdivision using 5x5

equally spaced points. These metrics are then summed to produce the local

feature vector which is concatenated to form a 64-element feature vector that

describes the interest point and surrounding neighborhood.

234

Figure E.3 Haar Wavelet Filters and Sliding Window Orientation

Figure E.4 Descriptor Vector

235

APPENDIX F

F.1 Simulink Reinforcement Controller

236

CURRICULUM VITAE

Rashmi Sharma

Research Associate

University of Petroleum & Energy Sciences

Educational Qualifications

 Bachelor of Science (1996) Vikram University Ujjain (M.P.)

 Master in Computer Application (1999) DAVV Indore (M.P.)

 Master in Technology (2010) UPTU, Lucknow (U.P.).

Interest area includes - Soft Computing, Artificial Intelligence, Machine

Learning, and Machine Vision.

Papers Published :

1. Rashmi Sharma, Dr. Inder Singh, Dr. Manish Prateek, Dr, Ashutosh

Pasricha, (July 2020), " Comparative Study of Learning and Execution

of Bipedal by Using Forgetting Mechanism in Reinforcement Learning

Algorithm", Journal Européen des Systèmes Automatisés (JESA),

IIETA(International Information and Engineering Technology

Association) Volume 53, Number 3, 2020, pp 335-343

http://www.iieta.org/journals/jesa/paper/10.18280/jesa.530304

2. Rashmi Sharma, Dr. Inder Singh, Dr. Manish Prateek, Dr, Ashutosh

Pasricha, (June 2019), "Implementation of Feature-Based Object

Identification in Bipedal Walking Robot", International Journal of

Engineering And Advanced Technology (IJEAT), Volume-8, Issue-5

ISSN: 2249-8948, pp 110-113.

3. Rashmi Sharma, Dr. Inder Singh, Deepak Bharadwaj, Dr. Manish

Prateek,(May 2019), "Incorporating Forgetting Mechanism in Q-

Learning Algorithm for Locomotion of Bipedal Walking Robot",

International Journal of Innovative Technology and Exploring

http://www.iieta.org/journals/jesa/paper/10.18280/jesa.530304

237

Engineering(IJITEE), Volume-8 Issue-7 ISSN: 2278-3075 pp 1782-

1787

4. Deepak Bharadwaj, Dr. Manish Prateek, Rashmi Sharma,(May 2019),

“Development of Reinforcement Control Algorithm of the lower body

of Autonomous Humanoid robot” IJRTE, Vol 8, Issue. 1, pp. 915–919.

5. Rashmi Sharma, Manish Prateek, Ashok K. Sinha, (May 2013)," Use

of Reinforcement Learning as a Challenge: A Review" International

Journal of Computer Application, New York, (0975-8887) Vol 69-

Number 22 pp 28-34 May 2013 DOI:10.5120/12105-8332.

238

COMMENT INCORPORATED SUMMARY

Below is the summary list of the actions taken upon relevant review

comments/ suggestions

Sl.No Comments/Suggestions Changes incorporated

1 The proposed methodology would be

described with a flow diagram for more

clarity.

Changes incorporated on

page no 64-66

2 How the proposed methods are

comparable with existing image

processing techniques

Changes incorporated on

page no 90-92

3 Why learning based control techniques

as a model-free controller as compared

to other conventional schemes?

Changes incorporated on

page no 114

4 How the system dynamics and variations

of the system will be accounted in the

proposed method?

Changes incorporated on

page no 67

5 Why only lower body (biped), why not

to the complete body (humanoid)?

Changes incorporated on

page no 171

6 Why Q-learning and why not other

learning (DQN, SARSA, etc.)

techniques? (no discussions were there

in the thesis)

Changes incorporated on

page no 99-102

7 In the scope of future work, it can be

mentioned how the same technique

could be extend to full- edged system, or

some other aspects to modern robotics

(for example extending to mobile

manipulators, autonomous manipulation,

etc along with some reasonable

justifications, how it can be extended to

these areas).

Changes incorporated on

page no 170 and 171

8 Add some references within the last 3

years in the Literature Review of

Chapter 2.

Changes incorporated on

page no 42-45

239

9 At the end of Chapter 2.1, add a

concluding paragraph to make the article

read more smoothly.

Changes incorporated on

page no 19

10 Some of the pictures are blurred and the

font is too small. Please make them easy

to read.

Changes incorporated on

page no 51-53, 55-56,

58-59, 61-62, 116-117,

121-122, 124-125, 146,

148, 150-167 in figure .

Changes incorporated in

tables on page no 127,

130, 138-143

11 This thesis designs a reinforcement

learning framework with incorporation

of Forgetting Mechanism in Traditional

Q-learning Algorithm. However, I

cannot find any compared algorithm in

the experiment part of Chapter 9. In

order to make the thesis more

convincing, please add at least one state

of the art algorithm about Q-learning

into the framework for comparing.

Changes incorporated on

page no 90-92,167-168

240

THESIS PLAGIARISM CHECK REPORT

