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ABSTRACT 

 

The scope of this research was to design a framework with RL for autonomous 

mobile/ bipedal robots. The result was designing, programming, and validation 

of RL based algorithms for navigation of the Bipedal Walking Robot. The 

improvements proposed include 1. Incorporation of Forgetting Mechanism in 

Traditional Q-learning Algorithm 2. Feature-based Object Identification by the 

RL agents in the dynamic environment. 3. Hierarchical Training of the RL 

agent. RL agent is a Bipedal in this case. This research work examines 

improvements in traditional Q-learning algorithms to successfully interact 

with a dynamic and uncertain environment. Simulations were carried out for 

each proposal. Incorporating the Forgetting mechanism resulted in a 

considerable improvement in the learning time of RL agents ( Hip joint, Knee 

joint, Ankle joint) in a dynamic environment. The Feature-based Object 

Identification Algorithm reduced considerably in the number of state values 

that are required to be maintained. This facilitates the use of multiple agent 

systems (MAS) in large environments with dynamic conditions. The 

Hierarchical implementation of the algorithm help in sharing and transferring 

the knowledge from one RL agent to another RL agent. Also useful for 

obstacle avoidance and identifying dangerous objects while navigating. The 

communication and data sharing between MAS are online as well as offline to 

that the bipedal walk's without tipping and with stability. 

It uses different modules that consist of simple controllers with RL forgetting 

the Q-learning algorithm. The feature-based object identification system 

would help to identify objects and the bipedal controller would be able to take 

appropriate actions. The present work deals with vision-based navigation 

(VBN) of bipedal. The bipedal identifies the object by using an updated SURF 

algorithm. 
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The reinforcement control algorithms for the Bipedal robot had been applied 

for self-learning and for taking self-decision. Bipedal is sensing the present 

state and switching to the next subsequent stable state and finally reaching the 

desired goal state. Simulation is carried out on the MATLAB platform and 

SimSpace Multibody dynamics toolbox to verify proposed algorithms. The 

optimal policy is achieved in reaching the goal/target state and are stored in 

the lookup tables for future use. After the learning of each of the agents of 

MAS is completed, the execution phase starts. The data from the lookup table 

is visited for further decision making. The data is stored in a lookup table 

which helps in reducing the learning time of the agents. As the number of 

strides increases the size of the lookup table increases, the agent gets more 

options for exploration of a new stable state. Then after a few runs, it starts 

exploiting the explored data in terms of the next state and the optimal policy 

previously achieved. These lookup tables are useful if the scenario in the 

dynamic environment does not change. This helps in reducing the execution 

time of the multiple agents. When the scenario changes the agents will learn 

from scratch. Several experiments are carried out on MATLAB to verify the 

analytical and simulation result. The results verify that the execution time 

reduces to a considerable amount. There is overhead attached when the size of 

the lookup table increases beyond the limit its search time increases. This 

results in approximately the same time for the learning and execution phase of 

the bipedal gait. 
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CHAPTER 1 INTRODUCTION 

Humans have always been fascinated by creating creatures like them, which 

resulted in the designing and development of Humanoid/ Bipedal Robots. The 

bipedal developed should be able to act, interact like a human being, and 

should be intelligent enough to reason. Bipedal have a human body which 

through morphological calculation ought to naturally adjust and make up for 

movement and dynamic conduct. 

Bipedal along with the locomotion should also integrate performing tasks 

associated with manipulation, perception, interaction, adaptation, and self-

learning. This leads to a connection with legal, social and ethical domains 

along with science and engineering disciplines. Bipedal are cross-disciplinary 

including propelled velocity and control, biomechanics, computerized 

reasoning, machine vision, recognition, learning, and subjective improvement 

alongside the social examinations. 

Bipedal are best suited till now for the predefined tasks like in automotive 

fields, as a companion in medical surgery, cleaning and mopping the floor, 

mowing the garden, and so on. Bipedal cannot perform tasks in an 

unstructured and dynamic environment. Bipedal learns from mistakes as a 

human being and adapts to the dynamic and uncertain environment with the 

algorithms developed by humans. Bipedal should learn the dynamics of the 

environment similar to a child, learn to walk/ crawl in a dynamic environment 

that is changing for every go of the walk. As the child learns from mistakes 

and failures, walking an unforgettable task of life. Similarly, with machine 

vision, artificial intelligence (AI), cognitive learning algorithms, bipedal can 

adapt to the uncertainty of the environment and can accomplish their desired 

goals. Implementation of bipedal to the community is a social, economic, and 

legal issue. 
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 The aim is to ease human efforts, save human life in a hazardous 

environment. The future of the bipedal robots is like an emotional, physical 

companion of humans, which can help humans in household chores, in a 

hazardous environment, as a companion and friend at the workplace. 

1.1 History of Humanoid/ Bipedal Robot 

The word 'Humanoid Robot' describes creatures that resemble humans and can 

be used to do tedious and hazardous tasks. 

In 250 BC, Liezi described automation as a self-operating machine that is 

designed to follow the predefined task automatically. In 50 AD, Alexandria, a 

Greek mathematician depicted a machine that consequently pours wine for the 

gathering visitors. Al Jazari, in 1206 made handwashing automata with 

programmed robot hirelings and clock having elephants and mahout. He 

additionally portrayed a band of humanoids that can be performed more than 

50 facial and posture activities during their musical show. 

Jacques de Vaucanson, in 1738 structured a woodwind player that resembles a 

shepherd and had the option to play twelve tunes on woodwind. He 

additionally created a tambourine that played woodwind and drum. In 1774, 

Pierre Jacquet Droz developed animated dolls which helped the firm in selling 

watches. Later his son Henri Louis created a figure of a boy like a 

Draughtsman who can remember 40 characters' messages. 

Karel Capek, in 1921, coined the 'Robot' word which was derived from 

'robota' meaning 'to work'. In 1927, Mashinenmeusch (machine-human) 

humanoid robot additionally called Parody/ Futura/ Robotrix humanoid 

showed up in the film. In the same year, the humanoid robot Herbert Televox 

was developed by Ron Wensley. The humanoid could lift the receiver to 

answer a call and correspondingly controlling the task with the help of a 

switch. This robot did not have any ability to speak. In 1928, Eric's electrical 

robot opened a presentation to the general public of model designers in 

London and visited the world. 
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In 1941-42, Isaac Asimo gave three laws of robotics that deals with the safety 

restrictions of the robot. He used these laws in his science fiction stories. The 

story was recompiled in 'I' robot movie in the year 2004. 

In 1961, Unimate, the first carefully worked programmable non-humanoid 

robot was introduced in sequential construction systems and assembly lines of 

General Motors. It was utilized to lift hot bits of metal from bite the dust 

throwing (die-casting) machine. 

 In 1967-72, initiated in 1967 and completed in 1972. WEBOT 1, which is the 

world's intelligent humanoid robot. WEBOT 1 was the first android which can 

walk, communicate in Japanese with people, measure distances and direction 

of the objects, grips, and transports object with hands. 

In 1970, Miomir proposed a hypothetical idea of Zero Moment Point(ZMP). 

In 1972, Miomir and his partner construct the first dynamic human 

exoskeleton.  

In 1980, Marc Raibut set up MIT leg Lab, devoted to legged velocity and 

building dynamic legged robots. In 1983, 'Green man' was developed which 

had a torso, arm, and head, the vision system consists of a camera that was 

mounted on the helmet. In 1984, WABOT 2, a musician humanoid was 

created. It communicated with persons, can read normal musical notes. In 

1986-1993, Honda developed seven biped robots E0-E6. In 1989, Hanny a 

full-scale anthropomorphic was developed by the US. It can crawl and had 42 

DOF. 

In 1990, the Bipedal mechanical structure with knees was developed by Tad 

McGeer, which was even able to walk on a sloppy surface. In 1993, Honda 

developed P1 to P3 with upper limbs. In 1995, Webian, a human-sized biped 

walking robot was developed. In 1996-98, Saika light-weight with 2 DOF in 

the neck, double 5 DOF upper arms, body, and the head was developed. In 

2000, Honda created its 11
th 

bipedal which was capable of jumping, running, 

climbing stairs. 
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After 2000, Humanoids were at boom and their development was at the full 

pace some of them are listed here. 

In 2001 HOAP-1, in 2002 HRP-2, in 2003 HOAP-2, JOHNNIE, ACTROID, 

in 2004 Persia, KHR-1, in 2005 HOAP-3, WAKAMAN, in 2006 iCUB, 

MALIM, in 2008 JUSTIN, in 2010-11 ROBONAUT-2, ASIMO (with semi-

autonomous capabilities), in 2012 COMAN (Compliant Humanoid Robot), in 

2013 SCHAFT, POOPY, in 2014 MANAV, PAPER ROBOT, NADINE, in 

2015 SOPHIA and so on. 

1.2 Features of Humanoid/ Bipedal Robots 

The features, which a bipedal possesses are:  

1. Autonomous Maintenance 

2. Autonomous learning 

3. Avoiding destructive circumstances to an individual’s property and 

itself. 

4. Self-interacting with human being and environment 

1.2.1 Manipulation tasks 

The manipulating ability of the bipedal robotic mechanisms is required to 

enter human-centered environments such as in positioning and orienting end-

effectors. Due to a huge number of DOF, humans can manipulate objects of 

many shapes, sizes, weights, and materials(Asfour et al., 2008). Due to more 

number of joints and links, the singularity posture of the bipedal robot reduces 

the dexterity of the humanoid robot(Ott et al., 2006). Due to a lack of learning 

ability and limited manipulation of the bipedal robot, it is unable to pick new 

shape objects in an unknown environment. Many tasks require certain 

complaint behavior to make deliberate physical contact with the environment 

which are implemented by modern robotic manipulators. 
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1.2.2 Vision system 

Visual perception is essential for bipedal working in human environments. 

The vision system of the bipedal robot extracts information of the joint 

positions and manages its own body along with the obstacle avoidance(Okada 

et al., 2006). The vision system manipulates the tool’s movement through its 

own body and handles the target object. A bipedal robot is required to manage 

tools and objects. 

Vision systems extract information on the shape and size of the target from the 

external and dynamic environment. An overhead camera is employed to the 

bipedal robot for computing the desired goal location and screens to interpret 

the captured images(Michel et al., 2005). The image processing technology 

provides a direct and indirect estimation of the target in the dynamic 

environment. In principle, machine vision includes acquiring an image, 

process it using digital image processing and analysis techniques, and take 

decisions based on the extracted information(Kagami et al., 2003). The 

functions are involved in real-time 3D vision are a generation of the 3D depth 

map, 3D depth flow generation, and plane segmentation finder. Real-time 

depth map generation framework and target finder run on the bipedal body 

computer. The other complex vision as the face recognizer and plane finder 

runs on the network computers.  

1.2.3 Sensing behavior 

The sensing behavior of the bipedal robot is the mapping of sensory input to 

different joint motor actions. This behavior is the appropriateness of the 

bipedal robotic response to a given task and environment. The reactive 

behavior provides a bipedal robot to interact with dynamic and unknown 

conditions without planning. These behaviors of the bipedal robot deal with 

targets independently and coordinating different joints in the desired way. 

Based on the environment interaction several sensors are utilized in bipedal. 

Force, tactile sensors are elementary sensors for the bipedal robot when 

interacting with the environment(Song et al., 2015). Bipedal robots entirely 

depend on the fusion of multiple sensors to provide them with information 
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about their surroundings. The sensory input to the bipedal robot helps to 

understand the environment and navigation. 

1.2.4 Mobile platform 

Bipedal robots are moving towards applications beyond structured the 

environment(Khatib, 1999). The current generation of the bipedal robot has a 

mobile platform. Due to the mobile platform, a bipedal robot is entering the 

everyday world that people inhabit. Wheel based humanoid robot is working 

in a static environment. The introduction of the legged mobile platform into 

the bipedal robot will assist the bipedal to perform the task in the unstructured 

and dynamic environment.  

1.3 Application of Bipedal Robot 

1.3.1 Home Management Services 

The bipedal robot observes the house in the absence of people and can be 

controlled remotely by people with the help of a simple mobile terminal. 

Humanoid robots can perform household activities. They can check the 

apparatus condition inside the house(Sawasaki et al., 2004). 

1.3.2 Healthcare 

 The verbal and gesture interaction of bipedal robots can serve the patient in 

the hospital environment(Dahl & Boulos, 2013). Bipedal robot assisting 

nursing staff in taking care of the patients and in providing support while 

physically efficiently handling patients.  

1.3.3 For aging / old aged people 

Older age people would like a bipedal robot for assisting with daily routine 

tasks. With recent advancements in the technology of the bipedal robot, it can 

prevent an old aged person from falling, giving medication alerts, and 

managing their location(Robinson et al., 2014). These tasks need to maintain 

independence and dignity. The old age people are not able to take care of 

themselves. It is also disrespectful for them to use a device that looks like a 
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toy. The appearance of the bipedal robot was fascinated. Bipedal are usually 

appreciated as they are capable to have improved communication with old age 

people and healthcare professionals both. 

1.3.4 Industrial Application 

The collaboration of humans and the bipedal robot contributes to the 

sustainable growth of factories. A place in which bipedal robots and people 

can work together to achieve goals (Maurtua et al., 2017). Safety is the most 

critical aspect of the industry. A bipedal robot looks after the safety of workers 

inside the industry while the execution of the task. Some tasks are complex 

and dangerous to be performed by a human. They require engineering special 

tools. An effective bidirectional human-robot communication contributes to 

the growth and safety of industrial development. 

1.3.5 Space Exploration 

With the advancement in satellite technology, satellites are deployed into 

space for exploration and colonization of other planets (Tanaka et al., 2017). 

The aim of these efforts to establish the possibility of life on other planets. 

Such plans require the creation of living environments on the planet. Bipedal 

robots can work and assist in space to establish a living environment. The 

bipedal robot can interact with the unknown environment of space can interact 

with the astronaut.  

The application of a bipedal robot is not limited to these areas only. It can be 

used in different fields of industrial and non-industrial applications. 

1.4 Motivation 

The child suffering from the autism spectrum disorder disease deficit in social 

interaction and communication with the real world. Similarly, the old aged 

cannot do household activities on their own, walking machines resembling 

humans, bipedal plays an important role in their life. Interaction and self-

decision making bipedal recognize eye contact and behavior of the old aged 

person and the child. After recognizing these parameters, bipedal can execute 
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tasks desired by them. Till today, partial human thinking behavior 

implemented in the bipedal robot.  

Open situations require a robot to design and learn under novel conditions. 

This must be done in a way that guarantees the wellbeing of the system and 

general environmental condition, and permits model estimation and figuring 

out how to occur inside a possible measure of time. Bipedal not exclusively be 

utilized as a partner yet additionally can be implemented into repetitive, 

tedious, and risky circumstances, for example, salvage tasks or bomb 

arranging. For Bipedal it is possible to do assignments dangerous for the 

individual. The assignments are possibly any perilous natural environment, for 

example, fire fighting operation, explosives, and can likewise aid other 

increasingly intricate, complicated, and confounded assignments. Currently, 

the most basic issue for bipedal is how to walk consistently in questionable 

and ceaselessly evolving conditions which is dynamic. Numerous scientists 

have controlled the ZMP position for strolling steadiness(Lohmeier et al., 

2009)(Lowrey et al., 2018)(Ly et al., 2004). Applying appropriate walking 

gaits to biped walking would make the robot walk more stably and walking 

posture would resemble human walking. 

The motivation of the present research work is implementing human thinking 

in bipedal, to serve social services to society. The dynamics of each 

humanoid's environment is different and so they cannot be trained for the 

static environment. Bipedal should learn to walk on its own as the scenario of 

its path changes.  

1.5 Research Contribution 

 The major contribution of this thesis is the development of model-free 

based reinforcement learning control calculation for an autonomous 

self-decision bipedal robot. 

 The other contribution is to train bipedal to walk stably in the dynamic 

and uncertain environment when the position of objects differs in the 

environment. 
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 Another contribution is to train the bipedal to identify the object and 

localization of the object in the dynamic environment. If the same 

scenario is used, the previously learned data is utilized. 

1.6 Thesis Outline 

 Chapter 2 describes the history of humanoid/ bipedal robot, current 

ages of humanoid/ bipedal robot, bipedal robot movement, a 

mechanical model of bipedal robot, control design of humanoid/ 

bipedal robot and development of model-free based reinforcement. 

 Chapter 3 describes the biomechanics of the lower body of the bipedal 

robot. Biomechanics deals with the motion and the orientation of each 

of the joint positions. The design input parameters considered from the 

standard human measurement and decided the link length and the joint 

trajectory.  

 Chapter 4 introduces the general framework which is intended to 

accomplish the desired sub-objectives. The sub-objectives are objects 

identification and localization, bipedal control mechanism along with 

Reinforcement Learning control mechanism, and then the hierarchical 

structuring of all RL agents. 

 Chapter 5 introduces the mathematical modeling of the bipedal robot. 

The gait trajectory and smooth motion evaluated for the different 

conditions. The kinematic and dynamic model (online/ offline) was 

implemented in the MATLAB platform and validated with the 

Multibody Toolbox of MATLAB. It also includes the object 

identification model along with the localization of the identified object. 

 Chapter 6 introduces the design of the object identification algorithm 

of the bipedal. This includes a control framework for the feature-based 

identification of the object in the reinforcement learning control 

mechanism as proposed in this research work. 

 Chapter 7 introduces the design of the reinforcement-learning 

controller of the bipedal. This also includes the proposed forgetting 
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mechanism incorporated in the traditional Q-learning Algorithm, how 

to model, and simulate Multi-Agent System (MAS).  

 Chapter 8 combines both the proposed algorithm to form a model of 

the proposed framework which includes both algorithms with setting 

up the parameters for the executing simulated system so that the output 

produced is in sync with the actual output on the Bipedal. The 

simulation implemented in MATLAB platform and interfacing is done 

with the proposed framework. 

 Chapter 9 describes the constants taken into consideration for 

simulation. The output is stored for future use in graphical and lookup 

tables for each of the joints. This stored data is used further as 

knowledge when the bipedal reach a similar condition when the 

dynamic environment is the same. The storage incurs time which was 

compensated by a reduction in the execution time of the bipedal by 

utilizing previous knowledge. This includes result graphs in 25, 50, 75, 

100, 150, 200 strides for comparative study.  

 Chapter 10 concludes and summarizes the research work on the 

designing, modeling, and simulating along with conclusion for the 

proposed algorithms so that the bipedal walks with stability along with 

the suggestions for future work regarding consideration of the upper 

body of bipedal along with an alternate way to store the optimal policy 

so that less time is required for reading and storing that data. 
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CHAPTER 2 LITERATURE REVIEW 

Designing and developing the bipedal robots result in achieving real-world 

work at a greater speed and accuracy. Research communities and companies 

have been doing continuous work on the locomotion of humanoids in different 

environments - houses, fire rescue operations, coal mines, etc. In robotic 

research, the navigation of the bipedal is a challenging and emerging field. In 

this navigation, the bipedal should not get damaged nor any human being. This 

has gained significant attention as the dynamics of the environment in each 

case are continuously changing. 

This reveals the major problem in designing the bipedal is self-awareness of 

the dynamics of the uncertain environment by the bipedal. Bipedal robots are 

also known as service robots which are included as assistant/companion robots 

by humans. Bipedal are used as medical assistants and teaching aids. The 

anthropomorphic form of bipedal robots offers greater flexibility for operating 

them in a different dynamic environment. 

2.1 Current Humanoids / Bipedal 

2.1.1 Vyommitra (Jan 2020) 

Indian Space Research Organization (ISRO) introduced Vyommitra, half 

humanoid, legless but can bend forward and sideways. Vyommitra has a 

female look. Vyommitra means space (Vyoma) and a friend (Mitra). She can 

switch panel operation, environment control, and life support systems 

(ECLSS), monitor module parameters, be a companion and converse with the 

astronauts, alert the astronauts, and can respond to the queries. She will be sent 

to space as a trial before Gaganyaan, projected in 2022.  
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She simulates human functions in space, can check whether the system is 

right. She would help to monitor how the human system will behave in 

ECLSS. The robot, powered by speech synthesis software and artificial 

intelligence. The robot is seated at the desk in uniform and sported a custom-

made ISRO identify badge with her name. 

2.1.2 Sophia (Feb 2016) 

Sophia is a humanoid that was designed by Hanson Robotics which can show 

60 facial expressions. She is the only robot who is a citizen of Saudi Arabia. 

According to Davis Hanson, manufacturer, Sophia uses AI, facial recognition, 

visual data processing, voice recognition (speech to text) technology, and 

speech synthesis ability. These systems help her to be more brainy by 

collecting information from time to time. The program intelligently 

investigates and selects information that permits it to enhance future reactions. 

Sophia does not just keep up a keen talk with an individual on any subject, 

dialogues as also accompanied by emotional charges that help conversation 

between two people more normal. 

The concepts work behind Sophia firstly include estimation of awareness of 

psychological framework, which uses tonomi phi values while reading and 

conversing. Secondly, Sophia is a realistic human-robot that can reproduce 

human to human social involvement in an excellent point of interest of 

controlled reputability towards patient or customer. Thirdly, Sophia helps in 

portraying robot behavior. Sophia uses AI techniques including the following 

face, acknowledgment of emotions, and mechanical movements created by a 

deep neural network. Sophia's discourse is created by the decision tree 

however is incorporated with these outputs exceptionally. 

2.1.3 Atlas  

Atlas is a bipedal humanoid robot planned by Boston Dynamics, funded by 

US DARPA (Defense Organization). It is supplied with two vision systems - a 

laser range discoverer and stereo cameras both constrained by an off-board 

PC. Atlas has hands with fine engine capabilities and has appendages. It can 
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explore on uneven turf and can climb utilizing arms and legs. It utilizes 

sensors in its body and legs to adjust and to evade hindrances, evaluate the 

turf, help with routing, manage objects even when continuously moving.  

Table 2.1 Body Parameters of Atlas 

Parameter Value 

DOF 28 

Tall 175 cm 

Weighs 82 kg 

Characteristics Can jump on packages, turn 180° while hopping and doing 

a backflip 

 

Atlas utilizes 3D printed parts which give it qualities to weight ratio vital for 

jumps of somersaults. To execute control loops inside the period dictated by a 

robot, real-time threads of the JNI library were used. Lockless synchronization 

natives are utilized to impart between the different threads, avoids garbage 

collection. The control arrangement of the robot is implemented on the robot 

operating system (ROS) packages(Maniatopoulos et al., 2016). 

2.1.4 Manav (Dec 2014) 

India's first humanoid robot, Manav is a 3D, two movement head that can nod 

and look around, the waist has 1-degree allowing waist movement like 

humans. It was designed in 2 months.  

Table 2.2   Body Parameters of Manav 

Parameter Value 

DOF 21 

Tall 2 feet 

Weighs 2 kg 

Characteristics 21 sensors, 2 mikes, 2 cameras on head and eye 

 

It has sound processing, visual processing which helps in responding to 

commands. Manav can walk, talk, and dance according to human voice 
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commands. It can perceive depth and perception by binocular vision 

processing. Wi-Fi and Bluetooth are used for communication. The 

rechargeable lithium-polymer battery used by Manav can drive at least for an 

hour when fully charged. Manav responds like a human child.  

2.1.5 ASIMO  

ASIMO, humanoid robot structured and designed by Honda(Motor, 2007). 

ASIMO has a rechargeable 51.8V lithium-ion battery which has one hour 

working time. The robot can recognize moving articles stances, expressions, 

sound countenance, and a dynamic environment that encompasses them and 

connect with humans. 

Table 2.3   Body Parameters of ASIMO 

Parameter Value 

DOF 34, each leg has 6 DOF, each arm has 7 DOF, has 2 DOF 

for 4 fingers to grasp the object 

Tall 130 cm 

Weighs 54 kg and can carry a payload of 1kg 

Characteristics 21 sensors, 2 mikes, 2 cameras on head and eye socket 

 

The visual data grabbed with two eyes of camera situated in the head also 

evaluates separation and control of object approaching. ASIMO deciphers 

voice orders, human motions, recognizes when a handshake is offered or 

waved or pointed, and respond accordingly. It can confront an individual when 

addressed or look towards a sound. It can sense obstacles in front or rear and 

act accordingly. 

2.1.6 iCub 

iCub was structured by Robot Cub Consortium and assembled by the Italian 

Institute of Technology. Cub stands for Cognitive Universal Body. The 

motivation was human comprehension like a child learns by collaborating with 

its environment. Its robotic platform is adopted by 20 laboratories worldwide 

for research and academic development of robotic projects. It is an open 
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cognitive robotic platform. iCub can see and hear and has sensing capabilities 

that help in body configuration and movement(Frank et al., 2014). 

Table 2.4   Body Parameters of iCub 

Parameter Value 

DOF 53 

Tall 105 cm 

Weighs 20.3 kg  

Characteristics It has attached 53 motors to control the movement of the 

head, legs, waist, arms, and hands 

 

The product library is written in C++, utilizes YARP for outside 

correspondence using Gigabit Ethernet. It was not intended for independent 

activity thus doesn't have onboard batteries or processor however utilizes an 

umbilical link for force and system network connection. 

 iCub can crawl utilizing visual direction with an optic marker on the floor, 

tackle complex 3D mazes, facial expressions express emotions, grasping small 

objects, collision avoidance within a non-static environment, archery. To 

compute the physical interaction of a rigid body with environment and object, 

the iCub simulator uses an open dynamic engine. An open dynamics engine is 

a reliable physics engine, computing physical interaction between objects and 

the environment (Tikhanoff et al., 2012.). 

2.1.7 POPPY 

Poppy is a robust, reliable, and accessible, and 3D printed Humanoid robot. 

The open-source software and hardware of robots allow programming and 

experimentation of various robotics morphologies. The behaviors of Poppy 

were partially dependent on body configuration and controlled using a pre-

wired electronics circuit. The Python programming controls hardware. The 

joint motor of Poppy controls its physical interaction. The design of Poppy is 

modular and can be easily modified and adapted to particular needs(Lapeyre et 

al., 2015). It is used by many schools and universities for exploration and 

research. The ideal medium of STEM. 
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Table 2.5   Body Parameters of Poppy 

Parameter Value 

DOF 25 

Tall 83 cm 

Weighs 3.5 kg  

Characteristics One LCD screen, 2 wide camera attached on its head. 

2.1.8 Romeo 

The main aim of the development of Romeo humanoid was to assist an elderly 

person suffering from a loss of autonomy. The Romeo humanoid interacts 

with humans, roaming around human’s physical environment, and helping in 

their needs. Romeo is capable able to extract a realistic perception and interact 

in -natural way with individuals(Pateromichelakis et al., 2014).  

Table 2.6   Body Parameters of Romeo 

Parameter Value 

DOF 37, a spine with 4 vertebrae 

Tall 140 cm 

Weighs 40 kg  

Characteristics During development, special attention was on facial 

movements, voice, and gestures, to increase effectiveness 

between  human-robot interaction 

 

Different layers of perception have been analyzed in Romeo from sense to 

interaction. Sensor and their fusion build a 3D point cloud world. Relevant 

information gathered from the 3D point cloud help to learn Romeo to 

categorize emotions and instructions(Pandey et al., 2014). Humanoid responds 

by natural speech and gestures to perform tasks like closing trash can, cup 

lifting with four fingers hand, and retrieving food from the kitchen. 

2.1.9 PETMAN (Protection Ensemble Test Mannequin) 

PETMAN, an anthropomorphic humanoid designed to test protection against 

chemical warfare agents. The embedded chemical sensor inside the skin of the 
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PETMAN humanoid robot measures and detects chemicals in the suit under 

controlled temperature and wind conditions. It maintains dynamic balancing 

when pushed moderately from the side. PETMAN is a free-standing bipedal 

robot powered by hydraulic power separately and its speed is about 7.08 

km/hr(Nelson et al., 2012). 

Table 2.7   Body Parameters of PETMAN 

Parameter Value 

DOF 29, sensors for measuring position and force 

Tall 175 cm 

Weighs 80 kg, can carry a payload of 23 kg 

Characteristics Onboard control systems sensing, computing, and 

control movement. One passive DOF in each wrist and 

foot provide compliant interaction with the 

environment. 

 

The robot gives reasonable tests during physical efforts, for example, 

controlling temperature, dripping, and dampness inside the protective apparel. 

It performs different undertakings powerfully in rising circumstances, for 

example, rescue operations in a fire, atomic, and different risky conditions 

without human introduction. 

2.1.10 NAO (Aug 2008) 

An approachable design of the NAO humanoid robot had been kept purposely. 

Due to the huge number of degrees of freedom, It offers great mobility. The 

open-loop engine controls the walking of the robot. The absence of feedback 

arises instability in NAO's movement. The open-loop stabilizer controls the 

motion of straight walk and follows arc without falling on the flat and hard 

ground(Shamsuddin et al., 2011). It is accessible as an examination robot for 

schools, universities, and colleges to train to program and execute exploration 

of human interaction.  

NAO incorporates four amplifiers for recognition of voice and limitations of 

sound and two speakers for content to discourse union, 2 HD cameras for the 
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exterior, and body recognition(Shamsuddin et al., 2012). NAO uses a Linux 

based operating system. NAO's programming is done in C++, Python, Java, 

MATLAB, C, etc. It also uses Ethernet and Wi-Fi for communication. 

Table 2.8   Body Parameters of NAO 

Parameter Value 

DOF 11 DOF in the lower limb, 14 DOF in the upper part of 

the body. 

Tall 57 cm 

Weighs 5.5 kg 

Characteristics The special pelvis kinematics design requires one motor 

which can bend forward without movement of legs. 

 

2.1.11 Actroid-SIT (2003) 

Actroid, the humanoid robot looks and does move in the direction of an 

individual attempting to address her. Actroid has a women-like figure and 

possesses 47 DOF. Out of 47 DOF, 29 DOF is provided for body gesture 

control and the rest are provided for facial expression control. Since her joints 

are controlled by pneumatic actuators, it has very little chance to get damaged. 

The flexible gestures in real-time can be generated due to a reconfigurable 

motion database. The reconfigurable movement database of Actroid has two 

fundamental highlights: motion interruption and its parameterization. At 

whatever point there is a disappointment because of speaker interference, it 

ends the social undertaking and then switches to the following response. A 

human-like movement grouping is acquired from the movement catch 

framework(Kondo et al., 2013). 

Artificial Intelligence offers the capacity to respond alternately to an 

increasingly delicate activity like a pat on arm. It lacks locomotion either 

seated or standing. Speech recognition software and verbal responses through 

speakers. The robot can react in a restricted manner to non-verbal 

communication and manner of speaking by changing its outward appearance, 

position, and vocal inflations. 
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2.1.12 Bipedal/ Humanoids of 2020 

According to the American Society of Mechanical Engineers (ASME), 10 

humanoid robots of 2020 are Robotic Avatar, Robotic Ambassador, Delivery 

Robot, Research humanoid (Surena IV), Digital humanoids, Robotic 

Bartender, Robotic Actor, Robonauts, Educational Robot, Collaborative 

humanoids. 

Sophia the smartest robot which uses the most advanced AI technology with a 

good sense of humor in the world. She is the world's first robot citizen. 

ASIMO is the most advanced and famous social robot and is continuously 

developing. MONONOFU is the world's largest robot, ROBOBEE is the 

world's smallest flying robot, the strongest industrial robot arm is M-

2000iA/2300.  

Total there are 3,053,00 units of the operational robot as per 2020 worldwide 

stock. 

2.2 Bipedal Robot Motion  

Bipedal walking in a humanoid robot is a complex project. Locomotion 

problems are because of a large number of degrees of freedom coupled with 

non-linear dynamics. The leg movement of the human body is controlled with 

the assistance of a biological rhythm called the central pattern generator 

(CPG). The central pattern oscillator controls the bipedal movement and 

whole humanoid body motion. In an unstructured and unknown environment, 

a humanoid robot is unable to control the leg movement.   

Projects involving bipedal robots generally study the balancing and 

locomotion mechanism in a certain environment for applications where 

wheeled robots are completely not suitable. Most research has concentrated on 

getting a robot to stay stable when walks straight in a line. Along with the 

definite motion, the bipedal robot requires to explore the real uncertain world, 

by turning around, lifting one foot, moving sideways, stepping backward, and 

these movements issues involved are different from linear walking. This part 

of the literature review deals with the movement of bipedal.  
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(Lim & Yeap, 2012) have described the movement in bipedal considering 

human characteristics. Six servo motors, acceleration sensor, lithium-polymer 

battery pack, and remote control is used in the bipedal robot. Servomotor for 

joint movement receives signals from the wireless remote controller. Hence 

six push-button switches control the movement of feet. Several experiments 

on hardware were conducted to get the values for the correct posture of the 

locomotion. These values were given as input to the software further advanced 

developments were done.  

(J. Park, 2007) used a pattern-based walking planner for ZMP control. A 

pattern-based walking planner creates a path of design variables such as 

direction and velocity. The desired motion of the pattern was generated by 

pattern control which is controlling COM and horizontal angular movement. 

Joint servomotors use inverse kinematics. These pattern controllers keep track 

of the desired trajectory of bipedal. 

(Ken’ichiro, 1997) described an evaluative genetic algorithm and neural 

network controller. The camera captures the real-time visuals and 

simultaneously generates guided swing motion for the bipedal robot. The 

neural network controller uses a multi-layer preceptor, consist of four layers. 

The first layer (input layer) comprises two neurons, the second layer (middle 

first layer) comprises four neurons, the third layer (middle second layer) 

comprises four neurons and the fourth layer (output layer) comprises one 

neuron. Synaptic weights and thresholds value are optimized by the execution 

of the genetic algorithm, which usually is real values. Simulation is carried out 

in the virtual environment considering to be noise disturbance. Execution of 

the program was done on parallel computers. The bipedal performs the task by 

decoding the gene of the best individual as output this acts as input to a 

multilayered neural network designed.  

(Yang et al., 2006) described the generation of steps for various sorts of 

ground which uses truncated Fourier series formulation. By adjusting ankle-

pitch and knee-pitch angles of both the feet, the stability of bipedal is 

maintained. To avoid tooling, a zero-moment point criterion is used for 
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evaluating generated gait given in joint coordinates. The genetic algorithm 

helps in maintaining the zero moment point to be within the footprint. 

(S. C. Y. Kim & Hutchinson, 2008) proposed a hierarchical planner based on 

the workspace decomposition. The workspace decomposition consists of a 

passage map, gradient map, obstacle map, navigation map, and a local map. 

The greedy hierarchical planner algorithm is used to plan the motion of the 

bipedal. The workspace decomposition and connectivity graphs are stored in 

the data structure. The hierarchical algorithm consisting of local plans, global 

plans, and sub-goals. The decomposition of 3-dimensional maps encoded into 

a 2-dimensional workspace. The navigation map computes the passage map 

and the obstacle map. The robot is moving only in the free space of the target 

environment. 

(Niiyama et al., 2010) investigated the musculoskeletal movement in Athlete 

bipedal running. The kinematic data patterns and data of muscle activity are 

measured for the leg movement. The bi-articular muscles supply torques at 

knee and hip joints simultaneously. Activation of knee joints and hip joints 

motor command uses parse coding of activation method. The required muscle 

force is determined from the desired force. The human electromyography data 

extracted for the muscle activation and its pattern are used for activation of the 

athlete bipedal robot. 

The hereditary calculation balanced CPG boundaries to create control yield 

near wanted directions. CPG adjusts to outer signs from the capricious 

condition. Yields of CPG come back to characteristic motions, on evacuating 

outside signs. 

(Inada, 2003) introduced the Matsuoka neuron model in a central pattern 

generator (CPG) and investigated for the bipedal movement. The output of 

neurons generates target angles of individual joints. The neuron generates 

rhythmic oscillation. CPG is usually included in balanced activities like 

mobility/ locomotion. The trajectories of each joint are captured from the 

human movement. The genetic algorithm adjusted CPG parameters to create 

control output near wanted directions and path. CPG adapts to external signals 
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from uncertain conditions. Outputs of CPG return to natural oscillations, on 

removing external signals. 

(Thuilot et al., 2002) analyzed the conduct of the compass robot walk model 

of the easiest bipedal. Bipedal had two indistinguishable legs that were joined 

to the hip and mass is concentrated at the hip. In place of knee joints, the 

prismatic joints were attached to the lower leg. All the joints in the compass 

are passive, they do not require any external power source. The compass gait 

is composed of the swing and the transition stages. In the swing stage, the 

compass hip is fixed by the point of support of the leg on the ground. Another 

leg swings forward. In the transition stage, the support is transferred from one 

leg to another. The compass robot makes stable walking on inclined surfaces 

also. 

(Nishino & Takanishi, 1998) discussed an algorithm for controlled movement 

of bipedal and added calculation module to process algorithm which helps in 

improving the generality of bipedal. They discussed the control method of 

driven joints. Dynamic walking of the humanoid is controlled by the non-

linear spring mechanism. The spring mechanism consists of wires and motors. 

The rotatory encoder gives angle feedback to control the tension in the driving 

wire. Coordination of motor on both sides, allow humanoid to take a step 

forward. One motor controls the spring tension of one side and the other motor 

is controlling the joint movement of the other side. 

(Inoue & Takanishi, 1999) developed a control method bipedal robot for 

dynamic walking. Control framework comprises fifteen Alternate Current 

servomotors and 16 DC servomotors controlled through boards. The three-axis 

moment is generated by the trunk. Yaw-axis actuator generates moment along 

yaw-axis which is attached near the neck of bipedal. The swinging of the 

upper limbs generates moments along the pitch and roll axis. The algorithm 

computes the motion of the trunk, upper limb, and lower limb arbitrarily. The 

control system compensates for the ZMP and yaw-axis moment.  

(Komatsu, 2005) proposed a modified central pattern generator (CPG) method 

to control the motion and force between the leg and ground for unknown 
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environmental conditions. The control architecture of the hybrid central 

pattern generator control method consists of three layers. The first layer is 

creating rhythmic motion for the legs. The second layer controls the forces 

indirectly between the ground and foot and the third layer control attitude of 

the hip. The rhythm generators consist of a neuron model and each neural 

model consists of four units of oscillators. The oscillator generates torque for 

individual joints. 

(Reil & Husbands, 2002) describe an evolutionary algorithm that controls the 

stable bipedal movement in a straight line. To achieve this task no perceptive 

information is required. The recurrent dynamical neural network-based 

controllers are implemented to achieve the desired bipedal motion. The 

population parameters of the evolutionary algorithm are deciding the fitness 

and weight in the recurrent dynamical neural network. The weight of joint 

movement and time remains constant throughout the motion of bipedal. The 

fitness function depends on the minimum distance from the origin and does 

not allow the hip joint to go beyond a certain height to avoid bending 

(forward/ backward) in a bipedal robot. This increases the stability of bipedal. 

(Kuffner, 2001) presents a heuristic safe route calculation algorithm for 

bipedal in snag arranged environments. The methodology is to assemble a set 

of achievable areas of stride by processing stride positions to an obstruction 

jumbled environment. The planner generates a sequence of footstep placement 

by taking input from the collision-free environment. The polygon-polygon 

intersection method is used to avoid the collision for safe navigation. 

(Tlalolini et al., 2011) gave an optimal walking movement with flat-foot and 

foot-revolution. The methodology is embraced for figuring torque delivered in 

the various joints. The optimal trajectory depends on a reasonable set of 

parameters. A cubic spline trajectory and constraints have been added to find 

the optimal trajectory. The simulation was carried out for the bipedal robot 

walk with foot rotation and without foot rotation. They established the 

localization technique using stereo vision for a humanoid robot. They found 

that the stereo vision creates jerky motion while walking due to noise present 
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in the environment. The feature-based approaches use depth maps for 

localization. The stereo vision system mounted on top of humanoids and 

obstacles present in the environment are being captured. Motion captures 

system creates the elevation map which provides localization to humanoid on 

the ground.  

(Rostami & Bessonnet, 1998) considered instability during the bipedal 

movement for a single support phase (SSP). The approach minimizes the joint 

actuating torque which ensures stability. The controlled walking is achieved 

by less impact and non-sliding heel touch. The Pontryagin maximum principle 

is applied for computing optimal motion synthesis for joint trajectory. During 

the swing, the bipedal robot is very unstable, and to overcome this problem, 

smooth motion and less energy consumption have been computed. 

(Copyright et al., 2007) proposed integrated motion control for walking, 

jumping and running. The integrated motion control generates real time-based 

motion pattern which is based on dynamics involved in the humanoid. The 

adaptive motion control method was implemented for controlling zero 

moment point and leg ground contact. The zero-moment point has no 

acceleration and the height of the center of mass remains constant. Constraints 

had been applied on vertical zero moment point trajectory and angular 

momentum. The simulation is carried out on dynamic simulation software of 

QRIO humanoid robot and testing is being done for walking, jumping, and 

running. 

(Caldwel & Bowler, 1997) explore the structure of pneumatic muscle to 

reduce energy consumption Internal structure of the pneumatic muscle 

actuator is different from the conventional pneumatic actuator. The inner layer 

of the pneumatic muscle cylinder is made from rubber tubing and the ends of 

the tube sealed by two aluminum plugs. The mechanism of bipedal design 

consists of free motion at the hips and knees. The limbs of bipedal are 

constructed from steel and aluminum. The actuation is provided to the leg by 

antagonistic pneumatic muscle actuators. 
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(Grizzle et al., 2009) introduced the MABEL platform for studying the walk, 

run locomotion of bipedal robots. The main purpose of the platform is the 

development of a new feedback control system for running and walking on 

rough terrain. The second purpose is to create motivation for building a robot 

for technology outreach. The mechanical architecture of bipedal is a planar 

robot with five links. Two legs with the knee are assembled on the torso and 

the legs are terminated in point feet. A real-time computing and data 

acquisition system acquires the data from sensors. The software framework 

switching controller module and helps in controlling bipedal. 

(Y. Kuroki et al., 2004) developed an SDR-4X small bipedal entertainment 

robot. This software creates a whole-body motion. The SDR software consists 

of a motion creating system and foot trajectory generator system. The upper 

body motion was edited and created by the motion editor creator and the lower 

body trajectory was created by a foot trajectory generator. Upper body motion 

is created by the motion designer by loading the music into the system. The 

dance steps are created with the help of a foot trajectory generator. 

(Y. Huang et al., 2013) obtained adjustable step length and velocity during 

dynamic bipedal walking. The compliance of the joints is controlling the 

passive walking to obtain natural motion robot experiments. A kinematic 

coupling is used to keep the upper body centered between two legs. Bipedal 

walker moves on level ground resembling a real robot. By changing joint 

compliance, the walking pattern is observed. The step length and velocity 

control the natural dynamics of the walker.  

(Garofalo et al., 2012) suggested a periodic walking motion for the spring-

loaded inverted version of a bipedal robot. The controller architecture of the 

SLIP bipedal robot consists of an upper layer and lower layer control. The 

upper layer control is straightforwardly associated with SLIP and guaranteeing 

periodic walking design. The lower layer controller controls the force. The 

main function of the controller is to set up an interface between the elements 

of a real robot. 
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2.3 Mechanical Design of Humanoid Robot 

The human body consists of bones, muscles, cartilages, and joints. Push and 

pull of muscles control the movement of the body. It is difficult to develop the 

muscular-skeletal system in humanoid robot/ bipedal by mechanical 

components. The goal of mechanical design is the development of humanoid/ 

bipedal robots resembling humans. This part of the literature review deals with 

the mechanical design of humanoid/ bipedal robots. 

(Yu et al., 2014) presented the mechanical design of a humanoid robot. They 

also proposed the control architecture of the control system based on the 

multi-channel communication system. The mechanical design of both legs of 

the bipedal robot consists of six DOF. The design principle consists of 

symmetry of the body like human and high stiffness and lightweight. Link and 

the joint was fabricated by mechanical casting. The distributed control 

architecture was implemented to control the joint motor movement. 

(Borst et al., 2007) developed a research platform for the manipulation of the 

two-handed dexterous arm of the humanoid robot. The workspace of 2m was 

considered when the arm of the robot was designed. The robotic arm has an 

anthropomorphic kinematic configuration which can easily grasp the object 

from both the hand. The mechanical design consists of the torso, arms, head, 

neck, and fingers. The table is a workspace for the robot. The dexterous arm 

has 14 degrees of freedom and the hand has 24 degrees of freedom. 

(Kanehira et al., 2003) developed an advanced leg module for rough terrains 

and prevent tipping over to protect the damage of the robot/ bipedal body. The 

design of the advanced leg consists of six DOF. Three DOF is provided in the 

torso and the knee has one DOF and the ankle has two DOF. The upper leg 

and lower leg are considered to be of equal length 30cm and the ankle length 

is 9.1cm and the length of the torso is 12cm. The total weight of both legs is 

17.2 kg and the dummy weight considered on the torso is 22.6 kg. To prevent 

tipping over, the design follows the cantilever type structure of the hip joint. 

The design mechanism for walking on rough terrain consists of a six-axis 

force sensor and rubber bushes. 
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(Oh et al., 2006) developed an android Albert HUBO bipedal robot that has a 

height of 137cm and a weight of 57 kg. The actuator of bipedal consists of 

gear and DC motor. Planetary gears are used for the finger joint to reduce the 

backlash and small errors. Finger and wrist movement does not affect the 

stability of whole-body motion. Harmonic gear is used for the arm movement 

and leg movement to maintain the system stability and joint position stability. 

The weight distribution can be done by keeping all the power source battery 

and controller on the torso.  

(Iwata & Sugano, 2009) proposed the anthropomorphic design of Twenty-One 

human bipedal robots that provide supports to elder women while securing 

contact safety. The passive impedance mechanism used in the Twenty-One 

bipedal robot. The upper body is attached to the base of the Omni wheel. The 

concept design of the Twenty-One bipedal robot started from the setting of the 

task scene in daily life. The anthropomorphic design of the upper limb consists 

of the arm and trunk. The arm has seven degrees of freedom with one 

redundancy and the four-finger hand has thirteen degrees of freedom.  

(Fukaya & Toyama, 2000) proposed the novel design of the humanoid hand of 

the TUAT /Karlsruhe humanoid arm. The hand of the TUAT /Karlsruhe 

consists of 20 degrees of freedom. The first four fingers of the humanoid arm 

are identical and each one consist of three joint of four DOF. Palm consists of 

two DOF and the little finger moves freely. The joint of the finger is driven by 

one actuator. A special mechanism of link rod pulls link plate and finger 

moves. One actuator drives all the joints of four fingers which are placed into 

or around the hand. When the proximal joint touches the object, the finger 

curls around the object, and the adjacent part is moved by link. 

(Ogura et al., 2006) describe the development of a bipedal simulator and 

design of robot WABIAN-2 bipedal robot. Each leg of this bipedal robot 

consists of 7 DOF and 2 DOF to the waist. The target is on designing the 

lower body of bipedal. The aluminum alloy is used for the fabrication of the 

WABIAN-2 bipedal robot, so that body has low weight and more stiffness. 

The 3D -CAD model was used for the design of the bipedal robot. 
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(Akachi et al., 2005) presented the mechanical and electrical features of the 

HRP-3P bipedal robot. The mechanical and structural features of HRP-3P 

protecting the body of the bipedal robot against water and dust. The 

mechanical features include the height, width, and depth of the bipedal robot. 

The height of the HRP-3P humanoid robot is 160cm, width 66.4cm, and depth 

36.3cm. The total degree of freedom is thirty-six. One of the unique structures 

is a cantilever type hip joint and it allows the robot/ bipedal to move the cross 

leg. 

(Ha et al., 2011) presents the design method of open bipedal platform 

DARwIn-OP. The mechanical design of bipedal consists of 20 degrees of 

freedom. The center of mass lying between the center of the hip. Frames of a 

bipedal robot are hollow in structures so that anyone can put the sensor 

between the gap of the frame. The height and weight of the robot are 45.5cm 

and 2.8 kg respectively.  

(Endo et al., 2008) describe architecture and evaluation of a limited degree of 

freedom of head of a bipedal robot for facial expression of the WABIAN-2 

bipedal robot. To provide the emotional expression in the bipedal robot, the 

ankle joint movement along the yaw axis and the trunk joint along the roll axis 

are removed from the bipedal robot. A new head design was proposed for 

balancing the head. The lightweight and downsizing of the head are 

considered to mount on the body. The wires and torsion spring attached to the 

yaw of the eye. The lip is of spindle type and actuated by wires made by using 

springs. 

(Lohmeier et al., 2009) developed the fast walking bipedal LOLA robot. The 

emphasis was given on improving weight to achieve good dynamic 

performances. The height of LOLA is 180cm and 55 kg in weight. The 

redundant kinematic structure of the leg is lightweight and allows for a natural 

and flexible gait. The active toe joint occurs momentarily before the swing leg 

comes in contact with the ground thus reducing the joint loading. The toe 

contact with the ground stabilizes the bipedal and allow forward movement. 
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(I. W. Park et al., 2005) developed the mechanical design of the KHR-3 

bipedal robot without hand. Pulley belt mechanism drives the joint of the 

humanoid robot. Belt tension is maintained by changing the motor position. 

The hip joint of the robot was designed as a tube-type crossing structure. The 

internal part of the tube is almost hollow except for gear actuation assembly. 

All the frames of the bipedal robot are 2D in shape. The closed kinematic 

configuration of the robot provides more support when it supporting on the 

ground. If some position error occurs in the feet then a comparison of the error 

in the motor position and the joint motor is done.  

(Ambrose et al., 1973) developed space humanoid Robonaut robot which 

works in the space environment to assist the astronaut. They focus on the 

upper body design of the Robonaut. The arm and finger of Robonaut offer 

dexterity and sensing. The hand of Robonaut’s will fit into the astronaut’s 

hand gloved. The hand has a total of 14 degrees of freedom consist of the 

forearm, wrist with 2 DOF, and the five fingers with 12 DOF similar to the 

human arm. The head, consists of two color camera provide virtual reality and 

depth perception. 

(Yamasaki et al., 2000) proposed the basic architecture and design of the 

PINO humanoid robot/ bipedal. The PINO has twenty-six DOF, each leg 

consists of 6 DOF, each arm consists of 5 degrees of freedom, the neck 

consists of   2 degrees of freedom, and the trunk consists of 2 DOF. All joints 

are actuated by a 26 DC motor. The metal gears reinforce against the high 

torque. 

(Tellez et al., 2008) introduced mechanical stage Reem-B in the field of 

assistance robots. The psychological capabilities of the Reem-B bipedal robot 

enable dynamic walking and association with individuals. The physical 

structure of the bipedal robot comprises feet and a middle body. Stiffness 

ought to be high but weight ought to be less. The robot had one hand having 

four fingers and 11 degrees of freedom in fingers.  

(Tsagarakis et al., 2011) built lower body parts of cCub bipedal robot, the 

progression of iCub bipedal. New leg motion system considered in the cCub 
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bipedal robot. The mechanical structure of cCub includes every leg that has 

six DOF, three DOF in the hip, one DOF in the knee, and two DOF in the 

ankle.  The leg has an andromorphic kinematic structure comprise of the hip, 

thigh with the knee joint, calf with ankle joint. 

(Gienger et al., 2002) manage the structure and control engineering of a 

bipedal robot. For human walking movement - pelvic turn, pelvic roll, knee 

and ankle cooperation, and relocation of the pelvis are significant 

determinants. Joint torques depend on move relies upon the development of 

pitch movement profile. Ankle joint actuated by two linear ball screw drives.  

(Mohamed & Capi, 2012) built up a versatile humanoid robot for helping 

older individuals working at home and clinic. A visual sensor perceives items. 

Laser discoverer sensor connected to the lower body. Bipedal starts by moving 

towards the target object. The upper part comprises arms, gripper, and head. 

The entire upper body is appended on the wheel. It permits the arm to be 

checked and imagined simultaneously. 

(Wyeth et al., 2001) describe the structure of the humanoid robot. Total CAD 

model and explicit motor and transmission chose for building mechanical 

structure and are under the progress phase. The mechanical dimension of the 

body of bipedal is taken considering the biomechanical property of the human 

body scaled to the tallness of 120cm. Self-sufficient bipedal comprise 23 

DOF. Feet and abdominal of bipedal comprise 15 DOF and the remaining 8 

DOF consists of upper body parts. 

(J. Kim et al., 2012) proposed the advancement of biped walking of robot 

Robray. The main emphasis is on the advancement of the lower body thinking 

about two structures of bipedal. One design includes an exploratory platform 

to evaluate torque and force while walking. Another architecture considers 

consistent and flexible leg mechanisms to decrease high occurrence. The 

kinematic design includes each leg having six DOF, waist with one DOF, and 

ankle having two DOF. The extent of the development of the hip joint 

expanded by giving a count balance between the axis of the hip joint. 
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2.4 Control Architecture of Bipedal Robot 

The controller design of the bipedal robot is very complex as the model 

includes inactivity and inverse computation. Second-order responses are 

usually loud. A powerful control framework needs to control bipedal 

movement along with the entire body of the bipedal robot. Various degree of 

freedom in a bipedal framework makes it unstable and incapable of 

performing the desired task in unstructured and dynamic condition. This part 

of the literature review deals with the controller architecture of humanoid/ 

bipedal movement control. 

(Burghart et al., 2005) present the cognitive design of the humanoid robot. 

Cognitive design is a mixture of three-layered leveled structure and behavior 

explicit module. The control framework of the humanoid robot is detached 

into a different module. Each part has its product and equipment module. The 

foremost layer of cognitive control design comprises of sensor and motor. The 

data originating from the joint position sensor, force sensor, and tactile are 

passed to the next layer for the execution of a task. The second layer perceives 

a framework that has access to the database, where information is stored. The 

last layer inside recognition is organizing all components data in solitary 

methodology.  

(Kanda et al., 2002) proposed a valuable methodology for implementing 

behaviors in bipedal to connect with individuals. The information got from 

intellectual investigations utilized for the design conduct of bipedal and acts as 

a manual to coordinate among individuals. To oversee execution request robot 

framework executes organized modules and episode controls successively. 

The connection between bipedal and individuals is dependent on the situated 

module.  

(Rosenblatt & Payton,1992.) present a fine-grained layered control system for 

robot control. The fine-grained control design gives insightful control 

components through a piece of essential. The decision is made based on 

behaviors. Every unit of the system model gets contributions from different 

units and outer sources. After getting input, organize the process at an 
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actuation level and produce a single yield. The interconnection between 

homogeneous units is missing in the structure network.  

(Brooks, 1987) adopted a layered methodology control framework for 

autonomous bipedal. In this approach, the problem is decomposed into a 

parallel task. The robot control framework starts with accomplishing the most 

minimal level undertaking and never changes alter framework involves the 

zeroth level of control framework. The next layer of the control system builds 

and examines data from the low-level system to accomplish a new task. The 

low-level system is unaware of upper layer processing. The same processing is 

repeated to achieve the new task at the next higher level of the control layer 

system. Each processor controls the specific task and runs asynchronously.  

(Ly et al., 2004) introduced distributed control engineering for accomplishing 

objective assignments for a bipedal robot. The control design is organized into 

three levels and maps useful highlights in equipment and programming 

modules. The control design comprises of task planning, task coordinating, 

and the task execution layer. In task level planning, task description is 

received and allocated the subtask by selecting multiple subsystem controllers 

of the robot. After the selection of a subsystem controller, actions are 

generated by task-level coordination for the execution level to achieve the 

desired task.  

(Y. Wang & Butner, 1987) depict computer control design to advance the 

computational preparation of robot control. The proposed control design 

disintegrates simultaneously assigned tasks into the system. The processor gets 

data from the sensor and passes direction data to the robotic processor which 

is then interpolated by the robotic processors. The interfacing of the control 

framework and manipulator actuator is done by the interface card. 

Decomposition of the task parallel results in very little time to execute and 

hence reducing response time. 

(Yoshihiro Kuroki et al., 2003) developed amusement applications in SDR-4X 

bipedal. The constant sensor-based versatile control is applied for the bipedal 

robot to control body movement on the harsh and unlevel landscape. 
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Balancing movement control builds adjustments of whole-body movement and 

produces an obstacle avoidance movement for the upper body. The tendency 

and body pose are determined with the assistance of an accelerometer and 

force sensor. The adaptive control system realizes deviation and controls the 

body posture and prevent from tipping down. 

(Simmons & Apfelbaum, 1998) created task description language (TDL) to 

control a robot. TDL is an augmentation of C++. The assignment control 

design involves three-layered - planning layer, executing layer, and behavior 

layer. assignments are characterized in TDL. A class identifier such as 

objective, command, monitor, and exception is followed by an argument. TDL 

does not have a return value so that control is not returned until the next 

command has been taken care of. 

(Khatib, 1987) proposed a framework for controlling end-effectors' force in 

the constrained environment. The two-level control architecture enhances the 

performance of the position and active force control of the robot manipulator. 

The real-time position and force control implemented in the operational space 

with obstacle programming systems. The end effectors equation is established 

in dynamic decoupling. For the stabilization of the redundant manipulator, the 

joint force and the dynamic behavior is identified. 

(Mansard et al., 2009)  presented a system for the execution of a stack of the 

task of bipedal to work in a collective environment. The stack comprises of 

undertaking definition and taking care of arrangements. The product system 

began with substances and their chart, control emphasis must be performed. 

An error related to each task is computed. The software scripting framework 

interface exists for handling tasks. 

(Posadas et al., 2008) designed a portable and modular control architecture for 

controlling the mobile bipedal. A distributed blackboard communication was 

established between the mobile software agent. The proposed architecture 

reduced the temporal problem by separating the elapse communication time 

from the execution time. First, the architecture established offline 

communication to move the bipedal by real-time soft bus and then process the 
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code. When offline communication terminated, the bipedal robot obtained the 

agents. The agent executed the task without any external communication. 

(Erhart et al., 2013) developed an impedance control scheme for robot 

cooperative manipulation. The cooperative manipulation reduces the internal 

stresses on the joint. The kinematic uncertainties arise due to improper 

grasping of the object. The impedance control scheme computes the end 

effectors' trajectories and removes the kinematic uncertainties. The evaluated 

trajectory is compatible with the object's motion. During the manipulation 

task, the kinematic coordination is achieved by the closed-loop manipulator 

dynamics. 

(Asfour et al., 2006) proposed hierarchically control architecture of a bipedal 

robot for household activity. Hierarchical control design had three layers 

structure - task planning, task coordination, and actuator-sensor levels. In the 

first level, tasks are recognized by the client and determine subtask for 

bipedal. The corresponding actions are generated by the task coordination 

level. The sensory-motor level executes tasks to achieve the desired goal by 

the bipedal.  

(Feil-Seifer & Matarić, 2008) describe the novel control architecture of B3IA 

in an autonomous bipedal system for the behavior intervention of autism 

spectrum disorder children. The control architecture of the behavior-based 

behavior intervention architecture (B3IA) consists of the sensor and the 

interpreter module. This module helps the bipedal to observe and control the 

behavior of humans and objects in the environment. The operational decision 

is made by the bipedal in the task module. The operation of hardware is 

controlled by the effector's module. Human actions and bipedal actions are 

stored in the activity history module. The analysis and interaction of the robot 

with humans are evaluated in the evaluation module, which can be used as a 

bipedal parameter.  

(Galindo et al., 2006) implemented the human–robot-integration control 

architecture into a robotic wheelchair. This control architecture permits a 

person to deliberate the activity. The human-robot control architecture scheme 
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is made up of several elements. Modules are grouped into three layers. The 

hierarchical and symbolic representation of the environment is maintained in 

the deliberative layer. The internal world model is used to produce plans and 

establish communication between human-robot. In the execution layer, the 

sequences of the task executed and supervise the information received from 

the robot’s sensor. The functional layer controls the navigation and 

manipulation between two-point and provides guidance. 

(Naumann et al., 2007) deal with the control architecture of process-oriented 

programming for robot cells that enables in the production environment. The 

interconnector module of the software is taken as input descriptions and 

processes. The process-oriented programming is used to trigger the machining 

operation. To understand the process command, an ontology was introduced. 

Ontology is considered a relevant class of the robotic domain. 

(Liu et al., 1989) proposed the adaptive neural network for robot hand control 

to grasp the object. The control architecture is based on the prehensile function 

of humans. The object analyzer module establishes the relation between 

object, shape, and grasping modes. The object analyzer module generates a 

suitable grasp mode for the robotic hand. The neural network generates the 

eight generic grasp mode for the robotic hand. This approach reduced the 

building of device-dependent grassing mode.  

(J. Y. Kim et al., 2005) utilized distributed control engineering to control the 

joint of bipedal to decrease the computation time of the main controller. This 

controller is placed on the back of the bipedal robot, coordinates with the sub-

controller at run time by the controller network area. The controller can 

receive and send data to the sub-controller at the same time. The sub-

controller is designed separately for joint motor control and inertia sensor. 

(Yokohama & Takashima, 2002) developed an open hardware platform for 

humanoid robotics. The virtual bipedal robot platform is compatible with a 

real bipedal robot as it is. The OpenHRP has the dynamics computation, 

contact and collision computation, and unification of the controller features. 

The OpenHRP is implemented on the common object request broker 
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architecture(CORBA), which supports C++ and java programming. The 

simulation is controlled by a CORBA client in an integrated simulation 

environment. 

(Rohmer et al., 2013) introduce virtual robot simulation platforms for the 

reconciliation of actuator, sensor, and control. A disseminated control strategy 

is utilized in an adaptable and scalable robot simulation platform. Three 

techniques were used to achieve the simulation. The first technique is the 

execution of the control code on another machine, so that computation time 

for simulation is very less. The second technique is the execution of the 

control code on the same machine for other processes than the simulation. The 

third technique is the execution of the control code on the same machine other 

than the simulation loop. 

2.5 Reinforcement Learning Control Algorithm  

The bipedal robot can understand the unstructured and unknown (dynamic) 

environment to perform the desired task. They just learn from the environment 

and execute the task without any human programmer or user. The 

reinforcement algorithm helps the bipedal robot to decide the critical 

condition. This part of the literature review deals with reinforcement learning 

in a bipedal robot. This is the current trend that is going on the developing the 

bipedal platform for the real environment. 

(Weiß, 1995) discussed two distributed learning algorithms that are suggested: 

ACE (Action Estimation) and DFG (Dissolution and formation of groups). 

Learning achievements rely upon the exploration of an adequate number of 

state-action pairs. If the state, action spaces are enormous then it takes too 

much time for learning which is impractical. 

(Zhou, 2002) proposed a genetic algorithm-based fuzzy reinforcement 

learning (GAFRL) agent who learns by using a global optimization technique 

can predict the capabilities of the critic network and evaluate the candidate 

solutions. Assumption of Fitness function incorporates various observation-
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based data to GAFRL agent and other machine learning methods for 

accelerated learning of robot.  

(Pontrandolfo et al., 2002) utilized the RL approach applied to a case model, 

organized networked production framework that transverses a few geographic 

zones and different coordination stages. Fails as has not considered a huge and 

complex global SCM problem.  

(Yen & Hickey, 2004) included a forgetting mechanism and used 

hierarchically structure RL agents to expanded execution when contrasted 

with traditional RL agents exploring in an uncertain environment. It is not 

practically implemented in Hardware. 

(Ueda et al., 2004) acquired fingertip trajectories by RL dependent on 

simulation. The reward function has been designed by considering the friction 

between finger and page.  This results in perfect turning of pages as there is no 

slip between the finger and the paper. It is required to achieve smooth 

movement of fingertips and on-line error compensation using visual feedback. 

(Y. C. Wang & Usher, 2005) developed an application of agent-based 

production scheduling which utilizes RL algorithms to dispatching rules 

selection problems to determine whether it can be utilized for enabling 

learning of machine agents. It is not applied to complicated agent-based 

scheduling like dynamic job shop scheduling. 

(Ling & Shalaby, 2005) proposed to automate street car grouping control 

utilizing multiple RL agents that follow up on the progression of progressive 

signalized crossing points. Multi-agent work in sync to separate road car group 

if one is recognized and to construct sensible progress between the matched 

road vehicles. It required deciding the optimal number of RL agents and the 

best settings and limitations of each agent. The development of state-space 

data to catch general vehicular traffic conditions on the major and minor 

streets may additionally improve the presentation of agents.  

(Tehrani & Kamel, 2005) considered the Robot soccer problem for analyzing 

behavior arbitration. It utilized the Sarsa(λ) algorithm with a pseudo-fuzzy 
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strategy for function estimation. Some underlying information is supplied to 

the RL learner. Team size considered was ONE learner on each side playing 

against each other 

(Yasuda et al., 2006) applied RL that embraces the Bayesian discrimination 

strategy for sectioning persistent state space and consistent activity space at 

the same time. A real robot experiment was not carried out. It did not acquire 

more sophisticated cooperative behavior as the obstacle avoidance in the 

complex environment. 

(Janssens et al., 2007) have done the allocation of neighborhood data in a 

simulation of activity-travel design. There is no limitation on the number of 

activities and consolidation of sensible travel time. The information does not 

reveal a significant relationship between time and the area. 

(Duan et al., 2007) uses the Fuzzy Neural Network along with RL (FNN-RL). 

The residual algorithm is utilized to figure out the slope of the FNN-RL 

technique to ensure convergence and speed of learning. It uses a hierarchical 

learning method for robot soccer agents. The specific simulators FIRA 5 is 

required and the number of trails is 50. 

(Kareem Jaradat et al., 2011) created a Sequential Q-learning algorithm to 

manage issues of behavior conflict that emerge in a multi-robot transportation 

framework. RL and GA are coordinated to settle on choices when the robots 

cooperatively transport an object to the goal location while staying away from 

snags. The sequential Q-learning gives good results for the sequential task but 

not for concurrent tasks. 

(Nanduri & Das, 2009) introduced a computational algorithm to acquire Nash 

equilibrium of n-player matrix games. The algorithm utilizes a stochastic- 

estimate- based RL approach and can understand n-player network games with 

huge player–activity spaces. The proposed algorithm needs hypothetical 

evidence for convergence and optimality. 

(Quintía et al., 2010) attempted to boost time before the robot fails to acquire a 

control strategy that is suitable for desired conduct. It does not consider the 
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contrasts between what the robot predicts and what occurs in the real-time 

environment. 

(Tamei & Shibata, 2011) introduces the utilization of policy slope kind of RL 

for conquering time-varying nature issue by formulating EMG-based active 

human-robot cooperative work as objective-oriented errands. Permitting 

increasingly broad 3-D movement, and utilization of the way to deal with 

progressively complex assignments such as motor learning and recovery. 

(Shokri, 2011) suggested for each action of a very large state space, its 

associated inverse action is characterized. The state and its inverse action are 

defined in the structure of RL to refresh the value function which results in 

converging fast. The decision of the RL signal and inverse RL signal is 

critical. In certain applications, the inverse is not known inverse actions have 

to be reserved during the learning procedure. 

(Zeng et. al., 1996) recommended a combination of RL and simulation to 

optimize operation schedules for the compartment terminals, which utilizes a 

simulation model to build framework conditions and is applied to learn 

optimal dispatching rules for various procedures. Designing reward function 

for rules and action procedures more effectively and contemplating the 

collaboration among various kinds of agents to improve coordination of the 

operation system. 

(Maravall et al., 2013) examined the impact of group size focused on a group 

of the moderate size of the request of 5 and 10 people and the impact of the 

lexicon size on the convergence results. It has not used a physical multi-robot 

system. 

(Gabel & Riedmiller, 2012) proposed that in the learning phase, agents adapt 

the parameters using the policy gradient RL, which aims to improve the 

performance of the joint policy scheduling objective function. A proposed 

lightweight communication system that improves agents' abilities beyond job 

dispatching. The policy gradient algorithm proceeds as stochastic gradient 

descent and the number of strategy refreshes required to reach a local optimum 
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is expanding. They utilized a comparatively high estimation of E to acquire 

reliable gradient estimates. 

(Matsubara et al., 2013) proposed a novel RL system for learning motor skills 

that communicate with flexible substances. Learning structure centers around 

the topological relationship between the configuration of robot and flexible 

substances when almost all details of the substance are considered(e.g. 

wrinkles) even which are insignificant for doing motor assignments.  

(Velentzas et al., 2018) applied the reinforcement algorithm in assistive robots 

for the educational application. The child’s gaze provides the information to 

the robot. The reinforcement algorithm has a set of the state which are 

dimensional features. The action has a finite discrete set of actions and 

generates a set of actions for the different states. The Q-learning rule helps to 

choose the action depending upon the task. After choosing the action, the 

transition takes place, and a reward is associated with the action and learns 

from history. The reinforcement algorithm decomposes the task into a set of 

discrete actions so that it can be easily understood by children-robot 

interaction. 

(Katic & Vukobratovic, 2003) presented the hybrid control of an intelligent 

control system for the bipedal robot. The reinforcement learning accumulated 

the knowledge from the dynamic balance of the bipedal robot and improving 

the gait during walking. The control architecture of the gait synthesizer has 

three components. The neural network trains the action selection network 

using the error signal received from the external reinforcement. For the desired 

state, the action evaluation map state and failure into a scalar score. Stochastic 

action modifier uses the recommendation action and reinforcement to produce 

a dynamic walking. 

(Kober & Peters, 2006) worked on episodic reinforcement learning to control 

the motor primitives in a dynamic situation. The policy gradient method is 

used in the reinforcement algorithm. For the desired control of motor both the 

dynamics of the system are chosen for the stable condition. The deterministic 
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mean policy depends on the joint position and the basis function. The basis 

function is the motor primitive parameters. 

(Kartoun et al., 2010) proposed collaborative interaction between humans and 

robots based on reinforcement learning. Learning is based on a collaborative 

Q-learning approach and provides a robot with self-awareness and autonomy. 

In a collaborative Q learning algorithm, there are two levels of collaboration 

between humans and robots. In the first level, the robot decides the action and 

updates its state-action values. In the second level of collaboration, the robot 

takes the request from the human advisors. The robot is switching from the 

autonomous mode to semi-autonomous mode based on the policies.  

(Wawrzyński, 2012) demonstrate the reinforcement learning algorithm for 

bipedal gait optimization. The actor-critic learning applied for the experience 

replay and fixed point method to determine the step size. The Markov decision 

process provides the solution for the reinforcement algorithm to control the 

bipedal robot gait. The control process of actor-critic works in discrete time to 

select the state and select the proper action. The transition between the current 

state to the next state happens and a reward is assigned to the state and action. 

The stochastic control and the value function updates the learning parameter 

based on the data collected. 

(Kati & Vukobratovi, 2006) proposed the fuzzy reinforcement hybrid control 

algorithm for the bipedal robot locomotion. The controller has two feedback 

loops around the zero moment point. The centralized dynamic controller keeps 

tracking of the robot’s normal trajectory and fuzzy reinforcement feedback 

compensates the dynamic reactions of the ground around the zero moment 

point. Fuzzy reinforcement control algorithm structure based on the actor-

critic temporal difference method. The policy represents the set of control 

parameters.  

(Frank et al., 2014) proposed reinforcement learning which could control the 

iCub humanoid robot. iCub learns from its experience the world model and 

controlling actual hardware in real-time with some restrictions. Reinforcement 

learning discretized the real configuration of the robot in configuration space. 
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The modular behavior environment of the iCub humanoid robot generates the 

action and the robot tries to go into the transition state. The Markov model 

develops the path planner and connects the state to the near state. 

(Christen & Stevˇ, 2019) proposed the deep reinforcement learning algorithm 

to train the control policies for the bipedal robot interactions. The control 

problem is formalized from the Markov decision process. Input to control 

policy is a joint position, velocity, and sensor reading of the hand. The motion 

capture system captures the position of the hand. The output of the control 

policy actuates the humanoid arm. The reward is provided to correct the end 

configuration of the humanoid arm. 

(Lober et al., 2016) improve reinforcement learning using Bayesian 

optimization for whole-body motion control. It evaluates the cost function in 

robotics and optimizes the set of parameters. To ensure a smooth trajectory, 

the whole-body control guided by the task in a series of waypoints. Three 

components of costar are evaluated for the execution of the task. The 

optimization variables are selected from the trajectory waypoint. 

(Hester et al., 2010) describe a model-based reinforcement algorithm with a 

decision tree to train the bipedal robot to kick goals. In the model-based 

reinforcement algorithm, learning takes place aggressively during model 

learning. Q-learning approach adopted for the model-free reinforcement 

learning. Q-learning update state-action for every state-action pair. RL with 

the decision tree take the action with the highest value and entering into a new 

state. After entering into a new state, the award will be received in the new 

state. Observing new experiences through the model, the algorithm updates the 

parameter through the model.  

(Riedmiller et al., 2009) work on the application of batch reinforcement 

learning in a challenging and crucial domain. Reinforcement learning helps 

the robot to gain ideas from the repetitive interaction from the environment. 

The batch reinforcement control algorithm consists of sampling experience, 

training and batch supervised learning. The training pattern set estimates the 

value function. The batch supervised generates a new estimate for value 
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function from the training set pattern. The behavior-based approach is used to 

implement the reinforcement algorithm to take the decision. 

(Iida, 2004) proposed an adaptive allocation method for the reinforcement 

control algorithm for bipedal motion control. Actor-critic learning is adopted 

for reinforcement learning. This method has separate memory to represent 

policy i.e. independent from value function. The actor calculates the action 

value for the bipedal robot when it observes the state in the environment. The 

critic receives the reward and provides the temporal difference. The learning is 

simulated on the virtual body of the bipedal robot to stand up from a chair. 

The bipedal observes the wait, knee, ankle, and pitch angle of the body. The 

humanoid robot learns to fall backward. Afterward, it falls forward. Finally, it 

stands up and controls its body. 

(Sko, 2008) proposed the dynamic control approach for the humanoid bipedal 

walking. The controller involves two feedback loops. The computational 

torque controller receives the input from the impact force controller and 

reinforcement controller. The reinforcement controller maintains the torso 

movement with the help of fuzzy feedback. The policy gradient reinforcement 

learning controls the trajectory of the dynamic walking of the bipedal robot. 

(Danel, 2017) proposed actor-critic neural network architecture for the 

continuous action policy of reinforcement learning. The deep deterministic 

policy gradient method controls the bipedal body control task. The 

deterministic policy was developed by the actor-network. The action value 

generates by the critic network. The temporal difference was minimized by the 

training of the critic network. The immediate reward is received upon the 

action and update the learning parameter to the database of the control 

architecture. 

(Peters et al., 2003) discussed the different approaches for reinforcement 

learning algorithms for a bipedal robot. The natural actor-critic learning 

controls the motor of bipedal. The movement plan has a set of joint position 

and joint velocity of the bipedal. The system has point-to-point continuous 

movement i.e. the episodic task of the reinforcement algorithm. The 
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evaluation of the basis function for the value is done by the actor-critic 

network. 

(Guenter et al., 2007) developed an algorithm for programming robots by 

demonstration. When unexpected perturbations occur, a robot is unable to 

perform a task. The teaching of a constrained task to a robot by a learned 

speed trajectory. The natural actor-critic network evaluates the policy by 

approximating the state-action values. The simulation is carried out for the 

cubic box and obstacle. Using reinforcement learning, the system takes 330 

trials to achieve the goal.  

(Lowrey et al., 2018) developed the control policies in a simulation that can 

transfer to the dynamical physical system. The policy gradient learning 

method is used in the reinforcement algorithm to optimize the parameters. The 

natural policy gradient algorithm pushing the task to learn. Training of policy 

determines an action to take and gain a good reward. The structure of training 

informs the policy behavior with the time required to execute the desired task. 

The reward function reduces the gap between the robot and the target.  

(Kober et al., 2011) developed the reinforcement algorithm which maps 

circumstances to meta parameters. Motor primitives are used for learning meta 

parameters. The dynamical movement of the motor is represented in the first-

order differential equation for the critical damped. The goal parameter is the 

function of the amplitude parameter that represents the complex movement. 

All degrees of freedom of the system synchronize in the dynamical equation in 

the canonical form. 

(I. J. Silva et al., 2017) proposed a reinforcement learning algorithm to 

optimize parameter values for the generation of gait patterns in bipedal. 

Locomotion control achieves by the central pattern generator. The three 

oscillators attached to the foot of the bipedal. Each oscillator has six sub-

oscillator related to the axis and configured to the parameters. The parameters 

are divided into three groups of offset parameters, oscillation parameters, and 

feedback parameters. Two parameters have been selected for the optimization 

of the gait. 
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(S. K. Kim et al., 2017) demonstrated the intrinsic interactive reinforcement 

learning algorithm for human-robot interaction based on the gesture posture. 

The human electroencephalogram generated feedback used for the reward. 

The leap motion controller recognizes the human gesture to learn the robot and 

simultaneously the robot map the gesture for action. The contextual bandit 

approach is used to enable the robot’s action provided by human gestures. 

2.6 Research Gaps 

After a detailed literature review, the research gap was found out for the 

humanoid/ bipedal robot. Issue despite everything exists in the mechanical 

structure, movement, and controlling of the Bipedal robot. Some of the gaps 

identified are : 

  All available systems either use Artificial Neural Network (ANN) or 

Artificial Intelligence (AI) for Robot and Humanoid/ Bipedal to design 

them for specific tasks/problems. 

 The systems defined usually have predefined problems, conditions 

(environment), and pre-stated results to define them.   

 Self-awareness is a humanoid robot that is missing to decide an 

unknown environment.  

 Stability in the motion of a humanoid/ bipedal robot isn't accomplished 

completely in the dynamic conditions and uneven ground. 

 Speedy walk and run in a humanoid robot are questionable. The abrupt 

turning of movement is an additionally unsolved issue. 

The gaps taken into considerations are designing the framework for bipedal 

which used the reinforcement learning algorithm, the environment is dynamic 

as an object is placed at different locations and the targeted output is the 

smooth trajectory of the bipedal in the unknown and dynamic environment, 

the stability is a major concern. The locomotion is considered on a smooth 

surface, bipedal learn the walk and then executes which gives bipedal 

decision-making characteristics to whether explore more states of the dynamic 

environment or exploit the previously used states for fast execution to reach 

the goal in the minimum amount of time. 
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2.7 Research Objectives  

The main objective for the proposed work is the design and simulation of the 

framework for a Bipedal walking robot (Finite State Machine) using a 

reinforcement learning algorithm.  

The sub-objectives to fulfill the main objectives includes designing and 

simulation of algorithms which has the following features:  

1.Incorporating of forgetting mechanism into the RL system- An agent 

might use the knowledge that has become outdated. 

2.Use of feature-based state knowledge in RL system- For reducing the 

number of state values to be maintained, and  

3.Hierarchical organizing of RL system- for reducing complexity in many 

applications 

The result of the above objectives will be MAS developed which would 

answer two basic questions: 

i. How can multiple agents learn which actions must be done simultaneously? 

ii. How can multiple agents learn that all sets of simultaneous activities must 

be done consecutively? 

The success of learning depends upon the exploration of an ample number of 

state-action pairs. 

The robotics research community tries to implement human thinking behavior 

in the bipedal robot, which helps in the understanding environment and in 

deciding critical conditions. The reinforcement learning algorithm allows the 

bipedal to learn, think, and do the action in an unknown environment. The 

development of a reinforcement algorithm for several degrees of freedom is a 

very challenging task. Therefore, this research work aims to develop a 

reinforcement learning algorithm for vision and motion control in a bipedal 

robot by keeping the best options for future use. 

2.8 Research Outcomes  

This architecture is simulated in SimSpace Multibody implementing a 

Forgetting Q-learning algorithm and Feature-based Object Identification 

reinforcement learning algorithm to be implemented on the control system of 
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the bipedal walking robot in a hierarchical structuring manner. The Forgetting 

Q-Learning algorithm is implemented on a hierarchical structure i.e. Hip joint 

is trained first then the knee joint is trained and then the ankle joint of one leg 

then after a delay of half of Gait time another leg joints are trained similarly to 

complete one Gait or Stride. The self-learning of bipedal to balance at runtime 

/online and then navigate to the identified object in the dynamic environment. 
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CHAPTER 3 PROPOSED MODEL 

The proposed model considers lower body segments of bipedal. The model 

comprises ten degrees of freedom with every leg having five degrees of 

freedom. Both ends of the legs are linked to the torso. The torso is an 

inflexible body on which both hip joints are attached and have a vision system. 

Simulink/ SimSpace Multibody Matlab model is designed for the bipedal. For 

designing and developing the lower body of bipedal, the anatomy of the 

human lower limb (hip or pelvis joint, thigh, knee joint, calf, ankle joint, and 

ground contact forces) is taken into consideration(Agarwal et al., 2015). Table 

3.1 shows the lower body parameter of bipedal without considering the upper 

body parts like shoulder, hand, and head(Sharma et al., 2020). 

Table 3.1   Lower Body Parameter 

Parameters Dimension in mm 

Foot length 240 

Foot width 90 

Foot height 100 

Lower leg height 380 

Lower leg diameter 370 

Upper leg height 380 

Upper leg diameter 480 

Torso length 330 

Torso width 150 

The human body is designed to support the skeletal system. The bones of 

humans are rigid but cartilages make the body flexible. The appendicular 

skeleton of a human includes bones of the shoulder girdle, upper limbs, pelvis 
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girdle, and lower limbs. The pelvic forms a supportive framework for the 

lower body. 

The biomechanical factor is considered for the design of lower parts. The 

lower body system of the bipedal robot consists of the left leg, right leg, and 

torso. The kinematic configuration includes the degree of freedom of the 

joints, motion ranges of all joints, and length of links related to the motion of 

the lower body system. The movement of all joints together at a given point 

should be such that the motion of each joint should not restrict the motion of 

the other joint (Cenciarini & Dollar, 2011). Table 3.2 shows the degree of 

freedom of different joints and possible joint range of motion(Hernández-

Santos et al., 2012). 

 Table 3.2   Joint Range Degree of Freedom and Motion  

Joint Standard Human Leg (in 
Degree) 

Proposed Humanoid Leg ( in 
Degree) 

Torso Pitch -15 to 130 -15 to 100 

 Yaw -45 to 50 -45 to 45 

 Roll -30 to 45 0 to 45 

Knee Pitch -10 to 150 0 to 100 

Ankle Pitch -20 to 50 -20 to 30 
 

3.1 Simulink Model of Bipedal Robot 

While designing various parts of the bipedal robot, plane consideration was 

taken into account. Torso and hip joint created in the frontal plane of a sketch. 

The rest of the part is created in the sagittal plane of the sketch. In the actual 

model, the diameter remains constant throughout the height of the lower leg 

and the upper leg. The torso is kept fixed for assembling all the parts such as 

the pelvis joints of both the limbs. Torso also contains a camera mounted on it 

for object identification and vision-based navigation. 

Figure 3.1 shows the complete 3D model of the lower parts of the bipedal 

robot without the ground. 

The ground of the proposed model is created in the MATLAB SimSpace 

Multibody toolbox. The SimSpace Multibody toolbox provides the simulation 
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environment for the proposed system. Figure 3.2 shows the MATLAB 

Simulink model of the lower body of bipedal without the ground. 

 

Figure 3.1   Proposed 3-D Model of Lower Body 

 

Figure 3.2   Simulink Model without Ground 

Figure 3.3 - 3.5 shows the joint, frame, and rigid body MATLAB block 

representation of the lower body of the bipedal(Sharma et al., 2020). The 

complete combined model is shown in Appendix A. 
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3.2 Simulink Model of Bipedal with Ground  

The Simulink model of the lower body of the bipedal with the ground is displayed in Figure 3.6. 

 

Figure 3.3   Simulink Sub-Model of Right Leg of Bipedal 

 

 

 

Figure 3.4   Simulink Sub-Model of Right Leg of Bipedal 
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Figure 3.5   Overall Simulink Model of Lower Body of Bipedal 
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Figure 3.6   Simulink Block Diagram of Lower Body of the Bipedal with the Ground 
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The Simulink model of the lower body of the bipedal generated by the 

explorer of MATLAB is shown in Figure 3.7. Appendix C gives a 

representation of the mathematical expression of dynamic torque in the 

MATLAB Simulink model. 

 

Figure 3.7   Simulink Model of Lower Body of the Bipedal with the Ground 

 

3.3 Simulink Model of Bipedal with the Ground and the Contact Forces 

The feet of the lower body of the bipedal applying forces on the ground. The 

friction force between ground and feet helps bipedal to walk. For creating the 

ground in MATLAB Multibody toolbox, a brick element of body block is 

chosen. For each body block, two rigid transform blocks are required (M. 

Silva et al., 2015). The tangential force empowers bipedal to make a forward 

motion on the ground. The normal force ensures that bipedal will consistently 

be above ground during the simulation. Figure 3.8 and Figure 3.9 show the 

Simulink block for ground and contact forces of foot interaction with the 

ground.  

After calculating the different forces, the Simulink model of the ground is 

made with the help of different Simulink blocks. The detailed parameter of the 

ground block, rigid transform, and bipedal parameters are given in Appendix 

C.  
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Figure 3.8   Simulink Block Diagram of Contact Forces of Right Leg of the Bipedal with the Ground 
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Figure 3.9   Simulink Block Diagram of Contact Forces of Left Leg of the Bipedal with the Ground 
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Figure 3.10 shows the Simulink model of the lower body falling of bipedal 

which falls when tried to walk and could not stand also. 

 

Figure 3.10   Simulink Model of Lower Body of Bipedal with Instability (Falling Down) 

Figure 3.11 and Figure 3.12 shows the Simulink model of bipedal with 

implementation in which the bipedal prevent itself from falling. 

 

Figure 3.11   Simulink Model of Bipedal in execution with Prevention from Falling 
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Figure 3.12   Simulink Model of Bipedal with Prevention of Falling 
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Figure 3.13   Simulink Model of Bipedal for Smooth Trajectory 
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Figure 3.13 shows how the bipedal trajectory can be smooth without jerks 

after once the proposed algorithm is executed, then thereafter the optimal 

state-action values are being stored as MATLAB algorithm codes are 

executed. Detailed Matlab codes are in Appendix D. 

3.4 Simulink Model of Bipedal with the Object Identification and 

Localization 

Figure 3.15 shows the Simulink model of bipedal with an object (in this case 

soccer ball) placed in a dynamic and uncertain environment. 

Figure 3.16 and Figure 3.14 exhibit the Simulink model of bipedal with user 

define code (Matlab function) for object localization (in this case Soccer ball) 

in a dynamic and uncertain environment(Sharma et al., 2020). 

 

 

Figure 3.14   Simulink Model of Bipedal with Localization Code execution in Dynamic 

Environment 
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Figure 3.15  Simulink Model of Bipedal with Object in Dynamic Environment 
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Figure 3.16   Simulink Model of Bipedal with Object Localization Code in the Dynamic Environment
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CHAPTER 4 BIPEDAL WALKING ROBOT: 

ARCHITECTURE 

4.1 Overall System is designed to achieve Sub-Objectives 

Figure 4.1 shows the general framework which is intended to accomplish the 

desired sub-objectives. 

 

Figure 4.1   Overall System Designed to achieve the Sub-Objectives 

4.2 Model of the Bipedal for Object Identification and Navigation 

Steps followed by the bipedal to identify the object and navigate to the 

identified object are: 

1. The object is seen by the bipedal through the vision sensor.  

2. The object seen is then compared with the objects stored in the 

database using the SURF algorithm.  

3. The localization of the identified object is carried out.  

4. The bipedal now gets the location to reach the object as the goal point.
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5. The bipedal now start hierarchically learning each joint i.e. first learn 

hip joint then knee joint and then ankle joint of each leg. 

6. After learning is carried out by reinforcement learning control 

algorithm. 

7. The control mechanism is implemented on the bipedal joints so that 

the bipedal stays in a stable balanced state and walks to the desired 

location. 

8. Then by using the learned data stored in the lookup table for the same 

environment the bipedal walk stably without jerks. 

9. For a new dynamic environment, it learns from beginning/ scratch and 

stores the optimal actions and policy in the lookup table. These learned 

and stored data can be used to execute in the future. 

4.3 Flow Diagram of the Overall System  

The activities of the overall system include: 

1. Self Localization of the bipedal  

2. Object Identification  

3. Object Localization 

4. Distance calculation between bipedal and the object (soccer ball) 

5. Bipedal Walking Control Mechanism 

a. Gait Design for bipedal 

b. Walking Pattern Generator 

c. Walking Control Algorithm 

6. Reinforcement Learning Control Mechanism 

a. Action Selection  

b. Reward Calculation 

c. Finding the Optimal Action  

d. Updation of values  

7. Hierarchical Structured Learning Reinforcement learning Agents 

a. Implement control mechanism for Hip joint Trajectory 

b. Implement control mechanism for Knee joint Trajectory 

c. Implement control mechanism for Ankle joint Trajectory 

d. Contact force execution on the Foot Sole 

8. Reaching Goal Position near the object 
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Figure 4.2   Flow Chart of the Overall System 
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4.3.1 System Dynamics and Variations  

The highly abstract method of modeling is being used here ignoring the fine details 

of the dynamic environment. The main work included the self localization of the 

bipedal, object localization in the environment, finding the distance between the 

bipedal and object (soccer ball) and then reaching the object using the 

Reinforcement learning algorithm (forgetting mechanism incorporation in traditional 

Q-learning) which follows the optimal policy to reach the object (in this case soccer 

ball). In future when more objects along with other players on the ground are being 

added in the dynamic environment of a soccer match scenario along with motion 

then work has to done in computer vision part of the bipedal. 

4.4 Stepwise Execution of the Overall System 

 
Figure 4.3  Stepwise Execution of the Overall System 
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4.5  Architectural Mechanism of Object Identification  

 
 

Figure 4.4   Object Identification Mechanism    

The image is captured by the vision sensor on the torso. Then captured image 

is compared with a stored reference image of an object in the database. 

4.6  Mechanism for Localization of the Object  

1. The coordinates are evaluated of the captured image of the object 

matched on the frame. 

2. The bipedal calculates its current position and knows the exact 

coordinates of an object identified in a dynamic environment. 

3. Bipedal calculates the actual distance by finding the difference 

between the current coordinate location and coordinates of the bottom 

left corner of the identified object image. 

Now, bipedal has to navigate to the identified object using a controlled 

reinforcement learning mechanism. While navigating the bipedal joints 

have to be trained by the proposed algorithm. 
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4.7 Architectural Model of Control Mechanism of Bipedal  

The steps followed for Control Mechanism designing of bipedal includes : 

1. Gait Design for Bipedal Walking Robot 

2. Walking Pattern Generation 

3. Walking Control Algorithm 

 

Figure 4.5   Control Mechanism for Gait of the Bipedal    

Usually, an industrial robot has a fixed base. But in the bipedal robot base is 

not fixed. The bipedal walking robot moves around with difficulty and may be 

critical in dynamic conditions. The motion of the bipedal walking robot 

maintains contact between the sole and the ground. In standing condition, the 

weight of the body is vertically down and the reaction force acts in a vertically 

up direction and there is no horizontal component of a force acting. Hence, the 

ZMP is not disturbing, and bipedal is maintaining the static balance. 

Gait trajectory is structured offline to make a robot walk. In bipedal 

mechanical autonomy look into the field, the gait trajectory produces the 

relative position directions of both the feet concerning the pelvis center. Due 

to large upper body motions, the robot will fall even after designing a full-
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proof walking pattern (Figure 4.6). Due to this the upper body including 

shoulders and hands are not taken into consideration in the proposed work. 

Zero moment point (ZMP) inspects static and dynamic forces. Numerous 

analysts and researchers had suggested techniques dependent on the ZMP 

criterion for stable walking (Sutton, 1990). If the control system designed is 

capable to keep the position of ZMP within scope or polygon formed of the 

soles. This will help the robot to walk steadily (Figure 4.6). 

 

Figure 4.6   Realization of the Bipedal Walking    

To enhance the robustness of bipedal robots walking learning methods on 

bipedal walking have been studied{(Ogura et al., 2006) (Akachi et al., 2005) 

(Ha et al., 2011)(Endo et al., 2008)}. The RL agent collects the training 

experiences, which act as experiences for the next coming training set, and 

through interaction in the dynamic environment, the learning policy is 

updated. The trial and error method is used for the learning process which 

helps in obtaining the walking policy instead of using past training experience 

in advance. The feedback positions from ZMP are analyzed to find whether 

the robot is in a stable state or not and to avoid falling/tipping of bipedal.  

The bipedal ought to keep inside a support polygon, which characterizes a 

convex hull formed by all contact focuses on the floor. After learning for the 

long haul the framework gets a walking policy that fits the current dynamic 

and consistently evolving conditions. 
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4.8 Architectural Model of Reinforcement Learning Control Mechanism  

4.8.1 Reinforcement Learning Control Mechanism 

In a dynamic environment, for bipedal to navigate the following constraints 

are considered: 

 States are consistently dispersed between Start state (current position 

of Bipedal) and Goal state (known set) (position calculated by 

localization of object) 

 The feasible set of actions A= {0,1} (known set). For certain cases 

likewise A= {-1,0,1} 

 α (Learning rate) is considered 0.9 

 λ (Discount Factor) is considered 0.9 

 ε (Exploration probability) is taken 0.5 ( 1- ε is for exploitation) 

 ε-decay is considered 0.98. This is also known as the forgetting factor 

which is proposed in current work. 

 

 
Figure 4.7   Reinforcement Learning Control Mechanism of the Bipedal   

 A tradeoff between Exploitation and Exploration is observed - for 

exploitation the RL agent responds slowly to the evolving 
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environment, for exploitation the RL agent quickly adapts to the 

consistently dynamic environment. The proposed framework is 

empowering investigation/ exploration as it is progressively 

compelling in managing the consistently dynamic conditions. 

4.8.2 Hierarchical Structured Learning of RL Agents 

 
 

Figure 4.8   Hierarchical Structured Learning of RL Agents    

The hierarchical learning of RL agents takes places as shown in Figure 4.8 

first the hip joint which is attached to the pelvis is learned, then learning of the 

knee joint to maintain the stability of the bipedal, then learning of the ankle 

joint is done taking into consideration of damping when the sole is in contact 

with the ground. 
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CHAPTER 5 BIPEDAL WALKING ROBOT: 

MATHEMATICAL MODEL, CONTROL 

5.1 Trajectory of Bipedal  

The basics for the trajectory of the bipedal is Biomechanics. Biomechanics is 

the field of science that applies the laws of mechanics and physics to the 

movement and the structure of all living organisms and their performance. 

This field in the special case also deals in the force exerted by muscles and 

gravity on the skeletal structure of humans. Biomechanics suggests that a 

humanoid should form a closed polygon when it is in motion. The best design 

for mechanical stability is a closed-loop polygon. A trajectory is the sequence 

of movement of the individual joint. (Figure 5.1) 

 

Figure 5.1   Bipedal Walking Robot 
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The proposed bipedal model has ten degrees of freedom. Every leg has five 

degrees of freedom, the torso of bipedal, three degrees of freedom provided 

for the fast movement, and to prevent from sudden falling, the knee has one 

DOF and ankle has one DOF. Design principle of development of the bipedal 

resembling the human body. In the proposed model, the assumption is that 

counter generated by the left leg is identical to the counter generated by the 

right leg. The upper body weight acts on both feet and which supports the 

balancing of the body. The bipedal body is symmetric about the sagittal plane. 

5.2 Mathematical Model of Object Identification  

SURF interest points are in-plane rotation-invariant, robust to noise, and 

overall, extremely fast to calculate. The three steps followed are: 

1. Identification of Interest Point 

2. Depiction of Interest Point  

3. Matching of Interest Point  

5.2.1 Identification of Interest Point 

Interest point is the points at a specific location that are chosen. The selected 

locations in the image are distinct and can be corners, blobs, T-junction. 

Detectors should be repeatable, which helps in getting the same interest points 

(physically) in different viewing conditions. 

5.2.1.1 Integral Images  

Integral images are an image whose each pixel is the cumulative sum of all 

well-defined space of all pixels of input image I. Sum of areas is represented 

by IƩ(X) for location X=(x, y)
T
. Areas are usually bounded by origin (0,0) and 

X. 

              
   
   

   
                             (5.1) 

Integral images are incredibly efficient. It is possible to characterize a region 

of the image using three operations and four memory accesses.  
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Figure 5.2   Basics of Integral Image 

              (5.2) 

5.2.1.2 Hessian-Based Interest Points 

In blob detection, part of images is detected which differs in properties- color, 

brightness, surrounding regions, and so on. This detector detects blob-like 

structures using the determinants where the Hessian is maximum. This gives 

good performance accuracy.  

Due to discretization repeatability is maximum at multiples of π/2 due to the 

square format of filters while at odd multiples of π/4 some repeatability is lost. 

The detailed description is in Appendix E. 

5.2.1.3 Hessian Approximation  

The actual calculation of the Hessian matrix is slow. Instead, Hessian can be 

approximated using Box filters. The relative weights w are taken simply for 

computational efficiency and balances the Hessian's determinant expression.  

 

Figure 5.3   Interest Point Detection using Discretized and Cropped Gaussian (in the first 

part), Box Filter Approximation (in the second part) 
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    (5.3) 

Where Dxx is an approximation of 2
nd

 order Gaussian partial derivative in the 

X-direction, w is taken 0.9. 

5.2.1.4 Representation of Scale Space  

To coordinate interest points across various scales, a pyramidal scale space is 

created. Instead of serial downsampling, each progressive degree of the 

pyramid is developed by scaling up in parallel. This has the advantage of 

computational efficiency.  

For each new octave, filter size doubles (6-12 to 24-48) resulting in a sampling 

interval for interest point extraction to be doubled which reduces computation 

time. The detailed description is in Appendix E. 

5.2.1.5 Localization of Interest Point  

Localization of interest points is done by suppression of non-maximum (non-

maximum pixel are set to 0) points in the neighborhood of 3x3x3. 

Interpolation in terms of scale and image space is done for the maximum value 

of the Hessian matrix grid determinant. The detailed description is in 

Appendix E. 

5.2.2 Description of Interest Point  

The interest point neighborhood detection for blob response uses 1
st
 order 

Haar wavelet reaction in x and y directions. The detailed description is in 

Appendix E 

5.2.2.1 Orientation Assignment 

Orientation assignment reduces the time duration of feature computation and 

feature matching which increases robustness. The Haar wavelet responses are 

calculated in both directions in a neighborhood defined by a circle within the 

radius of 6s. Interest point centers are weighted with Gaussian taking σ = 2s 

and plots of directional strengths are made. 
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These plots are divided into sliding orientation windows and local orientation 

vectors are computed as the sum of x and y responses within each window. 

The dominant orientation is the largest of all such vectors across all windows. 

5.2.2.2 Feature Vector  

To extract features, an axis orientated 20s sized square window is defined, a 

window is subdivided into a 4x4 grid. The horizontal and vertical Haar 

wavelet response is calculated over each subdivision and four metrics are 

extracted from each subdivision using 5x5 equally spaced points. These 

metrics are then summed to produce the local feature vector which is 

concatenated to form a 64-element feature vector that describes the interest 

point and surrounding neighborhood. 

  

 
 
 
 
 
   
   
     

      
 
 
 
 

       (5.4) 

where dx - the reaction of Haar Wavelet in horizontal axis 

 dy- the reaction of Haar Wavelet in the vertical axis. 

5.2.3 Matching Interest Points  

5.2.3.1 Nearest Neighbor 

Features are matched across frames as the nearest neighbor within a distinct 

feature threshold. Either Euclidean or Mahalanobis distance may be used to 

determine 'nearest'. In this implementation, uniform precision was assumed 

and therefore, Euclidean distance was sufficient. 

 

Figure 5.4   Euclidean Distance 
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     (5.5) 

 

     
        

 

  
   

        
 

  
             (5.6) 

5.2.3.2 Laplacian Indexing  

In the matching phase, the Laplacian sign (Tr(H)) is utilized for fast indexing. 

Discrimination cascade includes sign. The sign of Laplacian helps in 

distinguishing bright/ white blobs on dark/ black backgrounds from the 

opposite situation and serves as a meaningful metric to divide the set of all 

interest points. 

 

Figure 5.5   Sign of Laplacian 

5.3 Mathematical Model of Localization of Object  

1. The coordinates are evaluated of the object matched on the frame. 

2. The bipedal calculates its current position and knows the position of 

the object identified. 

3. Bipedal finds the distance by finding the difference between its current 

location and the bottom left corner of the object identified. 

Now the bipedal has to navigate to the identified object using a controlled 

reinforcement learning mechanism. 

5.4 Mathematical Model of Control Mechanism of Bipedal  

The steps followed for control mechanism designing of bipedal 

includes(Sharma et al., 2020) : 

1. Gait Design for Bipedal Walking Robot 

2. Generating Walking pattern  

3. Walking Control Algorithm 
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5.4.1 Generating Walking Pattern  

Consider the following four factors for designing the walking pattern of 

bipedal (Sharma et al., 2020; Sharma, Singh, Bharadwaj, et al., 2019): 

1. Walking cycle (twice of step time) 

2. Lateral swing amplitude of pelvis 

3. Double support ratio (DSR) 

4. Forward landing position ratio of the pelvis 

 

 

Figure 5.6   ZMP Position of a Biped Walking Sequence 

5.4.1.1 Walking Cycle  

The walking cycle is set as a regular recurrence of a 2D simple inverted 

pendulum model (Figure 5.7). Assuming, frequency of inverted pendulum fn, 

 
Figure 5.7   Inverted Pendulum Model 



80 
 

   
 

  
 
 

 
      (5.7) 

where l - pendulum length. 

5.4.1.2 Lateral/Sideway Swing Amplitude of Pelvis  

The sideway swing extent of the pelvis is obtained by the ZMP fluctuation of 

IPM. Motion equation of IPM is given as: 

                (5.8) 

Where T - joint torque, m - point mass and θ- angular displacement. 

Divide both sides of equation 5.8 by mg, then the equation becomes  

 

  
    

 

 
          (5.9) 

By substituting Fz= mg and Ymc = lθ into Equation 5.9 assuming θ is very 

small (< 5°), then the equation becomes  

 
 

  
     

 

 
              (5.10) 

Where Fz - ground response force, Ymc - lateral displacement of mass center.  

ZMP dynamics is obtained when Fz ground response force is divided by the 

torque T by: 

         
 

 
   
       (5.11) 

Where Yzmp - lateral ZMP.  

While the bipedal is walking, lateral displacement is assumed as Ymc=A sin ωt 

(coronal plane), the equation becomes 

           
 

 
             (5.12)  

In real bipedal walking, as force/torque sensors are attached at ankle joints, 

deflection of the compliant results in an increase in amplitude A than the 

original value. 
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5.4.1.3 Double Support Ratio (DSR) 

During a walking cycle, a double support ratio is given by the ratio of time 

when two feet are on the ground in contact with the floor(Sharma et al., 2020) 

(Figure 5.8). For humans, this ratio is about over 10 percent (Iwata & Sugano, 

2009). 

 

Figure 5.8   Walking Cycle 

5.4.1.4 Forward Landing Position 

Forward landing position ratio of pelvis γpelvis is the proportion of the position 

of the front leg to the rear/back leg when the double support phase begins 

(Figure 5.9). That is, in this situation if the proportion of pelvis is close to 1.0, 

then the front leg is closer to the pelvis at the beginning of DSP (Figure 

5.10). The bipedal acts like an inverted pendulum swinging in the forward 

direction.  
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Figure 5.9   Sagittal Plane View 

Assuming forward displacement as Xmc=A sin ωt ZMP kinematics becomes 

(in the sagittal plane),: 

         
 

 
          (5.13) 

Where Xmc - forward displacement of the mass center, Xzmp- forward ZMP. 

 

Figure 5.10   Forward Landing Position Ratio of Pelvis 

In DSP, phases of Xmc and   mc is equal. Xmc is located at zero i.e. at the center 

position of swing trajectory and so   mc is also nearly zero.  

Xzmp is the projected position on the ground if the pelvis is at a certain point 

which is at the center position between both feet. 
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5.4.2 Walking Control Algorithm 

The walking control algorithm is based on a swapping controller. The walking 

cycle is separated into a few phases of walking. Appropriate controllers and 

their parameters are initiated during each phase/stage. Figure 5.11 depicts 

different stages of walking: 

Stage 1 involves lifting the left leg to its maximal bending and elevation. 

Stage 2 involves lowering the left leg unless entire contact with the ground is 

made. 

Stage 3 involves lifting the right leg to its maximal bending and elevation. 

Stage 4 involves lowering the right leg unless entire contact with the ground 

is made. 

Stage 5 involves following the 1st or 3rd stage, bring the bipedal to a stable 

standing position when the left and right legs are completely in contact with 

the ground. 

For stable gait, walking stages 1 to 4 are repeated consistently (Figure 5.11), 

so that the bipedal does not fall. In walking stages 2 and 4, a single support 

phase (SSP) and the double support phase (DSP) coexist.  

 
Figure 5.11   Walking Stage 

A walking control algorithm comprises of three control policies(Bellemare 

et al., 2017; Zambaldi et al., 2018),  

 Control policy for balancing (real-time),  

 Control policy for walking pattern  
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 Control policy for predicted motion.  

 .  

 Figure 5.12   Different Stages of Left and Right Legs 

Each control policy has few controller parameters which are utilized relying 

on the goal required. 

The force/ torque sensor at the ankle results in sustained oscillations in SSP 

which is overcome by damping oscillator parameters. Bipedal is a model of IP 

with a compliant joint.  

Equation of motion is given by: 

                       (5.14) 

where u - reference joint angle, θ - actual joint angle due to compliance 

Damping control law states 

          
       (5.15)  

where u - reference joint angle, kd - damping control gain, and uc - joint angle 

compensation.  

According to ZMP dynamics, ZMP compensator parameters stabilize ZMP. 

Torso (middle body) moves back and forth and side by side. Both torso 

movement and ZMP are controlled by the following equation 

             
 

 
            (5.16) 

 Where Ypelvis - lateral displacement of pelvis and YZMP - lateral ZMP. 

The landing orientation controller, for comfortable landing, coordinates 

torque estimated after some time and stable contact by adjusting ankle joints to 

the ground.  

Landing orientation control law is given as follows: 
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     (5.17) 

where CL - damping coefficient, KL - stiffness, u - reference angle of the ankle, 

and uc - reference ankle angle (compensated). 

In Table 5.1, bipedal walks stably using a walking control algorithm on the 

normal floor(Isbell et al., 2001)(Singh et al., 2005)(Sutton & Barto, 2012).  

The landing timing controller helps in achieving a stable walking gait of the 

bipedal by updating the walking pattern schedule during landing. This 

prevents the biped from falling and walking unstably in the dynamic 

environment. The time scheduler pauses the motion if the foot does not land 

on the ground, the bipedal sole is not in contact with the ground. 

Table 5.1   Summary of Walking Algorithm  

Control 

Parameters  

Real-Time Parameters Aim fulfilled 

Balance 

Controller  

Damping parameters (Stages 

1, 3, SSPs of 2, 4) 

Reducing oscillations in the upper body 

in SSP (ankle joints are imposed by 

damping )  

ZMP compensator parameters 

(Stages 1,3, SSPs of 2, 4) 

Maintaining balance dynamically by 

horizontal movement of the pelvis 

Walking 

Pattern Control  

Pelvis swing amplitude 

controller 

(Stages DSPs of 2, 4) 

The amplitude of ZMP is considered to 

compensate lateral swing amplitude of 

the pelvis 

Motion Control Landing position  parameters 

(Stages 2, 4) 

Compensate landing position to prevent 

unstable landing 

 

5.5 Mathematical Model of Reinforcement Learning Control Mechanism  

5.5.1 Reinforcement Learning Control Mechanism 

Randomness incorporated by following steps  

 Generation of Random number  

 if random number < 0.5 then explore (selection of new action is done) 

if random number > 0.5 then exploit (selection of greedy action) 
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 Reward/ Penalty given to RL agent builds upon variations in positions of 

current state and goal state 

                                                                     (5.18) 

α - learning rate is 0.5 

 The learning is continued till the value of epsilon is less than 0.001 the 

value of epsilon is updated in each epoch by  

                                    (5.19) 

 ε =0.5  ε-decay = 0.98 

which incorporates the forgetting mechanism in the bipedal. 

Q-learning Algorithm after incorporating the randomness  

                           
                (5.20)  

r - immediate reward calculated on the fly  

α - learning rate (0.5) 

λ - discounted factor (0.9) 

Q(s,a) - current state s when action a is taken  

Q(s', a') - by taking action a'  switch to the next subsequent state is s'  
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CHAPTER 6 DESIGNING FEATURE-BASED OBJECT 

IDENTIFICATION ALGORITHM FOR THE BIPEDAL 

Bipedal can do practically almost all necessary and basic errands assignments/ 

jobs, which are perilous and risky for a human being. To satisfy the above 

stated objective bipedal ought to have a visual framework that helps direct the 

bipedal about the routing. This framework/ system helps to recognize the 

objects and the controller of the bipedal would have the option to take desired 

actions. The algorithm is designed to handle vision-based navigation (VBN) of 

the bipedal. Bipedal distinguish objects by utilizing a revised SURF image 

detection algorithm. The bipedal controller has an action plan which helps in 

navigating in a risky and dynamic environment using the Q-learning RL 

algorithm. The bipedal segregates object depending upon already stored 

objects in the database and the objective for which the bipedal is designed to 

fulfill. The designed feature-based Q learning RL algorithm helps in 

decreasing the number of state values and helps in sharing and transmitting 

knowledge from one agent to another agent that uses RL to operate them. 

Likewise valuable for hurdle avoidance and recognizing hazardous articles 

during the exploring period. 

6.1 Vision System in Bipedal Walking Robot 

Bipedal can do intense and perilous assignments, which are dangerous for the 

human being. Bipedal helps humans in a risky environment - fire salvage 

activity, chemical ammunition. For performing such jobs basic issue is bipedal 

should have vision capabilities. This would help in identifying, detecting, and 

comparing objects by the bipedal.  
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Fast vision detection is carried out due to a decrease in cost and an increase in 

precision to manage data received by the navigational sensor. Vision systems 

are being supplanted by cameras with vision sensors for mission-critical 

applications. The bipedal first tallies the image captured online by image 

sensors with stored data then explores the dynamic environment. A set of 

unique features are derived using interest points from the present object image 

of the dynamic environment. At that point, these are coordinated with past 

knowledge on the highlights of the features of the stored object. 

For comparing the captured image with a stored database, the algorithm ought 

to be invariant of scale and rotation of the captured image. Bipedal robots are 

autonomous, flexible, should be able to confront genuine circumstances, and 

should have the capability to see adjustments in the surrounding environment. 

The most crucial issue with bipedal is the selection of activities in the current 

scenario. When no specific model of the dynamic environment is available, 

Reinforcement Learning (RL) is used on bipedal. Through RL, the bipedal can 

figure out the outline of the map to be followed to move to the next state from 

the current state by selecting actions and computing the reward earned when 

associated with the dynamic environment. The main challenge of using RL in 

bipedal is enormous state-action space and vulnerabilities of a dynamic 

environment along with the online calculation of reward. 

The control framework introduces information related to the state and stores 

online captured image data. The vision system of the bipedal captures images 

consistently from a dynamic environment (approximately every millisecond). 

The sequential frames are examined and the comparison of the current frame 

and the previous frame is carried out. If a distinction exists between the frames 

then distinct data is transferred to the image controller of the bipedal. The 

object recognition algorithm developed in the present research work is 

executed by the image controller. The recognition of the object is done. The 

further steps to be followed by the bipedal are dictated by the vision system in 

the form of information and the walking controller. The algorithm generally 

utilized is the Speeded Up Robust Features (SURF) algorithm.  
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6.2 Feature-Based Object Identification in Reinforcement Learning  

Desire to know about the feature-based is due to the following reasons :  

1) Need to decrease the quantity of state-space values to be managed by Q-

learning Reinforcement Learning algorithm  

2) We need to utilize these trained RL agents in an extensive dynamic 

environment in real life.  

Advantages of utilizing Feature-based Reinforcement Learning algorithm - 

recognition of the object, planning the methodology/ approach as per need, 

handing over of information from one Reinforcement Learning agent to 

another Reinforcement Learning agent. 

In the Q-learning RL algorithm, state-space values are dependent on some 

distinct features of a dynamic environment. Transferring of information from 

one RL agent to another RL agent about similar objects present and how to 

tackle them. For example, if in a dynamic environment there are bumps (speed 

breakers or rough terrain) and the height of bumps is fixed then what activities 

are to be taken to pass bumps to walk without falling can be shared between 

the RL agents. In the event of soccer, the robot needs to kick the ball 

recognition of soccer ball in the soccer field is the knowledge that can be 

shared between RL agents. 

Two approaches to execute feature-based object identification are : 

1) Simple encoding method, which is utilized to change the immediate 

environment of RL agent 

2) Apply object recognition/ identification algorithms and then recognize 

objects. 

Feature detection, extraction, and matching are steps that are usually carried 

out to solve machine vision problems. Computer vision problems are solved 
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by object detection, object recognition, and content-based image retrieval 

(CBIR). 

In the feature extraction step, a reduction in the dimensions of the image is 

effectively carried out. The result of this is a compact feature vector. This 

helps in rapidly matching and retrieving the images along with effectively 

reducing feature representation. 

There are several considerations in choosing the number of features to extract: 

 More features use more memory and computational time. 

 Fewer features can produce poor classifiers. 

In this work, we have used a second approach to recognize objects. Object 

recognition is done by the revised SURF algorithm. 

6.3 Comparative Study of Different Feature Extraction Algorithms 

Image processing techniques include the operations on images like smoothing, 

sharpening, stretching, and contracting which results in an enhanced image 

that is usually used for image comparison in object classification and 

recognition steps. Object recognition has always been a computationally 

intensive job in real-time object recognition applications. The proposed 

method is an object feature detection SURF algorithm one of the image 

processing algorithms which is fast robust for local similarity invariant 

representation and comparison of images. This algorithm has three steps in a 

broader aspect to fulfill: interest point detection, local neighborhood 

description, and matching. These three steps include all the steps of other 

image processing algorithms: image preprocessing, image enhancement, 

image segmentation, image extraction, image classification. This algorithm 

uses a Hessian based detector, description based feature vector which is based 

on intensity distribution, using several approximations that allow fast 

computation without sacrificing accuracy and repeatability. The feature point 

of the stored image and the captured image are compared using a k-Nearest 
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Neighbor algorithm and a simple matching rule to identify the object in the 

environment. 

 

 

Figure 6.1 Detailed steps of SURF Image Processing Algorithm    

The comparable algorithm for object feature detection algorithms is Scale 

Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), 

Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP). Before 

using SURF the comparative study of all the algorithms was done on clear and 

noisy both types of images. 

SURF algorithm outperforms SIFT, HOG, LBP algorithms (Routray et al., 

2017, Raj et al, 2017) on the complete data set. Performance of SURF 

algorithm doesn’t drop even in poor conditions like low light photographs, for 

photographs where only partial images of objects are found. SURF could 

extract up to 90%, the other algorithms could gain much less. 

The results are compounded faster for SURF and LBP algorithms. The 

performance of SURF is close to SIFT and HOG.  

Limitations with LBP, one of the oldest methods is the mean squared error 

increases and the performance gradually declines as the data sets get 

complicated and the algorithm cannot extract features completely for an 

object(Arunmozhi et. al, 2018).  

SIFT is stable in terms of feature extraction but it gets slowed very gradually 

in feature extraction. 

HOG shows its advantages in detecting edge and texture information of an 

image. The performance gradually decreases as the data set becomes complex. 

It can extract features but not as much efficiently as SURF and SIFT. 
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Figure 6.2 Comparison of Different Feature Detection Algorithm   

6.3.1 Speeded-Up Robust Features (SURF) Algorithm 

SURF is a powerful image detector/ locator and descriptor. Descriptor depends 

on the approximated Hessian model which gives the dissemination of Haar-

wavelet reaction within the vicinity of interest points. Due to the low 

dimensionality of a descriptor, identifier and descriptor both diminish the hour 

of calculation. Speed, stability, uniqueness, and repeatability qualities of 

SURF make it a superior decision than other existing strategies. Interest point 

detection is done by Hessian matrix approximation. This determinant decides 

the scale and position of the descriptor. Box lets framework is utilized for 

fundamental images. 

In steps to draw out SURF descriptor for an image - data based on the 

orientation of zone around interest points are utilized. These territories are 

round in nature, Haar wavelet is utilized to process directions in X and Y 

course summarizing Gaussian weights are utilized for horizontal and vertical 

reactions, maximum value characterizes direction of descriptors of interest 

points. Image scales are utilized as scale-spaces. Gaussian is utilized to 

smoothen images iteratively and sub examining results in reaching the next 
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higher level of the pyramid. Continuously applying a filter is prevented by the 

utilization of basic images and box filters. Filter sizes are upscaled. Scale 

spaces are divided as octave, which is an arrangement of reaction maps. The 

filters are scaled in every one of the octaves by a scale factor of 2. The 

detection of interest points is done by indication of Laplacian, which helps in 

recognizing the bright spot on dark background and dark spot on a bright 

background. Quicker coordination is resulted in inspecting the points if they 

are on the same type of background (Lundberg et al., 2015; Okada et al., 

2006). SURF has low dimensionality and reduces the time of computation as it 

executes faster. 

Table 6.1   A Summary of State-of-Art Feature Detector  

Category Classification Methods and Algorithms 

Edge-based Differentiation Based Sobel, Canny 

Corner-based Gradient Based Harris and its derivatives, KLT, Shi-
Tomasi, LOCOCO,S-LOCOCO 

Corner-based Template Based FAST, AGAST, BRIEF, SUSAN,FAST-
ER 

Corner-based Contour Based DoG-curve,ACI,Hyperbola Fitting 
etc. 

Corner-based LearningBased NMX,BEL,SCG,DSC etc. 

Blob(interest point) PDE based SIFT and its derivatives, SURF,LoG, 
CoG, RLOG,DART,KAZE,WADE etc. 

Blob(key point) Template Based ORB, BRISK, FREAK 

Blob(interest region) Segmentation based MSER. IBR,EBR,MFD,FLOG, BPLR 
 

6.4 Proposed Algorithm for Feature-Based Object Detection 

The proposed algorithm detects the image in the dynamic environment, then 

finds the correspondence between the captured image and the referenced 

image of the database. The image captured can be out of the plane, can be 

scale variant, or can have plane rotation. The algorithm takes care of all these 

before matching. The image captured is matched in the gray mode so that the 

matching process is fast(Sharma, Singh, Prateek, et al., 2019) 
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6.4.1 Stepwise Approach for Proposed Algorithm 

Step 1: Read Images 

 Capture the objects from the dynamic environment and extract the 

interested objects. 

 Read the reference image from the database. 

Step 2: Detection of Feature Points 

 Identify the feature points (interest points) of both the images. 

 Identify the strongest interest (feature) points from the reference 

image. 

 Identify the strongest interest (feature) points from the captured image. 

Step 3: Extraction of Feature Descriptors 

 Extract feature vector using interest points in captured and reference 

images. 

Step 4: Finding of Putative Point Matches 

 Matching the features of both images using descriptors of each image. 

 Display putatively matched features of both images. 

Step 5: Localization of Object in the dynamic environment using Putative 

Matched 

 Geometric transformation is done which helps in localizing the object 

in the environment. 

 Eliminate outliers 

 Display pairs of matching point after removal of outliers  

 Display both objects 

 A bounded polygon is obtained for the reference image. 

 Polygon is transformed into the Cartesian coordinate system of the 

captured image. This transformed polygon helps in localizing objects 

in the dynamic environment. 

 Display the detected object. 
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CHAPTER 7 DESIGNING OF REINFORCEMENT 

LEARNING CONTROLLER ALGORITHM FOR THE 

BIPEDAL 

7.1 Reinforcement Learning: Introduction  

RL is an AI technique (Stone & Sutton, 2001; Sutton & Barto, 2012) in which 

usually problems are solved which are goal-oriented in the dynamic 

environment. The process of making it stronger. RL is learning  

1. What to do - situations are mapped with actions such that numerical 

reward signals are maximized.  

2. The learner explores the actions which have maximum reward by trial and 

error method.  

3. The selected actions affect the immediate reward as well as the next action 

to be taken along with all subsequent rewards. 

A model of Reinforcement Learning consists of  

 Set of state space of dynamic environment S which is a discrete set of 

state-space of environment S 

 Set of action space A which RL agent can take (which is discrete) 

 Set of reinforcement signals which is a scalar real value between {0, 1}. 

The two major characteristics of RL are: searching by a trial-and-error method 

and delayed reward. RL is defined by characterizing a learning problem. In RL 

there is always a dilemma between exploitation and exploration. RL agent 

exploits previous state and action pairs which resulted in maximum rewards 

and explores new pairs to get better selection criteria for the near future. 
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Stepwise execution of basic model of RL  

1. Agent receives as input ‘i’, which is at present state (s1) in the dynamic 

environment  

2. The agent selects an action from a set of actions (A) to generate output 

which is in step (3) 

3. (a) The action taken by the agent transits to another environment state (s2) 

(b) The state transition is informed to agents through a reward/ punishment 

signal (r)  

Figure 7.1 shows the basic model of the reinforcement signal. 

 

Figure 7.1   Basic Model of RL 

Reinforcement learning is used when the environment is dynamic and 

uncertain and the agent finds the optimal policy. The agent continuously 

interacts with the dynamic and uncertain environment and gets feedback 

information which is processed through an appropriate algorithm to get the 

near-optimal/ optimal policy through which the agent explored. The 

environment in which RL learns can be model-free or model-based. In a 

model-free method, the controller is learned without a learning model whereas 

in a model-based method(Matarić, 1997; Ng, 2012) first the algorithm is 

learned then it is used to derive the controller. Some model-free methods are: 

temporal difference methods, Q-learning, average rewards, and model-based 

methods are: Certainty equivalent, Dyna, queue Dyna, priority 

sweeping(Sharma et al., 2013). 
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Four main subsystems of the RL system are:  

a) Policy- reveals behavior at a specific time of the RL agent. 

b) Reward function- An objective defined along with RL function is 

defined, which affects immediate reward. This is a short term incentive 

to the agent. 

c) Value function- The reward selection depends on the action taken by 

the RL agent in the dynamic environment which affects the subsequent 

rewards of the agent. This is a long term reward forecast of the agent. 

These are also known as delayed rewards of the RL agent. 

d) Model of the environment (optionally) - Resembles the dynamic and 

uncertain environment in which the RL agent operates. 

RL is learning from a reward signal to choose an optimal (or near-optimal) 

action (a) in the present state (st) of the RL agent to optimize the reward (long-

term) of the algorithm. There are algorithms for optimizing the finite horizon, 

un-discounted reward V(t0) =        
 , the (in)finite horizon discounted 

reward V(t0) =        
 
 (γ is the discount factor) or also the average reward 

             
 

 
      , but the infinite horizon discounted reward is most 

commonly used. The agent learns from trial and error and attempts to adapt his 

action selection policy according to the received rewards. 

The popularity of reinforcement learning is due to its unsupervised learning 

approach. The steps usually followed are - defining the reward function, then 

the RL algorithm is learned by choosing the optimal action policy which 

maximizes the immediate and the delayed (long-term) reward. It is not that 

easy as it sounds. There is a huge variety of RL algorithms. 

Commonly used are value-based algorithms or policy search algorithms. The 

former agent learns from the expected discounted horizon reward for each of 

the next states while in the latter, the search is directly carried out in the 

parameters space of the action and next stable state. For policy search 

algorithms, any optimization algorithm can be used, so some approaches use 

genetic algorithms or simulated annealing to search for a good policy.  
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7.2 Reinforcement Learning: Reasons to use  

1. Once the RL agent learns for a specific dynamic environment then it can 

use the previously gained knowledge, which helps in adapting to the 

system as time passes. 

2. For a Model-free system, minimal help of experts is required for a model-

based system more help of an expert is required who possesses application 

domain knowledge. 

3. The agent learns in a very short span, and hence the solution is acquired. 

7.3 Problems of Reinforcement Learning 

In practice, a learning problem faces many restrictions to achieve an optimal/ 

near-optimal policy. Reinforcement Learning algorithms have the following 

issues: 

1. The curse of dimensionality: Discretization of state space and action 

space is required. For some high dimensional control problems, 

discretization is practically impossible. 

2. Many trials for learning: To train a system with huge state space and 

action space take a considerable amount of time, makes it a challenging 

task 

3. Finding algorithm parameters: The parameters which directly affect the 

performance of the RL algorithm should be taken into account then those 

parameters are set so that algorithm runs with fewer parameters and give 

preferable results. 

4.  Exploration - Exploitation Dilemma: In the learning trials process, the 

agent will become stuck in suboptimal solutions, because the agent has not 

searched through the state space thoroughly enough. On the other hand, if 

too many exploration steps are used, the agent will not find a good policy 

at all.  

5. A skilled ‘reinforcement learner’ is needed: Defining the reward 

function, and efficient state-space representation, or a good function 

approximation, choosing an appropriate algorithm, and setting reasonable 
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parameters of the algorithm are also important for effective execution of 

learning algorithm. 

7.4 Multi-Agent System 

Multi-Agent System (MAS) means a system in which many agents interact 

with each other in definite relationships and have different skills and 

knowledge about the dynamic and uncertain environment. Each agent has a 

sensor, motor, knowledge base, and learning component. Multi-Agent 

System uses Artificial Intelligence, intelligent control, computer 

technology, and sensor technology (optional). 

These components of agents incorporate some restricted activities : 

1. The sensor component can know a limited environment. 

2. The motor component is specialized in performing only a specific set of 

actions. 

3. There can be an incompatibility between actions carried out by different 

agents of the MAS. 

4. Multi-Agent System (MAS) or Finite State machine for this work is a 

Bipedal Walking Robot. 

7.5 Various Reinforcement Learning Algorithms  

7.5.1 Temporal Difference (TD) Learning Algorithm 

The Learning Agent learns through every single action it takes rather than on 

every episode or reaching the goal or end state(Sharma et al., 2013). 

                                                       (7.1) 

The value of (Target - OldEstimate) is called Target Error. StepSize is α called 

learning rate whose value lies between 0 and 1. 

Temporal Difference (TD) learning is a way to learn how to predict a value 

depending on the future values of a given state. 

Q-learning is a specific way of TD learning for learning Q-values. 
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7.5.2 Q – Learning Algorithm 

Q-learning is an off-policy model-free algorithm Reinforcement learning 

algorithm. The model-free means the agent learns through experience rather 

than the old available experienced data. This helps in handling stochastic 

elements and a large sequence of state-action pairs. The learning agent does 

not have any idea about the transition system and the rewards awarded. The 

agent has to interact with the dynamic and uncertain world. 

                                                            (7.2) 

Q-learning takes the optimal path. It assumes that the agent is following the 

best possible policy without attempting to resolve what is the actual policy. In 

Q-learning greedy policy is used. The main goal of Q-learning is to 

maximizing the Q-value or use a method that optimizes Q-value. 

7.5.3 SARSA (State-Action-Reward-State-Action) Algorithm 

SARSA is an on policy temporal difference control method. A policy is a state 

action pair tuple that helps in mapping action to be taken at each state. An on 

policy control method is applied by letting the agent transition from one state-

action pair to another state-action pair. SARSA take a safe path means it 

explores less and exploits more. 

                                                                (7.3) 

SARSA looks ahead to the next action to see the next step and update the Q-

values of its current state-action pair accordingly. SARSA takes the agent's 

actual policy into account. 

7.5.4 Deep Q – Network (DQN) Algorithm 

A deep Q network leverages a neural network to estimate the Q-value 

function. The input for the network is the current while the output is the 

corresponding Q-value for each of the actions. Q-learning has the drawback 

that it does not have any clue which action to take if the agent has not visited 

that state before this problem can be overcome by DQN. 

                  
                                                                           (7.4) 



101 
 

The loss function for the network is defined as the squared error between the 

target Q-value and the Q-value output from the network 

7.5.5 Deep Deterministic Policy Gradient (DDPG) Algorithm 

Deep deterministic policy gradient relies on actor-critic architecture: actor and 

critic. An actor tunes the parameter θ for the policy function i.e. decides the 

best action for a specific state. 

                                                                                                     (7.5) 

A critic is used for evaluating the policy function estimated by the actor 

according to temporal difference (TD) error. 

                                                                                               (7.6) 

Lower case v denotes the policy that the actor has decided.  

7.6 Why Q –Learning Method? 

Reinforcement Learning and Queue Learning (Q-Learning) are readily being 

used in robotics for navigation and exploration of the dynamic environment. 

The most widely used Q-learning algorithm is simple, efficient, and is very 

adaptive to the uncertain environment. Due to this Q-learning is ideal for 

robotics navigation. The aim of current work includes bipedal should learn 

goal-oriented navigation strategy and to learn the shortest path to reach goal 

state considering obstacles and current coordinates of an object in the dynamic 

environment. The search algorithms are modified to suit the way to solve the 

problems in a dynamic environment. The main goal is to maximize Q- 

learning or optimize the policy or choose the greedy policy(Sharma et al., 

2013). 

The bipedal learn the reward function from the task model from repeated 

trails. A modified RL algorithm with a forgetting mechanism that optimizes 

speed and memory consumption is proposed and implemented in the 

MATLAB platform. 
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Table 7.2   Comparison of Reinforcement Leaning Algorithms {(Mahadevan,1996);( Tesauro ,1995)} 

 TD Learning Q-Learning SARSA DQN DDPG 

Learning 

Method used 

Learns at each 

action taken 

Handle Problems 

with stochastic 

transition and 

rewards 

Learns with action 

performed by  the 

current policy 

Learns by 

minimising the 

loss 

Learns by Q-

learning and Policy 

gradient method  

Policy Type Off Off On Off Off 

Model Based/ 

Model Free 

Model Free RL Model Free RL Model Based RL Model Free RL Model Free RL 

Agent 

dependency 

Independent of 

agent 

Independent of agent Dependent on agent Independent of 

agent 

Independent of agent 

Learning 

Policy 

Learns Optimal 

Policy with the 

help of greedy 

policy 

Identify optimal 

policy for 

maximising total 

rewards over all 

successive steps 

Learns from current 

action, current 

state, reward, next 

action, next state. 

Trains function 

approximator and 

uses ε-greedy 

policy 

Learns by actor 

critic model 

Calculation 

Methods 

Estimates rewards 

for future actions 

and new state is 

appended without 

actually following 

any greedy policy 

Computes with the 

maximum expected 

rewards for an action 

taken in a given state 

Takes current state 

and action to 

estimate  

Optimal policy is 

feed to current 

state into optimal 

Q-function, takes 

action which 

maximizes all 

future actions 

Actor tunes θ 

paramneter and 

critic uses to 

estimate the policy 

function by TD error 
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7.6.1 Q – Learning Algorithm 

The original Queue Learning is a simple incremental algorithm that was 

designed keeping in mind the dynamic programming for delayed rewards. In 

the Q-learning algorithm, a two-dimensional lookup table is used which is 

indexed by state-action pairs. The bipedal is designed using Markov Decision 

Process (MDP). 

An MDP is an ordered group of <State(S), Action(A), State Transition 

probability(T), Reward Function(R)>.  

State S - The set of states should be finite including the start state and terminal 

state.  

Action A -Finite set of actions, available actions depends on the current state 

of bipedal.  

State Transition function T- Convey probability p(s΄|s, a) that bipedal will 

move from current state s to next optimal state s΄ when an action is taken from  

Reward function R - gives immediate reward r(s, a, s΄) real value given to 

bipedal when bipedal takes action a while transiting from state s (current state) 

to s' (next state). Reward signal is in the form of encouragement/ punishment 

to bipedal. 

St states at time t, at is the action taken by St at t time, r is an immediate reward 

received by bipedal when action a is taken and system transits from present 

state St to the next stable state St+1. 

Q-learning (Rezende et al., 2014; Sandon et al., 1956) iteratively approximate 

value function Q which tracks state-action. The learning of policy and the 

value function is carried out simultaneously. The RL algorithm is designed for 

the three joints of the leg of the bipedal. MATLAB platform is used to develop 

this algorithm. The algorithm is learned offline and online. Q-learning 

algorithm (Watkins, 1989)(Watkins & Dayan, 1992) 
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Initialize Q (s, a) Arbitrarily; 

Repeat (for each episode); 

Initialise s; 

Repeat (for each step of episode); 

Choose a from s using policy derived from Q; 

Take action a, observe r, s’; 

Q (s, a) ←Q (s, a) + α [ γ max a’ Q (s’, a’) – Q (s, a)]; 

s ←s’; 

until s is terminal, 

until all episode’s end. 

Figure 7.2   The Q-learning Algorithm 

7.7 Reinforcement Learning (RL) Model: Stepwise Approach 

Kinematics and dynamics analysis gives real-time information to the 

reinforcement controller of a bipedal robot. If any singular position comes 

during the movements of the joints, it is bypassed by the trajectory control of 

the joint. In the reinforcement control algorithm(Feil-Seifer & Matarić, 2008; 

B. Q. Huang et al., 2005; Y. Huang et al., 2013; Martinez-Cantin et al., 2009; 

Sternberg & Kaufman, 2016), the action value selection depends on maximum 

and minimum values of acceleration of joints. The magnitude of time required 

to take action can be too small or too large to switch to the next state. RL does 

not state the method in which the task is to be carried out. In RL, agents are 

programmed by rewards and punishments. The bipedal senses the next state 

with the help of a gyroscope sensor, which gives real-time orientation 

feedback about the current position of the joint to the RL controller. The 

reinforcement controller's selection of the next action is dependent on the 

current state. Further corresponding leg joint is moved to the next stable state. 

This process is iteratively carried out until the goal/ target point is reached by 

the bipedal. Figure 7.3 shows the basic RL model of the bipedal walking 

robot. The present work considers the dynamic environment, bipedal fall in 

the forward direction and reverse direction. RL algorithms are designed and 

developed for the hip, knee, and ankle of the bipedal robot of each leg.  
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Figure 7.3   Basic RL Model of the Bipedal Walking Robot 

After sensing the current position, the signal will process by the reinforcement 

controller. The controller looks at the look-up table and compares the next 

state of the system. During switching the system sometimes fails to reach the 

desired state. In reinforcement learning, the learning parameter decides the 

accuracy of the system(Sharma et al., 2020)(Bharadwaj et al., 2019). 

7.8 Forgetting Mechanism incorporation into Traditional Q- learning 

RL agent when interacts with a dynamic environment sometimes attempts to 

utilize prior learned knowledge. This expertise may be outdated as the 

environment is dynamic and uncertain which results in a change in the 

dynamics of the environment. This may change the exploration and 

exploitation dilemma. 

 To restrict the use of previously learned knowledge which may be outdated 

due to change in dynamics of environment incorporation of forgetting 

mechanism is done in traditional Q-learning algorithm. 

In a deterministic environment, Q-learning is simple as there is exist mapping 

for subsequent states and actions. The state values associated with each action 

rather than with each state-action pair are stored. In a dynamic environment, 

state-action pairs and the dynamic reward which is calculated in real-time are 

stored(Sharma, Singh, Bharadwaj, et al., 2019).  

The reward function is maintained by the State value function. The state-value 

function is initialized to zeros. When the RL agent explores an uncertain 
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environment, it learns rewards associated with each state of a dynamic 

environment. After some steps, it evaluates a tradeoff between the 

exploitations of new states, action pair, and exploitation of choosing actions 

that have previously resulted in near-optimal/ optimal policy. The Q-value 

function is a two-dimensional lookup table that is updated after each run a 

particular state is visited. (Figure 7.2) Q-learning is a model-free RL method. 

7.9 Action Selection Policy 

The generation of a random number between (0,1) results in the selection of 

action policy. In the first go, if the value lies in the range (0,0.5), exploitation 

of action selection takes place. If the value lies in the range (0.5,1), the 

exploration of new action from the set of actions is done. For subsequent goes 

the exploitation range is modified to (0,ε*ε-decay) and the exploration range is 

modified to (ε*ε-decay,1). RL favors exploration rather than exploitation 

which reveals the dynamic nature of the environment. RL agent is trained not 

to get stuck in the same state for a long time. ε controls policy updation which 

is based on the next state selection. For the current work, ε is assumed to be 

0.5, it is usually a scalar value (0,1). Updation is done as ε=ε* ε-decay after 

each episode. 

If ε→1 shows more dependency on the following state and so less forgetting 

occurs. The algorithm behaves like a traditional Q- learning algorithm. 

If ε→0 shows large dependency on functions of state transition and reward 

calculation and almost all previous rewards are forgotten between episodes. 

The exploration of the dynamic environment by the RL agent is carried out 

relatively in each episode, hence previously learned knowledge is not utilized. 
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CHAPTER 8 SIMULATION OF REINFORCEMENT 

LEARNING ALGORITHMS FOR BIPEDAL 

The stepwise approach to achieve the desired objectives: 

1. Observe the current state of the bipedal robot. This information is sensed 

by sensors which give exact orientations of all three joints along with the 

stable standing position of the bipedal.(Ghavamzadeh & Mahadevan, 

2007; Lee & Labadie, 2007; Mahadevan, 1996; Palmer, 2007; Schwartz, 

1993; Watkins & Dayan, 1992) 

2. Identification of object using feature-based extraction by the bipedal robot 

in its path of movement. The object in this case is a soccer ball on the path. 

The bipedal has to identify the object based on its feature and using an 

updated SURF algorithm along with the affine transformation. After 

identifying an object in the path bipedal finds its exact location or 

Cartesian coordinates in the dynamic environment. 

3. Action selection policy, joints are actuated by DC servomotors which 

move in full or no speed in both directions. Pulse modulations help in 

controlling the speed of the motor. Bipedal is not a preprogrammed robot, 

so deciding an action is dependent on the discounted factor (λ), epsilon (ε), 

learning rate (α), epsilon-decay, and some random values. 

4. Performing action. RL algorithm runs for discrete state values, the time 

taken to reach the goal state from the current state depends on the 

capabilities of the processor. Practically, no mathematical equation exists 

for time calculation. Hence, the time required by the bipedal to reach the 

goal point depends on probabilities and randomness to reach to next stable 

step. This depends on the action taken and the current state of bipedal.  

5. RL reaches the next stable state when an optimal/ near-optimal action is 

performed. 
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6. Calculation of random rewards is done when after selecting some optimal 

action the bipedal moves to the next stable state. When bipedal 

successfully achieve the next stable state, the positive reward is assigned 

for that action, and the next state is selected. The reward is dynamic in the 

current work and is calculated on the fly. The random reward is calculated 

by finding the distance from the present state to the goal state then 

multiplying the result so obtained by learning rate (α is considered 0.9 in 

this work) then taking the negative exponential of the evaluated value and 

then assigning it to the immediate reward. If the goal is not reached, then a 

negative reward can be assigned. In current work, no negative rewards are 

calculated to state and action as creates the problem in the proposed work. 

But when the bipedal robot is falling on the ground, to stand up on both 

feet. Robot to stand upright position needs to move both the feet either in 

the forward direction or reverse directions. 

7. Bipedal learns from experience. The reinforcement controller calculates 

the distance from the current state to the goal state by finding the 

difference between them. If the distance comes out to be zero then the 

bipedal reached the goal state and stops. If the distance is not zero then 

bipedal repeats sequence from step two until the goal point is reached. The 

optimal actions and policies are stored in the lookup table so that it can be 

used in the future if the same scenario exists.  

8. The bipedal moves near to the soccer ball and should kick it in any 

direction (if possible). Hence the objective is accomplished. 

8.1 Stepwise Approach to Desired Objectives (as Incorporated in 

Algorithms) 

Step 1: 1. Observing the current state of the bipedal robot by sensing with the 

 assistance of the sensor.  

  2. It is giving the actual/ real directions about the position of the ankle,     

 knee, and hip joint. 

Step 2: 1. The bipedal robot has to identify a feature-based object in its path of 

 movement. 

  2. The object, in this case, is the soccer ball on the path 
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  3. Identify the object based on its feature using the SURF algorithm 

 along with the affine transformation. 

  4. After identifying objects i.e. soccer ball, find their exact location. 

Step 3: 1. Involves deciding action. 

  2. DC servomotor is utilized to activate the joint. 

  3. A not preprogrammed robot, so deciding an action depends on the   

rate of learning(α), discounted factor(λ), epsilon-decay, epsilon(ε),      

and some randomness values. 

Step 4: 1. Involves performing an action. 

 2. RL algorithm is substantial for the discrete state between present 

state to goal/ target state. 

  3. Time is taken to arrive at this state relies upon processor 

capabilities. 

  4. No scientific conditions are required to compute the time. 

  5. Users cannot control the time to reach the bipedal robot to reach the      

 goal point. 

6. It depends absolutely upon the randomness and probabilities to 

reach the following step. 

Step 5: RL observes the new state by performing the action. 

Step 6: 1. RL calculates random rewards. 

  2. Bipedal robot when successfully reaches the following state, a     

positive immediate reward assign to action and state. (Negative reward 

are not considered) 

  3. When the bipedal robot is falling, stand up on both feet.  It must 

move the feet either in expedite/ invert direction to recover standup 

position. 

Step 7: 1. Involves learning of bipedal robot from the experience of the     

current run of the RL algorithm. 

  2. Stores optimal actions, optimal policy in the lookup table which 

helps if the scenario of the dynamic environment is the same in the 

future. 
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action at 
Reward rt 

Processed 
state sp State St 

 St+1 

rt+1 

  3. If the goal point is accomplished by the bipedal robot, 

reinforcement controller separation between current state and goal state 

if zero  then stop at that point 

  3. If it is not achieved the goal then repeat the sequence from step 

three  until the goal point is reached  

Step 8: 1. Involves the movement of the bipedal near to the soccer ball  

  2. Kick it in any direction (if possible) 

8.2 Model of Proposed Framework/ System  

The proposed framework has two principal parts where processing is done. 

They are Feature processing and Q-learning RL algorithm. Feature processing 

incorporates feature extraction, feature matching, and object identification. 

Resultant processed state(sp) is then contributed to the Q-learning algorithm 

then the action is captured in the dynamic environment resultant is 

following/next state (st+1) alongside dynamic reward generation(rt+1). The 

following state(st+1) is then contributed to feature processing through 

deferment and the reward generated (rt+1) is input to the Q-learning RL 

algorithm through a deferment(Sharma, Singh, Prateek, et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.1   Model of the Proposed System (RL agent) 

8.3 Implementation of Q-Learning Algorithm 

In the current scenario, the research society is attempting to design a self-

selecting proficient robot for a dynamic environment. In pre-programmed 

robots, the controller is carrying out the responsibility in a known 

environment. But, with the presence of a dynamic environment, because of the 

Feature 

Processing 

Dynamic 

Environment 

Delay 

Q- Learning 

 RL algorithm 
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absence of decision-making capabilities, these sorts of controllers neglect to 

carry out the responsibility. In such cases, pre-programmed bipedal doesn't 

have the foggiest idea of what to do. The reinforcement algorithm assists in 

carrying out the task/ responsibility. The reinforcement algorithm(Stone & 

Sutton, 2001; Sutton & Barto, 2012) manages the current situation with the 

bipedal robot. It is detecting the current state of the bipedal robot and taking 

the bipedal to the next state without knowing the mechanics and dynamics of 

the framework. So it is a model-free based controller.  

The reinforcement control algorithm is completely autonomous from the 

mechanics and kinematics of the body of the bipedal robot. But while picking 

action it is incompletely reliant on dynamic qualities. While choosing action to 

move to the next stable state, torque on joints is changing. Now the joint motor 

is fit to deal with these torques. There is some pecularity point while taking 

steps towards the following state.  

Pecularity/ Singularity is where the controller doesn't have the foggiest idea of 

what to do. (Details description in Appendix B and C) So there is a need to 

sidestep that point, otherwise, the controller is not sending any data to the 

controller to do the next job. The reinforcement control algorithm is dependent 

on value function, transition probabilities, and cost function reward. The 

reward function is a blend of positive and negative qualities. In the present 

work, the positive value of the reward is awarded when the controller is 

arriving at the subsequent step effectively. A negative reward isn't awarded to 

action since when bipedal falls on the ground, to reach to the goal position, 

bipedal ought to bring both feet either in a forward way or reverse way. If a 

negative reward is granted to state and action, next time feet aren't doing an 

action to carry feet in a reverse direction. The current work is centered around 

the balance/ dependability of the lower body of a bipedal robot. When some 

slipping condition occurs due to a change in environment, at that point of time 

robot isn't capable to come in an underlying state i.e standing position of a 

bipedal robot.  
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The reinforcement control algorithm assists with acquiring robots in standing 

conditions without any preprogramming of robots. The stability of the walking 

pattern of the bipedal is situated on the convex hull formed between the 

ground and the feet. 

8.4 Proposed Algorithm for Incorporating Forgetting Mechanism 

The proposed algorithm proceeds as (Sharma, Singh, Bharadwaj, et al., 2019) 

-  

1. The environmental parameters are decided: epsilon(ε), learning rate(α), 

epsilon decay, discount factor(λ) 

2. Q matrix is initialized to zero  

3. For every run - 

A. Selection of Initial state is conducted (initially received by 

sensors, at runtime evaluated by an algorithm) 

B. Do while target state has not been reached 

  a.   Select one among the potential actions for present state utilizing 

  random value generator (Exploit/ Explore) 

  b.   The random reward is computed, using this conceivable action 

  c.   Moving to the following state is examined, using this conceivable 

        action 

  d.  Maximum Q value for the following state is evaluated, which is 

   dependent on all possible actions  

  e.  Process Q(s,a) value  

   f.  Write intermediate results, current state, action selected, following 

  state, the total time for execution, immediate reward in an excel file  

  g.  In lookup/query table store the optimal actions, policies, and the 

  next state so that can be utilized in future  

  h.  For every run, intermediate results are stored in a new excel sheet 

   end do  

C. Express final Q-matrix, optimal strategy, total reward computed,     

mean random value generated, total time taken in another excel file. 

 D. For each episode, final results are stored in a new excel sheet. 
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4. Store values of each episode and the number of iterations required to 

reach the target state along with the total duration for each process in 

the third excel file. 

5. Plot graphs for comparison of the number of iterations in the learning 

and execution phase along with total time for execution in each 

episode, total reward awarded in each episode, mean random value 

generated in each episode. 

 

8.5 The Proposed System's Characteristics  

1. Storing and managing the number of states, action taken and next state 

separately decreases memory space. Resulting in a more effective 

learning algorithm. 

2. When the agent explores it learns reward/ penalty related to every state 

which is approximated by the value function of that state. 

3. After every step  

A. Selection of actions depends upon the generation of random values 

B. Computing reward/penalty  

C. The next state is assessed with the assistance of the current state and 

determines the reward  

D. Revision in Q-value (Policy) for visited state  

E. Epsilon recalculated by epsilon*epsilon decay  

F. Computing total rewards/penalty  

G. Computing total execution time   

H. The separation between the current state and the goal state assessed  

I.       How far is an agent from the goal state is tracked  

    

As the agent explores, the value of states arbitrarily remote from goal will 

move towards maximum value i.e. reward(max)/penalty(max), Q(max), and 

for states close to the goal will move towards a minimum value i.e. 

reward(min)/penalty(min), Q(min). 
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Assuming that after the vast period of exploration, all states arbitrarily remote 

from goal will accomplish the same value V(max) = 
            

   
 and V(min) 

= reward(min). 

8.6 Reinforcement Controller 

8.6.1 Model Free Controller: Reason to Use  

Model-free reinforcement learning controllers do not rely on any specific 

mathematical model of the system. These controllers do not rely on the stored 

experience but the online values calculated by the bipedal from the dynamics 

of the uncertain environment. The RL controller is solely based on online 

measurements collected directly from the dynamics of the bipedal and the 

environment. The bipedal finds an optimal policy that acts as a strategy used 

by the bipedal to behave in a dynamic environment(Sharma et al., 2020; 

Sharma, Singh, Prateek, et al., 2019).  

In a stochastic environment, if the bipedal takes an action in a certain state, the 

resulting next state of the environment might not necessarily always be the 

same. These uncertainties will make the task of finding the optimal policy 

harder. The bipedal has to deal with the uncertainties in the environment and 

decide the next action to be taken on the fly as the rewards are calculated and 

the distance between the current state of bipedal and the goal state (position of 

the soccer ball) is also calculated on the fly. This justifies that model-free 

controllers estimate the optimal policy without using the transition and reward 

functions of the dynamic environment. The Q-learning update rule also does 

not have any term of probabilities only the rewards which are being calculated 

on the fly and are not fixed to any constant value.  

8.6.2 Reinforcement Learning (RL) Controller 

A reinforcement controller is executed in the MATLAB platform as shown in 

Figure 8.2. Details of the Simulink block is described in Appendix F 

The bipedal robot decides on its own by knowing the current state and 

switches over to the following state without knowing the kinematics and 
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dynamics of the framework. In the current research work, the lower body of 

the bipedal robot is at an assured location and that location is 0° of ankle joint, 

-25° of the knee joint, and -15° of the hip joint for the left foot and the 

opposite of these values to the right foot.  

When these values are detected with the assistance of a gyroscope sensor, a 

bipedal robot needs to venture to every part of the goal point. The goal point 

for the ankle joint, knee joint, and hip joint are 20°,20°, and 15° individually. 

The time taking to arrive at these points is independent of the kinematics and 

dynamics computation. In reinforcement controller time taken to reach the 

next state, is reliant on processor abilities and generating the control signal. 

The reinforcement controller controls the intermediate position of the joint 

between the initial point and the goal point. 

 Figure 8.3 shows the interaction of the reinforcement controller to the lower 

body of bipedal. 

The randomness of the controller helps to take the action. The Q-learning 

algorithm allows the bipedal to go from one state to another state. The reward 

is gain during the switching by the state-action pair. After several running, the 

state-action pair of the reinforcement controller keeps the updated values. In 

the next time of running the system executes with the old values and tries to 

switch to the next state. 
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Figure 8.2   Simulink Block Diagram of Reinforcement Controller 
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-  

Figure 8.3   Interfacing of Reinforcement Controller to Lower Body of Bipedal
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CHAPTER 9 PROGRAMMING, TESTING, AND 

VALIDATION OF DESIGNED ALGORITHM 

Simulation is carried out for the proposed model as shown in Figure 9.1 in the 

SimSpace Multibody dynamics toolbox. Figure 9.1 shows an initial state of 

the lower body of the bipedal. After sensing the current state, the lower body 

is switching to a goal state without knowing any kinematics and dynamics of 

the present system. 

 

Figure 9.1   Bipedal Robot is at Current State 

 

9.1 Experimental Findings of Forgetting Q-learning Algorithm  

The simulation of the bipedal was carried out and while learning and 

execution results are stored for future study. Firstly, the bipedal was learning 

in which exploration was the main aim while in execution exploitation was the 

aim.  

Two distinct ways of storing the data are: 

1. Graphical representation of results as graphs and  

2. Store data in the lookup tables for future use. 
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The algorithm is characterized by  

1. Q(s,a) updation rule  

2. The function which evaluates action to be taken 

3. Forgetting Mechanism  

4. Randomness in reward/ penalty depending on the current state of RL 

agent and goal state(Sharma et al., 2020)ras. 

 

Figure 9.2   Locomotion of Bipedal Robot (Model 1) 

The objective is to provide upgraded execution in the dynamic condition 

by using exploratory conduct that keeps a larger set of possible solution 

then is kept by the traditional Q-learning algorithm. 

 

Figure 9.3   Locomotion of Bipedal Robot (Model 2) 
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In model 2, (Figure 9.3) hip, knee, and ankle joint were less prompt while 

the locomotion so slight changes in the diameter of the upper and the 

lower leg were done for the bipedal (Figure 9.2)  

9.1.1 Simulation Results  

Case I- Random value generated between (0,1) Singh, Bharadwaj, et al., 

2019) 

The intermediate, final, and graph data of the algorithm is saved in three 

different lookup tables along with a header for future use.  

The intermediate lookup table contains state, action transitions along with 

penalty/ reward, a random value generated in each episode along with the 

time required to run each episode, and distance between the current state 

of RL agent and goal state which RL agent has to reach.  

The final data lookup table has a mean value of random values generated 

to reach the goal state from starting/ initial state, final Q(s, a), the optimal 

policy obtained along with actions selected in optimal policy, total reward/ 

penalty to reach initial state to goal state along with total time. 

The graph data lookup table contains the number of iteration, mean 

random value, mean reward generation, the total time required to execute 

each episode. (Figure 9.4 and Figure 9.5) 

The graphs are plotted for  

1. Target state - current starting state of RL agent in each episode 

2. Target state - next state in each episode 

3. Mean random value and random value of each episode 

4. Distance between the current state of RL agent and goal state  

5. Reward/ penalty in each episode  

ε value ( =ε* ε-decay) in each episode incorporates the forgetting mechanism. 
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Figure 9.4   Case - I Reached the Goal State in 36 Iterations 
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Figure 9.5   Case I- Reached the Goal State in 12 Iterations 
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CASE II When the range of random number generation is fixed (0.4 to 0.6) 

With the same state set and action set (known set) and all parameters the 

same as the previous simulation, it is observed that it runs the maximum 

number of episodes but does not reach the goal state but gets stuck in 

between the start state and goal state. This is due to the reason that action of 

0 degree is considered due to which bipedal remains in a specific state for an 

infinite duration. (Figure 9.6) 

CASE III - When considering action deg(0) does not reach the goal as it is 

stuck in the same state loop.  

 

Without considering action deg(0) algorithm converges fast and it explores 

more as compared to exploit and does not fully exploit decay factor 

(Forgetting mechanism) (Figure 9.7) 
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Figure 9.6   Case II - Does not reach Goal State even after Executing 100 episodes 
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Figure 9.7   Case III - Reaches the Goal State in 8 Iterations
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9.1.2 Data Saved in Lookup Table for the future use  

Results found after simulations are stored in the lookup tables. Each episode 

stores its value in a different sheet which contains - current state of each 

episode, next state, random values generated, series of actions taken to reach 

goal state, list of immediate rewards along with delayed rewards, and total 

time required to execute current episode and the final result of each episode 

are stored for future use. ( Table 9.1 - Table 9.6 ) (Sharma, Singh, Bharadwaj, 

et al., 2019). 
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Table 9.1   Case I Final Lookup Table 

Mean 

Random 
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9 

Total 

Reward 

Total 

Time 

0.574685 0.00036 0.00036 0.00036 0 0 0 0 1 0 1 0 0 0.8248 0.2299 

 0.00595 0.00097 0.00595            

 0.00898 0.00261 0.00898            

 0.01902 0.00701 0.01902            

 0 0.01887 0.01887            

 0.35006 0.05079 0.35006            

 0 0.13669 0.13669            

 0 0 0            

 0 0 0            

 

Table 9.2   Case II Final Lookup Table 

Mean 

Random 
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9 

Total 

Reward 

Total 

Time 

0.44249 0.00068 0 0.00068 0 0 2 0 0 0 0 0 0 0.2562 0.15004 

 
0 0 0 

           

 
0 0 0.00261 

           

 
0 0 0 

           

 
0.07744 0 0.07744 

           

 
0 0 0 

           

 
0.13669 0 0.13669 

           

 
0 0 0 

           

 
0 0 0 
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Table 9.3   Case I Intermediate Lookup Table  

Random 

Number 

Current 

state 

Current 

Action 

Next 

State Reward Epsilon Time Distance 

0.954086903 1 1 1 0.000363 0.49 0.030433 8 

0.444338165 2 2 2 0.000363 0.4802 0.083759 7 

0.599817138 1 2 2 0.000978 0.470596 0.098299 7 

0.842621831 1 2 2 0.000978 0.461184 0.100825 7 

0.031200453 1 2 2 0.000978 0.45196 0.105586 7 

0.943594399 1 2 2 0.000978 0.442921 0.107787 7 

0.947922139 1 2 2 0.000978 0.434063 0.11089 7 

0.452984391 1 2 2 0.000978 0.425382 0.11394 7 

0.810832551 1 2 2 0.000978 0.416874 0.117054 7 

0.928879201 1 2 2 0.000978 0.408536 0.120004 7 

0.672717281 1 2 2 0.000978 0.400366 0.122202 7 

0.37233228 2 3 3 0.000978 0.392358 0.125802 6 

0.438823922 1 3 3 0.002632 0.384511 0.129029 6 

0.678649201 1 3 3 0.002632 0.376821 0.130739 6 

0.465070329 1 3 3 0.002632 0.369285 0.132765 6 

0.953264168 1 3 3 0.002632 0.361899 0.135408 6 

0.354697982 2 4 4 0.002632 0.354661 0.138923 5 

0.895860047 1 4 4 0.007083 0.347568 0.141278 5 

0.545434258 1 4 4 0.007083 0.340616 0.146281 5 

0.749283717 1 4 4 0.007083 0.333804 0.149378 5 

0.124877199 2 5 5 0.007083 0.327128 0.166131 4 

0.074749438 2 6 6 0.019063 0.320585 0.171523 3 

0.703651642 1 6 6 0.051303 0.314174 0.176905 3 

0.918950568 1 6 6 0.051303 0.30789 0.181696 3 

0.660071908 1 6 6 0.051303 0.301732 0.187919 3 

0.690104919 1 6 6 0.051303 0.295698 0.194076 3 

0.85372361 1 6 6 0.051303 0.289784 0.200103 3 

0.467901723 1 6 6 0.051303 0.283988 0.202879 3 

0.458478682 1 6 6 0.051303 0.278308 0.206439 3 

0.806104187 1 6 6 0.051303 0.272742 0.209979 3 

0.824767236 1 6 6 0.051303 0.267287 0.213536 3 

0.190436103 1 6 6 0.051303 0.261942 0.21704 3 

0.05681496 1 6 6 0.051303 0.256703 0.220601 3 

0.171418738 2 7 7 0.051303 0.251569 0.224403 2 

0.029515208 2 8 8 0.138069 0.246537 0.229863 1 
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Table 9.4   Case II Intermediate Lookup Table 

Random 

Number Current 

state 

Current 

Action 

Next 

State Reward Epsilon Time Distance 

0.114789 1 1 1 0.000363 0.49 0.043864 8 

0.289081 1 1 1 0.000363 0.4802 0.052354 8 

0.323706 3 3 3 0.000363 0.470596 0.062168 6 

0.299634 3 5 5 0.002632 0.461184 0.070919 4 

0.552771 1 5 5 0.019063 0.45196 0.100299 4 

0.554692 1 5 5 0.019063 0.442921 0.103989 4 

0.730647 1 5 5 0.019063 0.434063 0.108803 4 

0.773625 1 5 5 0.019063 0.425382 0.113474 4 

0.900847 1 5 5 0.019063 0.416874 0.124663 4 

0.138167 3 7 7 0.019063 0.408536 0.144453 2 

0.189413 1 8 8 0.138069 0.400366 0.150035 1 

 

Table 9.5   Case III Intermediate Result Sheet 

Random 

Number 

Current 

state 

Current 

Action 

Next 

State Reward Epsilon Time Distance 

0.503135 1 2 2 0.000363 0.49 0.010173 7 

0.454399 1 3 3 0.000978 0.4802 0.060253 6 

0.579907 1 4 4 0.002632 0.470596 0.068851 5 

0.581739 1 5 5 0.007083 0.461184 0.074326 4 

0.520729 1 6 6 0.019063 0.45196 0.104072 3 

0.473047 1 7 7 0.051303 0.442921 0.111539 2 

0.519718 1 8 8 0.138069 0.434063 0.11716 1 

 

9.2 Experimental Results of Feature-Based RL Agent 

 

Figure 9.8   Soccer ball with 200 strongest points identified 
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Table 9.6   Case III Final Lookup Table 

ean 

Random 
Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Action 9 

Total 

Reward 

Total 

Time 

0.518954 

0.00036 0 

 

0.00036 1 1 1 1 1 1 1 1 1 0.21949 0.1172 

 

0.000968 0 0.000968            

 

0.002606 0 0.002606            

 

0.007013 0 0.007013            

 

0.018872 0 0.018872            

 

0.050790 0 0.050790            

 

0.136689 0 0.136689            

 

0 0 0            
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Figure 9.8 shows an image to be compared to a soccer ball. The colored image 

is converted to the gray image than 200 strongest points were identified which 

help in feature matching(Sharma, Singh, Prateek, et al., 2019). 

 

Figure 9.9   Soccer ball on the ground, its gray image and 400 strongest points identified 

Figure 9.9 shows the image of the ground where the ball is present. The 

colored image is first converted to the grayscale image than 400 strongest 

points were identified which help in feature matching. The strongest point 

identification reveals that the ball has more points identified and less on the 

ground. 
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.  

Figure 9.10   Top - Matched Points including Outliners  

  Bottom - Matched Point including only Inliers 

Figure 9.10 matches the feature obtained from Figure 9.8 and Figure 9.9. The 

left side is Figure 9.8 strongest point image and the right-hand side is Figure 

9.9 strongest point identified image. These two images are affine feature 

matched top figure shows including outliers on SURF algorithm and lower 

figure shows including only inliers on SURF algorithm. 

Figure 9.11 shows ball identification on the ground in both gray and colored 

images. Hence, the feature is processed, and the result states (position) of a 

soccer ball on the ground. The soccer ball is identified on the ground. The 

position of the ball is calculated in Cartesian coordinates and passed to the Q-

learning RL algorithm. The controller then sends an instruction to bipedal 

joints to move the bipedal robot to reach the soccer ball accordingly(Sharma, 

Singh, Prateek, et al., 2019). 
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9.3 Hierarchical Structuring of RL System 

Training the hip joint for the forward movement is done then the knee joint is 

trained using forgetting mechanism Q-learning algorithm then the ankle joint 

is trained similarly considering the contact forces of the feet too.  

 

Figure 9.11   Soccer Ball identification done in Gray and Color Image 

The bipedal is trained, in first-run Bipedal walks with jerks as seen in each of 

the joints and takes more execution time i.e. more iterations of the proposed 

training algorithm. But when a simulation is executed repeatedly then the 

trajectory of the bipedal is smooth and moves fast. As the Gait cycle is fixed it 

reaches a goal point at the approximately same time. Previously when the 

simulation started the learning of the bipedal is being carried out.  

For a few steps of the learning phase, the optimal data is stored in the lookup 

table. The optimal action, next state, rewards, and optimal policy values are 

stored in the excel file. After the completion of the learning phase, these data 
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are further utilized for further execution of the bipedal in the same dynamic 

environment. This results in a considerable amount of reduction in the number 

of iterations. In the learning phase, the maximum number of iterations was 51-

52 or 46 depending upon the joint and the initial and goal state and eventually 

reduced to 21-23 as a minimum after the learning phase was completed. In the 

execution phase, the maximum number of iterations is 18 and eventually 

reduces to 2 as a minimum, This is so by using the optimal action and the next 

state values in the lookup table rewards are calculated on the fly.  

 

Figure 9.12   Locomotion of Bipedal Robot after Object Identification 

9.3.1 Proposed Assumption 

At the beginning of the research, the learning phase was based on the number 

of strides or the number of episodes to be executed but later it was based on 

the range of the number of iterations, which when reaches a minimum range 

(21-25) the learning phase or the exploitation stage of bipedal comes to end. 

This leads to the starting of the execution phase or the exploitation stage 

where the bipedal uses the stored data in the lookup table if the scenario of the 

dynamic environment is the same. The same scenario is justified by the object 

identifications in the dynamic environment, the Cartesian coordinate of the 

object is calculated when these are the same as one stored in the database, then 

only the execution phase has to be carried out using the stored lookup data. 
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When Cartesian coordinates stored vary then the scenario is a new one and has 

to start from scratch means to continue the learning phase(Sharma et al., 

2020). 

In the learning and execution phase, the main concerned area is the maximum 

and a minimum number of iterations in both these phases along with the total 

time required in the learning and execution phase of each episode/ stride. 

9.3.2 Learning Phase 

In the learning phase, learning is done starting from 25 strides, 50 strides, 75 

strides, 100 strides, 150 strides, 200 strides. The trends observed in these 

strides in all three joints are almost the same.  

For 25 strides the variation in random values, total time, and the number of 

iterations has a zigzag pattern, this shows that they do not reach some stable 

range of value. 

For 50 strides, 75 strides, 100 strides the variation in the values of random 

values, total time and the number of iterations takes a range starting from a 

maximum of 51-52 to a minimum of 21-23. In most cases the number of 

iterations comes out to be between 21-23 and the time taken is in milliseconds 

to complete the iterations. Mean random values usually vary between 0.4 to 

0.6 which shows a dilemma between exploration and exploitation. There is 

some variation in total execution time which includes the time of executing the 

iteration as well as writing optimal data in the lookup table. As the number of 

strides increases, table size also increases as well as if some condition has 

occurred previously then data is not stored again in the lookup table. This is a 

time-consuming task as first have to search if data is already stored if yes the 

skip if data does not exist then go to the end of the lookup table and store data. 

For 150 strides and 200 strides the learning time is very less but storing data in 

lookup takes time and so the total execution time of the episodes increases. 

The values of random values, total time, and the number of iterations take a 

range starting from a maximum of 51-52 to a minimum of 21-23. 
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9.3.3 Execution Phase 

In the execution phase, execution starts from 25 strides, 50 strides, 75 strides, 

100 strides, 150 strides, 200 strides. The trends observed in these strides in all 

three joints are almost the same. There are many variations in the number of 

iterations in the execution phase, the bipedal reads the current position of the 

joint and then searches in the lookup table for the defined angle, the optimal 

actions, the next probable state, and the optimal policy and reaches the goal 

state or the subsequent stable state for the corresponding joint.  

For 25 strides the variation in random values, total time, and the number of 

iterations has a zigzag pattern, this shows that they do not reach some stable 

range of value.  

For 50 strides, 75 strides, 100 strides the variation in the values of random 

values, total time, and the number of iterations takes a range starting from a 

maximum of 18 to a minimum of 2. In most cases, the time taken is in 

milliseconds to complete the iterations but the total execution time is 

considerable, mean random values usually vary between 0.4 to 0.6 which 

shows a dilemma between exploration and exploitation. There are some 

variations in total execution time which include the time of executing the 

iteration as well as searching and reading optimal data from a lookup table.  

As the number of strides increases, the time consumed in the task of searching 

the data in the lookup table is considerably more. This, in turn, increases the 

execution time which results in the approximately same time for the execution 

phase as the learning phase.   

For 150 strides and 200 strides, the execution time is more as searching data in 

lookup takes time and so the total execution time of the episodes increases. 

The values of random values, total time, and the number of iterations take a 

range starting from a maximum of 18 to a minimum of 2. 
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9.4  Value comparison of Hip, Knee and Ankle Joints in Learning and 

Execution Phase 

For Hip Joint (Sharma et al., 2020) 

In the first episode goal of walking stable is achieved in 47 iterations 

The starting angle of the hip joint is -45
o
 

For Knee Joint 

In the first episode goal of walking stable is achieved in 51 iterations 

The starting angle of the hip joint is 0
o 

For Ankle Joint 

In the first episode goal of walking stable is achieved in 51 iterations 

The starting angle of the hip joint is -30
o 

9.4.1 Comparison for Number of Iterations in 1
st
 Episode  

For Hip, Knee, and Ankle Joint 

In the 1
st
 episode goal of walking stable is achieved in 51-43 iterations for 

each of the joints. Table 9.7, 9.8, 9.9 shows the reduced number of iteration in 

the 1
st
 episode for each of the joints. 

9.4.2 Comparison for Number of Iterations in 200
th

 Episode  

For Hip, Knee, and Ankle Joint 

In the 200
th

 episode goal of walking stable is achieved in 21-23 iterations for 

each of the joints. Table 9.10, 9.11, 9.12 shows the reduced number of 

iteration in the 200
th

 episode for each of the joints. 
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Table 9.7   Hip Joint (Final Data Episode 1) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

43 0.47244 1.39685 0.10581 0 2.49E-09 2.49E-09 1 0 0 

    

6.83E-09 0 6.83E-09 

   

    

1.84E-08 0 1.84E-08 

   

    

4.86E-08 4.86E-08 4.86E-08 

   

    

1.32E-07 0 1.32E-07 

   

    

6.69E-07 3.52E-07 6.69E-07 

   

    

0 9.47E-07 9.47E-07 

   

    

0 2.55E-06 2.55E-06 

   

    

0 6.86E-06 6.86E-06 

   

    

1.85E-05 0 1.85E-05 

   

    

0 4.97E-05 4.97E-05 

   

    

0.000136 0 0.000136 

   

    

0.000367 0 0.000367 

   

    

0.000987 0 0.000987 

   

    

0 0.002606 0.002606 

   

    

0.007146 0 0.007146 

   

    

0.019231 0 0.019231 

   

    

0.051756 0 0.051756 

   

    

0.139287 0 0.139287 

   

    

0.699304 0 0.699304 

   

    

0 0 0 
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Table 9.8   Knee Joint (Final Data Episode 1) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

51 0.55394 1.4022 0.21696 4.74E-09 2.49E-09 4.74E-09 0 0 0 

    

6.71E-09 0 6.71E-09 

   

    

1.84E-08 0 1.84E-08 

   

    

4.86E-08 4.86E-08 4.86E-08 

   

    

1.32E-07 0 1.32E-07 

   

    

3.59E-07 0 3.59E-07 

   

    

9.65E-07 0 9.65E-07 

   

    

0 2.55E-06 2.55E-06 

   

    

6.99E-06 0 6.99E-06 

   

    

1.88E-05 0 1.88E-05 

   

    

0 4.97E-05 4.97E-05 

   

    

0.000136 0 0.000136 

   

    

0.000367 0 0.000367 

   

    

0.000987 0 0.000987 

   

    

0.002655 0 0.002655 

   

    

0.007146 0 0.007146 

   

    

0.019231 0 0.019231 

   

    

0.051756 0 0.051756 

   

    

0.139287 0 0.139287 

   

    

0.699304 0 0.699304 

   

    

0 0 0 
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Table 9.9   Ankle Joint (Final Data Episode 1) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

51 0.55394 1.4022 0.18134 4.74E-09 2.49E-09 4.74E-09 0 0 0 

    

6.71E-09 0 6.71E-09 

   

    

1.84E-08 0 1.84E-08 

   

    

4.86E-08 4.86E-08 4.86E-08 

   

    

1.32E-07 0 1.32E-07 

      

 

3.59E-07 0 3.59E-07 

   

   

 

9.65E-07 0 9.65E-07 

   

   

 

0 2.55E-06 2.55E-06 

   

   

 

6.99E-06 0 6.99E-06 

   

   

 

1.88E-05 0 1.88E-05 
   

   

 

0 4.97E-05 4.97E-05 
   

    

0.000136 0 0.000136 

   

    

0.000367 0 0.000367 

   

    

0.000987 0 0.000987 

   

    

0.002655 0 0.002655 

   

    

0.007146 0 0.007146 

   

    

0.019231 0 0.019231 

   

    

0.051756 0 0.051756 

   

    

0.139287 0 0.139287 

   

    

0.699304 0 0.699304 

   

    

0 0 0 
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Table 9.10   Hip Joint (Final Data Episode 200) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

21 0.49883 0.96286 0.00161 0.483517 0.537241 0.537241 1 1 1 

    

0.537241 0.596934 0.596934 

   

    

0.596934 0.66326 0.66326 

   

    

0.736226 0.736956 0.736956 

   

    

0.736964 0.81884 0.81884 

   

    

0.909813 0.909822 0.909822 

   

    

1.009902 1.010913 1.010913 

   

    

1.010914 1.123235 1.123235 

   

    

1.246801 1.248036 1.248036 

   

    

1.385326 1.386699 1.386699 

   

    

1.386731 1.540756 1.540756 

   

    

1.540841 1.711896 1.711896 

   

    

1.900058 1.901956 1.901956 

   

    

1.904653 2.112881 2.112881 

   

    

2.116832 2.346559 2.346559 

   

    

2.601829 2.604363 2.604363 

   

    

2.619011 2.885866 2.885866 

   

    

2.918133 3.185337 3.185337 

   

    

3.482238 3.482259 3.482259 

   

    

3.715767 0 3.715767 

   

    

0 0 0 
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Table 9.11   Knee Joint (Final Data Episode 200) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

21 0.54280 0.96286 0.00615 0.483516 0.537241 0.537241 1 1 1 

    

0.537241 0.596934 0.596934 

   

    

0.59694 0.66326 0.66326 

   

    

0.66399 0.736956 0.736956 

   

    

0.736955 0.81884 0.81884 

   

    

0.81974 0.909822 0.909822 

   

    

0.910823 1.010912 1.010912 

   

    

1.010914 1.123235 1.123235 

   

    

1.123252 1.248036 1.248036 

   

    

1.249421 1.386699 1.386699 

   

    

1.386731 1.540756 1.540756 

   

    

1.710202 1.711895 1.711895 

   

    

1.714003 1.901956 1.901956 

   

    

2.110799 2.112881 2.112881 

   

    

2.114535 2.346559 2.346559 

   

    

2.604338 2.604363 2.604363 

   

    

2.619011 2.885866 2.885866 

   

    

3.182664 3.185337 3.185337 

   

    

3.272123 3.482259 3.482259 

   

    

3.715767 0 3.715767 

   

    

0 0 0 
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Table 9.12   Ankle Joint (Final Data Episode 200) 

Iterations Mean Random Total Reward Total Time Q(:,1) Q(:,2) C Action 1 Action 2 Action 3 

23 0.52326 0.23914 0.00097 8.55E-09 1.17E-05 1.17E-05 1 1 1 

    

4.87E-06 3.11E-05 3.11E-05 

   

    

3.1E-05 8.46E-05 8.46E-05 

   

    

1.98E-07 0.000229 0.000229 

   

    

0.000256 0.000611 0.000611 

   

    

0.000286 0.001645 0.001645 

   

    

0.000687 0.004444 0.004444 

   

    

0.001832 0.011983 0.011983 

   

    

0.011947 0.032218 0.032218 

   

    

0.002313 0.086632 0.086632 

   

    

0.014933 0.348896 0.348896 

   

    

0.629748 0.390436 0.629748 

   

    

0.634336 0.93425 0.93425 

   

    

0.000987 1.231763 1.231763 

   

    

0.007109 1.468888 1.468888 

   

    

1.521333 1.733414 1.733414 

   

    

1.748164 2.1041 2.1041 

   

    

1.960922 2.323825 2.323825 

   

    

2.204555 2.525091 2.525091 

   

    

2.652246 0 2.652246 

   

    

0 0 0 
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9.4.3 Comparison of Reduction in Number of Iterations in Successive 

Episodes For Hip, Knee, and Ankle Joint 

In all three joints number of iterations reduces in the execution phase as 

compared to previous learning phase episodes. After a point of time, it stays in 

between a specific range from 21 - 25 iterations per episode for the learning 

phase. This shows that the bipedal is learning from its experience of previous 

episodes and using that in learning further(Sharma et al., 2020).  

These values are stored for a run as execute, the algorithm for next gait of the 

bipedal process all values are reset, and it restarts its learning as the 

environment is dynamic. After a few episodes, the bipedal starts using the 

optimal actions from the action set as they are stored in the lookup table. The 

values are retrieved and the scenarios are compared if the position of an object 

in the coordinate system is the same then the dynamics of the system are 

known to the bipedal. The bipedal exploits the previous knowledge data which 

it has learned in the learning phase and trains fast in the execution phase and 

reached the soccer ball.  

If the scenario changes mean the dynamics of the environment are changing 

then the RL agent executes the proposed learning algorithm from scratch. The 

execution of the proposed forgetting mechanism RL algorithm depends on the 

execution of the RL based object identification algorithm whose result is the 

dynamics of the environment. The dynamics of the environment are calculated 

then compares if the same scenario exists in the previously learned knowledge, 

then executes that same sequence of steps that were successful and gave 

optimal policy to follow and stored in the lookup table. If such a scenario does 

not exist means no such data is found in the lookup table then bipedal run in 

the dynamics of the environment and store the successful and exploited state-

action pair in the state action lookup table. 
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Table 9.13   Comparison of Reduction in Number of Iterations in Successive Episodes 

HIP JOINT KNEE JOINT ANKLE JOINT 

Episodes Iterations Episodes Iterations Episodes Iterations 

1 43 1 49 1 51 

2 37 2 45 2 35 

3 29 3 41 3 31 

4 33 4 43 4 31 

5 33 5 37 5 29 

6 29 6 30 6 29 

7 31 7 25 7 27 

8 29 8 27 8 27 

9 25 9 25 9 25 

10 23 10 23 10 23 

11 21 11 23 11 22 

12 25 12 23 12 23 

13 27 13 21 13 22 

14 27 14 21 14 23 

15 25 15 25 15 22 

16 23 16 23 16 23 

17 21 17 22 17 25 

18 23 18 22 18 25 

19 23 19 21 19 25 

20 23 20 23 20 27 

21 24 21 22 21 23 

22 26 22 23 22 25 

23 25 23 23 23 27 

24 22 24 21 24 25 
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9.4.4 Comparison of Number of Iterations Vs Episodes in Learning and 

Execution phase for all joints  

Number of Iterations Vs Episodes (Hip Joint) 

 

  

  

 

 

Figure 9.13   Comparison of  Hip for 25, 50, 75, 100, 150, 200 strides 
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Figure 9.13 shows that in the learning phase as strides increases from 25 to 

200 number of minimum iterations required to learn decreases from 51 to 21. 

This reveals that the bipedal is using the lookup data when the dynamics of the 

system is not changing. In the executing phase as strides increases from 25 to 

200 number of minimum iterations required to execute varies from 2 to 18 

depending on the start angle of the hip joint.  

As the knee is attached with the pelvis whose center is usually COM of the 

biped. To learns the stable position of the hip joint is relatively easy as 

compared to the knee and ankle joint. Biped to be stable has some 

approximate angle so that the COM of the biped is in between both legs. 

Figure 9.14 shows that in the learning phase as strides increases from 25 to 

200 number of minimum iterations required to learn decreases from 47 to 21. 

This reveals that the bipedal is using the lookup data when the dynamics of the 

system is not changing. In the executing phase as strides increases from 25 to 

200 number of minimum iterations required to execute varies from 2 to 18 

depending on the start angle of the knee joint. The knee joint angle varies as 

the gait proceeds, but to reach an angle at which the knee joint is stable and 

the bipedal does not get tumbled or imbalanced the current joint angle value 

plays an important role. After getting the current state and knows the goal state 

(approximately) different actions have opted means different options of how 

the knee joint should reach a stable angle. 
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Number of Iterations Vs Episodes (Knee Joint) 

 

  

 
 

 

 

Figure 9.14   Comparison of Knee for 25, 50, 75, 100, 150, 200 strides 
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Figure 9.15 shows that in the learning phase as strides increases from 25 to 

200 number of minimum iterations required to learn decreases from 51 to 21. 

This reveals that the bipedal is using the lookup data when the dynamics of the 

system is not changing. In the executing phase as strides increases from 25 to 

200 number of minimum iterations required to execute varies from 2 to 18 

depending on the start angle of the ankle joint. The most difficult joint to train 

is the ankle joint.  

The system follows the hierarchical structure first to train the hip joint to reach 

a stable position than train the knee joint to reach a stable position so that 

bipedal remains stable. Last but not least ankle joint is trained which has to 

control the damping and ZMP of the bipedal so has to adjust the ankle joint of 

the bipedal taking them into account. The ankle joint is calculated considering 

that the sole is in contact with the ground. When the sole touches the ground 

the damping comes into the picture as there will be jerks when the sole 

touches the ground and the angle of the ankle is adjusted in real-time to keep 

the bipedal stable. This stability is checked by the calculation of ZMP which 

should lie in the convex hull of the gait. 

Figures 9.13, 9.14, 9.15 show a remarkable decrease in the number of 

iterations in the execution phase of the hip, knee, and ankle joint as compared 

to the number of iterations in the learning phase of the bipedal. 
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Number of Iterations Vs Episodes (Ankle Joint)  

 

  

  

 

 

Figure 9.15   Comparison of Ankle for 25, 50, 75, 100, 150, 200 strides 
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9.4.5 Comparison of Total Time for Learning and Execution phase for 

Hip, Knee, and Ankle Joint 

Total Time Vs Episodes (Hip Learning) 

  

  

 

 

Figure 9.16   Total Time Vs episodes for Hip Learning 

As seen in figure 9.16, for hip joint learning there are variations in the hip 

joint learning as the number of strides/episodes increases. These are visible in 

100, 150 strides before, and after that, they have a straight-line graph. 
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Total Time Vs Episodes (Hip Execution) 

  

 
 

 

 

Figure 9.17   Total Time Vs episodes for Hip Execution 

As seen in Figure 9.17, the variations are more in the execution phase as 

compared to the learning phase. In the execution phase, the variations are 

visible from 50 strides and followed in 75, 100, 150 strides. A stable graph is 

visible for 25 and 200 episodes. 
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Total Time Vs Episodes (Knee Learning) 

  

  

 

 

Figure 9.18   Total Time Vs episodes for Knee Learning 

As the learning of the joints is done hierarchically first the stable angle of the 

hip is fixed then the knee joint is learning. The variations of hip joint learning 

are propagated in the learning of the knee joint. As seen in figure 9.18, the 

variations are more as compared to the hip joint in all the strides of learning of 
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the knee joint. There are large deviations in the values of the total execution 

time for almost all strides that are visible in the graph. 

Total Time Vs Episodes (Knee Execution) 

  

  

 

 

Figure 9.19   Total Time Vs episodes for Knee Execution 

As the executing of the joints is also carried out the hierarchically first stable 

angle of the hip is fixed then the knee joint is executed. The variations of the 

hip joint executions are propagated in the execution of the knee joint. As seen 

in figure 9.19, the variations are more as compared to the hip joint in all 
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strides of execution of the knee joint. There are large deviations in the values 

of the total execution time for almost all strides that are visible in the graph. 

 

Total Time Vs Episodes (Ankle Learning) 

  

  

 

 

Figure 9.20   Total Time Vs episodes for Ankle Learning 

As seen in figure 9.20, the learning phase is far stable as compared to that of 

hip joint and knee joint as ankle joint also have contact forces to adjust and the 

zmp compensator at the runtime to stabilize ankle joint angle.  
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Total Time Vs Episodes (Ankle Execution) 

  

  

 

 

Figure 9.21   Total Time Vs episodes for Ankle Execution 

As seen in figure 9.21 there is the least variation in the execution phase as zmp 

compensator and the contact forces and torques are acting at run time. If the 

leg is not in contact with the ground then variation in angle is more and the leg 

should not hit the ground with force to avoid damages in bipedal. 
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9.4.6  Random Values Generations for 200 Episodes 

Action selection depends on the generation of random values. If random value 

generated < 0.5 then random actions are selected from a defined action set. 

Hence, bipedal explores the dynamic environment.  

Hip Joint  

 

Knee Joint 

 

Ankle Joint 

 

Figure 9.22   Comparison of Random Value Generation for all Three Joints 

If the random value generated is greater than 0.5 then greedy (optimal) action 

is selected from the defined action set. Greedy or optimal actions are actions 

that are chosen frequently by the bipedal. Hence, bipedal exploits a dynamic 

environment. This helps bipedal to learn fast and reach the optimal policy with 

maximum immediate reward. Due to this bipedal has a smooth and stable 

trajectory without jerks. 



158 
 

9.4.7  Mean Random Values, Total Rewards calculation of Learning and 

Execution Phase for Hip Joint, Knee Joint, Ankle Joint  

Mean Random Value, Total Rewards Vs Episodes (Hip Joint Learning) 

 

  

  

 

 

Figure 9.23   Comparison of Learning Phase of Reward Generation of Hip Joint 
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Figure 9.23 shows that in the learning phase as strides increases from 25 to 

200 randomness in rewards generation increases which reveals that bipedal if 

exploring more optimal actions to reach the goal but, in end, uses greedy 

actions i.e. exploits greedy action. 

Mean Random Value, Total Rewards Vs Episodes (Hip Joint Execution) 

 

 
 

 
 

 

 

Figure 9.24   Comparison of Executing Phase of Reward Generation of Hip Joint 
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Figure 9.24 shows that in execution phase as strides increases from 25 to 200 

randomness in rewards generation is almost constant which reveals that 

bipedal if exploiting optimal actions to reach the goal but there are some 

spikes which are exception or error which shows that hip joint goes to near 

about its original start position and so randomness in rewards is there. 

Mean Random Value, Total Rewards Vs Episodes (Knee Joint Learning) 

 

  

  

 

Figure 9.25   Comparison of Learning Phase of Reward Generation of Knee Joint 
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Figure 9.25 shows that in the learning phase as strides increases from 25 to 

200 randomness in rewards generation increases which reveals that bipedal if 

exploring more optimal actions to reach the goal but, in end, uses greedy 

actions i.e. exploits greedy action. 

Mean Random Value, Total Rewards Vs Episodes (Knee Joint Execution) 

 

  

  

 

 

 Figure 9.26   Comparison of Executing Phase of Reward Generation of Knee Joint 
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Figure 9.26 shows that in execution phase as strides increases from 25 to 200 

randomness in rewards generation is almost constant which reveals that 

bipedal if exploiting optimal actions to reach the goal but there are some 

spikes which are exception or error which shows that knee joint goes to near 

about its original start position and so randomness in rewards is there. The 

randomness in the knee is more as compared to the hip joint as joints are 

trained hierarchically if randomness is there at the hip joint in that stride then 

it is propagated to the knee joint. More spikes in the graph can be seen of 200 

steps. 

Mean Random Value, Total Rewards Vs Episodes (Ankle Joint Learning) 
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 Figure 9.27   Comparison of Learning Phase of Reward Generation of Ankle Joint 

Figure 9.27 shows that in the learning phase as strides increases from 25 to 

200 randomness in rewards generation increases which reveals that bipedal if 

exploring more optimal actions to reach the goal but, in end, uses greedy 

actions i.e. exploits greedy action. 

Figure 9.28 shows that in execution phase as strides increases from 25 to 100 

randomness in rewards generation is almost constant which reveals that 

bipedal if exploiting optimal actions to reach the goal but there are some 

spikes which are exception or error which shows that ankle joint goes to near 

about its original start position and so randomness in the rewards is there. The 

randomness of the hip and knee is carried out to the ankle joint as joints are 

trained hierarchically. If randomness is there at hip and knee joints in that 

stride, then it is propagated to the ankle joint. But the ankle joint has a 

damping controller and ZMP controller which helps in minimizing this 

propagated error so that the stability of the bipedal is not affected.  

Bipedal is more stable due to the execution of these controllers in real-time, 

resulting in fewer spikes in the graph of different strides. 
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Mean Random Value, Total Rewards Vs Episodes (Ankle Joint Execution) 

 

  

  

 

 

Figure 9.28   Comparison of Executing Phase of Reward Generation of Ankle Joint 

9.5  Comparison of Combined Episodes for Hip, Knee and Ankle Joints in 

Learning and Execution Phase 

The total episodes or number of iterations for the hip, knee, and ankle joint in 

the learning phase is evaluated by adding up all the individual numbers of 
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iterations required to achieve the goal for each joint. Similarly, the total 

episodes for the execution phase are evaluated by combining the number of 

iterations of the hip, knee, and ankle. These values are then compared for each 

of 25, 50, 75, 100, 150, and 200 strides. 

Number of Iterations Vs Episodes (All Joint) 

 

  

  

 

 

Figure 9.29   Comparison of Learning and Executing Phase of all Joint Data 
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9.6  Comparison of Total Time for Hip, Knee, and Ankle Joints in 

Learning and Execution Phase 

The total time required for the learning of the hip, knee, and ankle joint in the 

learning phase is evaluated by adding up all the individual time required to 

achieve the goal for each joint. Similarly, the total time required for the 

execution phase is evaluated by combining the total time required for the hip, 

knee, and ankle. These values are then compared for each of 25, 50, 75, 100, 

150, and 200 strides 

Total Time Vs Episodes (All Joint) 
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Figure 9.30   Comparison of Total Time for Learning and Executing Phase of all Joint 

Data 

9.7 State of Art Algorithm: Computer Vision 

The present work can be to some extend be compared with a computer 

vision state-of-the-art algorithm. 

From a broader point of view, the main steps for computer vision are object 

classification, object identification, and object tracking.  

Looking into the broader aspect, the present work has also performed these 

tasks along with some other tasks which makes them different from state of 

art algorithm. 

The Bipedal first performs self-localization means finding its position in the 

world frame, then Bipedal identifies the object (soccer ball) using object 

feature detection SURF algorithm, then localizes the soccer ball concerning 

world frame, then calculated the distance between itself and the soccer ball. 

The above stated four steps are the same as performed in computer vision 

with a slight difference. For object identification, deep leaning or deep Q 

learning (DQN) algorithms are not used to reduce computation overheads 

and wanted to keep a clear difference between reinforcement and deep 

learning. 

The next step of the proposed work was the reinforced learning of bipedal 

to walk stably and efficiently with minimal jerks and losses. For this, the 

forgetting mechanism was incorporated in the Q-learning algorithm. Some 

major changes were made in the traditional Q-leaning algorithm so that the 

results are as expected in the dynamic environment. The changes to list 

down are - incorporation of forgetting mechanism so that bipedal does not 
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use out of date knowledge in the dynamic and uncertain environment, the 

rewards were not fixed/ constant but were calculated on the fly, discount 

factor was also changing in each go exponentially and for every 30ms the 

distance between the soccer ball and the bipedal is calculated. Some offline 

fixations are done in the algorithm and some online corrections are made to 

have a stable gait. In the online mode, compensators are considered along 

with foot adjustment for contact forces and ankle, knee, and hip joint angle 

calculation. After this, the bipedal has a stable gait. 

Computer vision uses deep learning or DQN for these works which are 

supervised training algorithms. 

The bipedal walk towards the soccer ball taking into consideration all 

dynamic and uncertain environmental conditions and stops once it reached 

the localized soccer ball position. At present only one bipedal is in the 

environment due to the constraint handling of concurrency control of 

bipedal. 

Bipedal to some extent is using computer vision for object detection and 

localization as it reached the object but the method used in movement and 

reaching soccer ball involves a reinforcement mechanism. 
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CHAPTER 10 CONCLUSION AND FUTURE SCOPE 

10.1 Conclusion 

The reinforcement controller for the bipedal trains the hip joint first then the 

knee joint is trained then the training of the ankle joint is carried out. This 

training helps the bipedal to move from its current state to the next stable state. 

After training for a stable standing position then bipedal is ready for 

movement searches/ looks for the object to identify in its dynamic 

environment. If the object is present then the bipedal calculates the distance in 

terms of cartesian coordinates and then walks according to the trained 

trajectory from the previous step, and then walks near to the identified object 

i.e. soccer ball in this case to kick it. 

The previous knowledge is not used to train the joints of bipedal as the 

knowledge is outdated as the environment is dynamic and uncertain. The 

training of the bipedal depends on the dynamics of the system. Bipedal is 

trained and knowledge gained is used for exploration or exploitation steps 

which depends on the random value which is incorporated in the algorithm 

then after that, the forgetting mechanism is also implemented by setting the 

value of variable large so that it forgets the old information and gains new 

states depending on dynamics of the current system. The reward function is 

also not predefined or has a constant value but it is calculated on the fly by 

evaluating the distance between the goal and the current state and doing some 

algebraic and exponential operations. The bipedal is trained not to stick in any 

position for more than specific iterations of the training algorithm i.e. should 

be off the stuck position in few seconds and also trained not to change its 

value drastically so that it would harm the hardware of the bipedal system like 
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servomotor, sensors, etc by passing too high or too low values to the 

individual parts and should not stop abruptly that is standing still or fall.  

The training duration of the bipedal is not fixed it varies depending on the path 

followed which in turn relies on random optimized actions taken by bipedal. 

Bipedal was preliminary trained for 25, 50, 75, 100, 150, and 200 episodes on 

each joint, and the values of each iteration were stored in excel files. The 

individual files are created for each intermediate data and the final optimal 

policy reached after training is being completed by the bipedal is also 

recorded. Intermediate data for each episode is stored in individual sheets of 

an excel file so that it can be passed to the lookup table to train the bipedal 

joint movement individually in a hierarchical manner or maybe in a parallel 

manner. 

Bipedal used a feature-based object identification algorithm which reduces the 

state space to store and hence increases the speed of object identification. In 

this algorithm the strongest specific amount of points are detected like 200, 

400, etc then the matching is done using an affine transformation, and the 

updated SURF algorithm in which the image is used as an integral image and 

the boxlets are used to divide the image. The octave used in the pyramids 

helps in the filter of the increasing size usually by a factor of 2. The sign of 

Laplacian is used for interest point detections. Laplacian Sign helps in 

differentiating shiny blobs on black backgrounds and vice versa. Faster 

matching takes place when the same types of blobs are compared i.e. with the 

same type of background. 

After the bipedal has learned the optimal actions and policies to take after 

being trained for 200 episodes for a specific dynamic environment. If bipedal 

runs in the same environment then it does not need to train itself again but 

uses the previously trained data and so in the execution phase, the iterations 

have been reduced from 21 of the learning phase to 2 iterations of the 

execution phase.  
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The rewards generated in learning phase varies a lot as it is randomly 

generated depending on the present state and target/ goal state of bipedal. But 

in the learning phase, bipedal is near about its goal state but that state cannot 

be the goal state all the time and so requires to execute some iterations but the 

values are near about the same as seen by the straight line as compared to the 

high mounted and valleyed lines of the learning phase. 

This reveals that the bipedal has learned in an uncertain environment and is 

using that learned knowledge in the same environment. As the scenario of the 

environment changes the bipedal learn again, then walks to the object 

identified. 

The bipedal identifies objects then follows the trajectory to reach the soccer 

ball for kicking it. 

The object localization step is being performed in current work and is 

observed at regular interval of time to avoid a collision as soon as bipedal 

reaches the ball it stops to adjust the ankle and other angles to kick the ball. 

The main challenge in the proposed work was not object-localization but was 

the reinforced learning of bipedal to walk. The walk has to be stable so that the 

bipedal does not harm itself and the trajectory of the walk should be smooth 

with minimal jerks so that joint servo motors don't get damaged. 

The lower body parts play a major role in the gait of the bipedal but the upper 

body part also has a role to play while the gait of bipedal is considered. The 

lower body part was considered to take into account the sub-objective of 

hierarchical training of all the joints (Hip, Knee, and Ankle) along with the 

sole placement. The complexity of the algorithm in designing the parameters 

was more as the reinforcement Q-Learning algorithm along with forgetting 

mechanism incorporation was considered. Only the upper body joints which 

affect the ZMP of the bipedal when running the proposed algorithm were 

taken into account.  
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10.2 Future Scope 

Every work has a further step to go and each thing made has some limitations 

which can be improved. The bipedal has a limitation of the degree of freedom 

not considering the upper part of the body which also plays an important role 

in the gait of the bipedal.  

Hands and shoulders joint and their movements are not considered. The 

bipedal has the limitation of the angle to move on each joint. 

The designed and developed finite-state framework considers the bipedal 

robot as a finite state model. The bipedal has to perform self-localization as 

well as to object (soccer ball in this case) localization to reach the object. 

Bipedal on reaching the soccer ball can kick it in any direction depending on 

the dynamic environment. When the bipedal is playing a soccer match has to 

perform - self-localization, soccer ball localization, team member localization, 

goal post localization after these steps it would walk in the direction of the ball 

and try to reach it without colliding with any other player on the ground. 

The autonomous bipedal system has to adapt to situations it has not previously 

encountered. Therefore, it needs to infer properties of its surroundings using 

sensors, learn from experience, and be robust to disturbances. There can be an 

infinite number of positions of the players on the ground and the goal post will 

always have a goalkeeper to reach the position in minimal time and efficiently 

is purpose. 

The object identification is also with the limitation of identifying only the 

soccer ball that too in a straight line in front, other objects are not considered 

and in other angle directions.  

The execution phase is sometimes executing 18 iterations which require a 

considerable amount of time and show variations in the graph of rewards 

generation. This can be minimized more as in some cases it reached 2 

iterations but not always.  
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APPENDIX A 

A.1 Simulink combined model of the Bipedal 
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APPENDIX B 

B.1 Simulink Block of Dynamic Torque for each joint 

Dynamics torque is obtained for the joint trajectory of the individual joint. The 

maximum values of the torque are obtained for the selection of DC 

servomotor. 
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B.2 Simulink Block Diagram of Computed Torque Control 
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APPENDIX C 

C.1 Simulink block of ground force contact 
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C.2 Contact Force Logging 

 

 

C.3 Angle and Torque measurement for all joints 
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APPENDIX D  

MATLAB CODES 

bipedalparameters.m 

%foot dimension 

density = 1000; foot_x_cor = 8;foot_y_cor = 6;foot_z _cor= 1;  

foot_offset_cor = [-1 0 0]; foot_density=2000; 

%% Leg parameters radius, lower length, upper length 

leg_rad = 0.75; low_leg_length_par = 10;up_leg_length_par = 10; 

%% parameters of  Torso 

torso_y = 10; torso_x = 5;torso_z = 8;torso_offset_z = -2; 

torso_offset_x = -0.5; height_plane=.05; 

init_height = foot_z + lower_leg_length + upper_leg_length + torso_z/2 +  

  torso_offset_z + height_plane/2; 

 joint_damping = 1; joint_stiffness = 1; motion_time_constant = 0.01; 

gaitPeriod = 0.8;  time = linspace(0,gaitPeriod,7) 

hip_rad = deg2rad([-10, -7.5, -15, 10, 15, 10, -10]'); 

knee_rad = deg2rad([10, -5, 2.5, -10, -10, 15, 10]'); 

ankle_rad = deg2rad([-7.5 10 10 5 0 -10 -7.5]'); 

ankle_rad= ankle; knee_rad= knee; hip_rad= hip; 

curveData = createSmoothTrajectory(ankle,knee,hip,gaitPeriod); 

contact_point_radius=1e-4;  contact_stiffness = 2500; 

contact_damping = 100; mu_k = 0.6; mu_s = 0.8;mu_vth = 0.1; 

plane_x=25; plane_y =2.5; height_plane=.02; world_damping_value= 0.25; 

world_rot_damping_value = 0.25; k_pen=5; b_penvel=3; 

plane_depth = 0.025; vis_len_plaBz=plane_depth; vis_opc=1; 

vis_opc_en=1;  vis_clr=[0.1 0.3 0.7]; world_damping_value = 0.25; 

world_rot_damping_value = 0.25; 

 

 

evalSmoothTrajectory.m 

function out = evalSmoothTrajectory(params,t) 

% Wrap the time value on every cycle of the trajectory 

tEff = mod(t,params.gaitPeriod); 

ind = find(tEff >= params.gaitTime(1:end-1));   indx = ind(end); 

dt1 = tEff - params.gaitTime(indx);  out_param = zeros(3,1); 

out_param(1) = params.a0_ankle(indx) + params.a1_ankle(indx)*dt 1+ ... 

             params.a2_ankle(indx)*dt1^2 + params.a3_ankle(indx)*dt1^3;  

out_param(2) = params.a0_knee(indx) + params.a1_knee(indx)*dt 1+ ... 
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         params.a2_knee(indx)*dt1^2 + params.a3_knee(indx)*dt1^3; 

out_param(3) = params.a0_hip(indx) + params.a1_hip(indx)*dt1 + ... 

  params.a2_hip(indx)*dt1^2 + params.a3_hip(indx)*dt1^3; 

end 

 

 

createSmoothTrajectory.m 

function curveData = createSmoothTrajectory(ankle,knee,hip,period) 

%% Create necessary values for calculations 

numPoints = numel(hip);   curveData.gaitPeriod = period; 

curveData.gaitTime = linspace(0,period,numPoints); 

dt = period/(numPoints-1); 

%% Calculate derivatives .Assume zero derivatives at start and end 

hip_der = [0; 0.5*( diff(hip(1:end-1)) + diff(hip(2:end)) )/dt; 0]; 

knee_der = [0; 0.5*( diff(knee(1:end-1)) + diff(knee(2:end)) )/dt; 0]; 

ankle_der = [0; 0.5*( diff(ankle(1:end-1)) + diff(ankle(2:end)) )/dt; 0]; 

%% Do cubic spline fitting 

curveData.a0_hip = hip(1:end-1);   curveData.a1_hip = hip_der(1:end-1); 

curveData.a2_hip = 3*diff(hip)/(dt^2) - 2*hip_der(1:end-1)/dt -   

   hip_der(2:end)/dt; 

curveData.a3_hip = -2*diff(hip)/(dt^3) + (hip_der(1:end-1) +   

   hip_der(2:end))/(dt^2); 

curveData.a0_knee = knee(1:end-1); 

curveData.a1_knee = knee_der(1:end-1); 

curveData.a2_knee = 3*diff(knee)/(dt^2) - 2*knee_der(1:end-1)/dt -  

   knee_der(2:end)/dt; 

curveData.a3_knee = -2*diff(knee)/(dt^3) + (knee_der(1:end-1)+   

   knee_der(2:end)) / (dt^2) ; 

curveData.a0_ankle = ankle(1:end-1);  

curveData.a1_ankle = ankle_der(1:end-1); 

curveData.a2_ankle = 3*diff(ankle)/(dt^2) - 2*ankle_der(1:end-1)/dt -  

   ankle_der (2:end) /dt; 

curveData.a3_ankle = -2*diff(ankle)/(dt^3) + (ankle_der(1:end-1) +  

   ankle_der(2:end))/(dt^2); 

 

 

plotSmoothTrajectory.m 

% Plots cubic spline trajectory, defined by the 'curveData' variable 

%% Define vectors for plots 

N = 500;  t1 = linspace(0,curveData.gaitPeriod,N); 
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ankle_curve = zeros(size(t1)); knee_curve = zeros(size(t1)); 

hip_curve = zeros(size(t1)); 

%% Loop over all points 

for indx = 1:N  

trajPts = evalSmoothTrajectory(curveData,t1(indx)); 

ankle_curve(indx) = trajPts(1);   knee_curve(indx) = trajPts(2); 

hip_curve(indx) = trajPts(3);  end 

figure 

subplot(3,1,1) 

plot(t1,rad2deg(ankle_curve),'b-', ... curveData.gaitTime, 

rad2deg([curveData.a0_ankle;curveData.a0_ankle(1)]),'ro'); 

title('Gait') 

xlabel('Time in seconds '); ylabel('Ankle Angles in degree '); 

subplot(3,1,2) 

plot(t1,rad2deg(knee_curve),'b-',... curveData. gaitTime, 

rad2deg([curveData.a0_knee;curveData.a0_knee(1)]),'ro'); 

xlabel('Time in seconds '); ylabel('Knee Angles in degree '); 

subplot(3,1,3) 

plot(t1,rad2deg(hip_curve),'b-', ...    curveData.gaitTime, 

rad2deg([curveData.a0_hip;curveData.a0_hip(1)]),'ro'); 

xlabel('Time in seconds'); ylabel('Hip Angles in degree'); 

 

 

Qlearm_episodic_HIP_100.m 

close all; clear all;  clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   

learnRate = 0.99;    % learning rate     

epsilon = 0.5;  % exploration probability(1-epsilon= exploit/epsilon = explore) 

epsilonDecay = 0.98; successRate = 1;  

maxEpi = 100;        % maximum number of the iterations 

initialPoint = -45;   % the initial state to begin from 

finalPoint = 45;     time=0; 

state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));    Final_Table = table; 

% main program  

for episode = 1:maxEpi 

% initialization  
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cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0; 

count=0; iter_reward =0; iter_time =0; epsilon = 0.5;  

start_state = initialPoint;  goal_state = finalPoint; 

startState_idx = find(state==start_state);  

endState_idx= find(state==goal_state); 

Imm_array=[];  disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state) 

tic;    r=rand();  

if (r > epsilon || episode == maxEpi) && r<=successRate  

[~,umax]=max(Q(startState_idx,:)); 

cnt3=cnt3+1;  current_action = action(umax); 

else 

current_action=datasample(action,1); cnt4=cnt4+1;  end 

action_idx = find(action==current_action);  

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx)) 

i=i+1;   if (i>=3) 

next_state = state(startState_idx+1);  i=0;   end   end   

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx) 

next_state = state(startState_idx+1); 

else  

next_state = endState_idx; disp('goal state reached'); break;  end 

next_start_state_idx = find(state==next_state);  

next_reward = exp(-learnRate*(endState_idx-startState_idx)); 

 % random reward calculation depending on current state   

cnt=cnt+1;         start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 

if (next_start_state_idx < startState_idx) 

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx) 

disp('reached goal');   cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

break;   end cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;   actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *  

  (next_reward + discount* max(Q(next_start_state_idx,:)) - 

Q(startState_idx,action_idx));  cnt6=cnt6+1; 



199 
 

epsilon_decay(cnt6)=epsilon; epsilon = epsilon*epsilonDecay; 

cnt5=cnt5+1;  reward(cnt5)=next_reward; 

iter_reward = iter_reward + next_reward;  iter_time= iter_time+toc; 

distance_state = endState_idx-startState_idx; 

cnt2=cnt2+1;         DISTANCE(cnt2)=distance_state; 

count = count+1;  random_value(count)=r;  toc ; 

Imm_array(count,:) =[r, action(action_idx), state(startState_idx), 

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;    

if (epsilon <0.00001) 

disp('epsilon <0.00001')  break;   end   end      Imm_array  

header_array =["Random Number","Current Action","Current State","Next 

State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100 \ 

 Intermediate_HIP_learning_100.xls' ,header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\HIP_100\ 

 Intermediate_HIP_learning_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value); 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : ');   disp(Q) 

[C,I]=max(Q,[],2)  ;                           % finding the max values 

disp('Q(optimal):');    disp(C);   disp('Optimal Policy'); 

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]); 

Final_Table.Episode=episode;  Final_Table.Iteration=count; 

Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward; 

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1));  Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1)); Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1)); Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1)); Final_Table.OptPol20=action(I(20,1)); 
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Final_Table.OptPol21=action(I(1,1));  Final_Table  

Final_array{1,1} =mean_random;  Final_array{1,2}=Q; 

Final_array{1,3}=C;   Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1)); 

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 

Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value; Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""]; 

action_label(1,:) =["Action Taken :",""]; 

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Header_Final_Data,episode); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{3},episode,'G2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{5},episode,'I2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{9},episode,'M2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{23},episode,'R2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{27},episode,'V2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{33},episode,'AB2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',action_label,episode,'A27'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',next_state_label,episode,'A30'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Final_HIP_learning_100.xls',Final_array{19},episode,'A31'); 

iter(episode)= count;    total_reward(episode) = iter_reward; 

total_time(episode) = iter_time;  time = time +iter_time 

randomValue(episode) =mean_random; 

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random, 

iter_reward, iter_time];  end  Iteration_header_arrayValue 

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total 

Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning \HIP\ HIP_100\ 

 Graph_HIP_learning_100.xls',Iteration_header_array,1,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ HIP\ HIP_100\ 

 Graph_HIP_learning_100.xls',Iteration_header_arrayValue,1,'A2'); 

x=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode');  ylabel('iterations'); 

figure;  p=plot(x,randomValue,'m',x,total_reward,'b--');  

p(1).LineWidth = 2;  p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest', 

 'NumColumns', 2); 

figure;  plot(x,total_time,'r o-'); xlabel('Episode');  ylabel('Total Time '); 

t2= datetime('now')  dt = between(t1,t2,'Time') 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required ');  disp(dt); disp('end'); 

     

 

QLearn_episodic_KNEE_100.m 

close all;  clear all;    clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   
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learnRate = 0.99;    % learning rate     

epsilon = 0.5;  epsilonDecay = 0.98; successRate = 1;  

maxEpi =100;        % maximum number of the iterations 

initialPoint = 0;   % the initial state to begin from 

finalPoint = 90;   time=0; 

state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));     Final_Table = table; 

% main program  

for episode = 1:maxEpi 

% initialization  

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0; 

count=0;i=0;  iter_reward =0; iter_time =0; epsilon = 0.5;  

start_state = initialPoint; goal_state = finalPoint; 

startState_idx = find(state==start_state); 

endState_idx= find(state==goal_state); 

Imm_array=[];  disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state)  tic;   r=rand() ; 

if (r>epsilon || episode == maxEpi) && r<=successRate   

[~,umax]=max(Q(startState_idx,:)); disp('in Exploit'); cnt3=cnt3+1; 

current_action = action(umax);  

else  current_action=datasample(action,1); 

cnt4=cnt4+1;  disp('in Explore');  end 

action_idx = find(action==current_action);  

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

disp('startState_idx <= endState_idx-1 &&  startState_idx>=initialPoint'); 

 next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx)) 

disp('next_state ==state(startState_idx)');  i=i+1; 

if (i>=3) 

next_state = state(startState_idx+1);  disp('in same state for 3 iterations '); 

i=0;   end    end  

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx) 

disp('startState_idx >= endState_idx-1 && startState_idx < endState_idx-1') 

next_state = state(startState_idx+1); 

else  

next_state = endState_idx; disp('goal state reached'); break;   end 

next_start_state_idx = find(state==next_state);  

next_reward = exp(-learnRate*(endState_idx-startState_idx)); 

 % random reward calculation depending on current state 

cnt=cnt+1;         start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 
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if (next_start_state_idx < startState_idx) 

disp('in if next_start_state < startState_idx');  

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx)  disp('reached goal');   

cnt1=cnt1+1;  next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

break;  end     cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx;   

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;  actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate * 

(next_reward + discount* max(Q(next_start_state_idx,:)) - 

 Q(startState_idx,action_idx)); 

cnt6=cnt6+1;  epsilon_decay(cnt6)=epsilon; epsilon = epsilon*epsilonDecay ;  

cnt5=cnt5+1;  reward(cnt5)=next_reward; 

iter_reward = iter_reward + next_reward;  iter_time= iter_time+toc; 

distance_state = endState_idx-startState_idx;  cnt2=cnt2+1;            

DISTANCE(cnt2)=distance_state;   count = count+1; 

random_value(count)=r;  toc ; 

Imm_array(count,:) =[r, action(action_idx), state(startState_idx), 

state(next_start_state_idx),next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;   

if (epsilon <0.00001) 

disp('epsilon <0.00001')  break;  end  end  

 header_array =["Random Number","Current Action","Current State","Next 

State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_learning_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_learning_100.xls',Imm_array,episode,'A2'); 

Imm_array 

header_array =["Random Number","Current Action","Current State","Next 

State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_learning_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_learning_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value) 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : ');   disp(Q) 
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[C,I]=max(Q,[],2)  ;                           % finding the max values 

disp('Q(optimal):');  disp(C);  disp('Optimal Policy'); 

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]); 

Final_Table.Episode=episode; Final_Table.Iteration=count; 

Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward; 

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1)); 

Final_Table.OptPol21=action(I(21,1)); Final_Table  

Final_array{1,1} =mean_random; Final_array{1,2}=Q; 

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1)); 

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 

Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value; Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 
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4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""]; 

action_label(1,:) =["Action Taken :",""]; 

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Header_Final_Data,episode); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{3},episode,'G2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{5},episode,'I2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{9},episode,'M2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{23},episode,'R2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{27},episode,'V2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{33},episode,'AB2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',action_label,episode,'A27'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',next_state_label,episode,'A30'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Final_KNEE_learning_100.xls',Final_array{19},episode,'A31'); 

iter(episode)= count;                  total_reward(episode) = iter_reward; 

total_time(episode) = iter_time;  time = time +iter_time 

randomValue(episode) =mean_random; 

Iteration_header_arrayValue(episode,:)      

   =[episode,count,mean_random,iter_reward,iter_time]; 

end Iteration_header_arrayValue 

Iteration_header_array =["Episodes","Iterations","Mean Random","Total 

Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Graph_KNEE_learning_100.xls',Iteration_header_array,1,'A1'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ KNEE\ KNEE_100\ 

 Graph_KNEE_learning_100.xls',Iteration_header_arrayValue,1,'A2'); 

x=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode');  ylabel('iterations');  figure; 

p=plot(x,randomValue,'m',x,total_reward,'b--');  p(1).LineWidth = 2; 

p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location',    

   'northwest','NumColumns',2); 

figure;  plot(x,total_time,'r o-'); xlabel('Episode');  ylabel('Total Time '); 

t2= datetime('now')  dt = between(t1,t2,'Time') 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required ');  disp(dt); disp('end'); 

 

 

QLearn_episodic_ANKLE_100.m 

close all; clear all;clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   

learnRate = 0.99;    % learning rate     

epsilon = 0.5;  epsilonDecay = 0.98; successRate = 1;  

maxEpi =100;        % maximum number of the iterations 

initialPoint = -30  % the initial state to begin from 

finalPoint = 30;      time=0; 

state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));    Final_Table = table; 

% main program  

for episode = 1:maxEpi 

epiStartTime = datetime('now'); 

% initialization  

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0;i=0; 

iter_reward =0;  iter_time =0; epsilon = 0.5;  

start_state = initialPoint; goal_state = finalPoint; 

startState_idx = find(state==start_state); 

endState_idx= find(state==goal_state);  Imm_array=[]; 

disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state)  tic;  r=rand();   

if (r>epsilon || episode == maxEpi) && r<=successRate  

[~,umax]=max(Q(startState_idx,:)); 
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cnt3=cnt3+1;  current_action = action(umax); 

else 

current_action=datasample(action,1); cnt4=cnt4+1;  end 

action_idx = find(action==current_action);   

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx)) 

i=i+1;  if (i>=3)  next_state = state(startState_idx+1); 

i=0;    end  end  

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx) 

next_state = state(startState_idx+1);   else  

next_state = endState_idx;  disp('goal state reached'); break;  end 

next_start_state_idx = find(state==next_state);  

next_reward = exp(-learnRate*(endState_idx-startState_idx));  

% random reward calculation depending on current state 

cnt=cnt+1;         start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 

if (next_start_state_idx < startState_idx) 

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx) 

disp('reached goal');   cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

break;  end  cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx;   

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;   actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *  

  (next_reward + discount* max(Q(next_start_state_idx,:)) -  

  Q(startState_idx,action_idx)); 

cnt6=cnt6+1;   epsilon_decay(cnt6)=epsilon; 

epsilon = epsilon*epsilonDecay ;   cnt5=cnt5+1;  

reward(cnt5)=next_reward;  iter_reward = iter_reward + next_reward; 

iter_time= iter_time+toc; distance_state = endState_idx-startState_idx; 

cnt2=cnt2+1;       ISTANCE(cnt2)=distance_state; 

count = count+1;  random_value(count)=r; toc ; 

Imm_array(count,:) =[r, action(action_idx), state(startState_idx), 

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;   

if (epsilon <0.00001) 

disp('epsilon <0.00001') break;     end  end Imm_array 
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header_array =["Random Number","Current Action","Current State","Next 

State", "Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Intermediate_ANKLE_learning_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Intermediate_ANKLE_learning_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value) 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : ');  disp(Q) 

[C,I]=max(Q,[],2)  ;                           % finding the max values 

disp('Q(optimal):');  disp(C); disp('Optimal Policy'); 

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]); 

Final_Table.Episode=episode; Final_Table.Iteration=count; 

Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward; 

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1)); 

Final_Table.OptPol21=action(I(21,1)); Final_Table  

Final_array{1,1} =mean_random; Final_array{1,2}=Q; 

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1)); 

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 
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Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value; Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""]; 

action_label(1,:) =["Action Taken :",""];   

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Header_Final_Data,episode);  

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{3},episode,'G2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{5},episode,'I2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{9},episode,'M2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{23},episode,'R2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{27},episode,'V2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{33},episode,'AB2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',action_label,episode,'A27'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',next_state_label,episode,'A30') 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_learning_100.xls',Final_array{19},episode,'A31'); 
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iter(episode)= count;  randomValue(episode) =mean_random; 

total_reward(episode) = iter_reward;  

total_time(episode) = iter_time; time = time +iter_time 

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,  

  iter_reward, iter_time]; 

end Iteration_header_arrayValue 

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total 

Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\ 

 Graph_ANKLE_learning_100.xls',Iteration_header_array,1,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal learning\ ANKLE\ ANKLE_100\                   

        Graph_ANKLE_learning_100.xls',Iteration_header_arrayValue,1,'A2'); 

x=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode'); ylabel('iterations');  figure; 

p=plot(x,randomValue,'m',x,total_reward,'b--'); 

p(1).LineWidth = 2; p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',   

  'NumColumns',2); 

 figure; plot(x,total_time,'r o-'); xlabel('Episode');  ylabel('Total Time '); 

t2= datetime('now');  dt = between(t1,t2,'Time'); 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required execute and plot values ');  disp(dt); disp('end'); 

 

 

 

QLearn_execution_HIP_100.m 

close all; clear all; clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   

learnRate = 0.99;    % learning rate     

epsilon = 0.5;  epsilonDecay = 0.98; successRate = 1;  

maxEpi = 100;        % maximum number of the iterations 

initialPoint = -45;   % the initial state to begin from 

finalPoint = 45;      time=0; 

state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));    Final_Table = table; 

% main program  

for episode = 1:maxEpi 
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% initialization  

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0; 

iter_reward =0;  iter_time =0; epsilon = 0.5;   size_state =size(state(2:19),2); 

rand_State = randsample(size_state,1) 

start_state = state(rand_State) ; goal_state = finalPoint; 

startState_idx = find(state==start_state);  

endState_idx= find(state==goal_state); 

Imm_array=[];  disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state)  tic;  r=rand();  

if (r>epsilon || episode == maxEpi) && r<=successRate  

[~,umax]=max(Q(startState_idx,:)); cnt3=cnt3+1; 

current_action = action(umax); 

else 

current_action=datasample(action,1); cnt4=cnt4+1;  end 

action_idx = find(action==current_action);  

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx)) 

i=i+1;  if (i>=3) next_state = state(startState_idx+1);  i=0;   end  end  

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx) 

next_state = state(startState_idx+1); 

else  

next_state = endState_idx;  disp('goal state reached');  break; end 

next_start_state_idx = find(state==next_state);   

next_reward = exp(-learnRate*(endState_idx-startState_idx)); 

cnt=cnt+1;   start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 

if (next_start_state_idx < startState_idx) 

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx) 

disp('reached goal');   cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx);break;  end   

cnt1=cnt1+1;  next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;   actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate * 

(next_reward + discount* max(Q(next_start_state_idx,:)) -

Q(startState_idx,action_idx)); cnt6=cnt6+1;  epsilon_decay(cnt6)=epsilon; 

epsilon = epsilon*epsilonDecay; cnt5=cnt5+1; reward(cnt5)=next_reward; 

iter_reward = iter_reward + next_reward;  iter_time= iter_time+toc;  
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distance_state = endState_idx-startState_idx; cnt2=cnt2+1;    

DISTANCE(cnt2)=distance_state;  count = count+1; 

random_value(count)=r; toc ; 

Imm_array(count,:) =[r, action(action_idx), state(startState_idx), 

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;    

if (epsilon <0.00001)  disp('epsilon <0.00001') break; end end Imm_array 

header_array =["Random Number","Current Action","Current State","Next 

 State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Intermediate_HIP_execution_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Intermediate_HIP_execution_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value); 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : ');  disp(Q) 

[C,I]=max(Q,[],2)  ;                           % finding the max values 

disp('Q(optimal):'); disp(C); disp('Optimal Policy'); 

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]); 

Final_Table.Episode=episode; Final_Table.Iteration=count; 

Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward; 

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1)); 

Final_Table.OptPol21=action(I(21,1)); Final_Table  

Final_array{1,1} =mean_random; Final_array{1,2}=Q; 

Final_array{1,3}=C; Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1)); 
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Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 

Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value;Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""];  

action_label(1,:) =["Action Taken :",""]; 

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Header_Final_Data,episode); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{3},episode,'G2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{5},episode,'I2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{9},episode,'M2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{23},episode,'R2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{27},episode,'V2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100 \ 

 Final_HIP_execution_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{33},episode,'AB2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',action_label,episode,'A27'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',next_state_label,episode,'A30'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Final_HIP_execution_100.xls',Final_array{19},episode,'A31'); 

iter(episode)= count; total_reward(episode) = iter_reward; 

total_time(episode) = iter_time; time = time +iter_time 

randomValue(episode) =mean_random; 

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random, 

iter_reward, iter_time]; end  Iteration_header_arrayValue 

Iteration_header_array =["Episodes","Iterations","Mean Random","Total 

 Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Graph_HIP_execution_100.xls',Iteration_header_array,1,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ HIP\ HIP_100\ 

 Graph_HIP_execution_100.xls',Iteration_header_arrayValue,1,'A2'); 

x=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode'); ylabel('iterations');  figure; 

p=plot(x,randomValue,'m',x,total_reward,'b--');  p(1).LineWidth = 2; 

p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest',  

 'NumColumns',2); 

figure;  plot(x,total_time,'r o-');  xlabel('Episode'); ylabel('Total Time '); 

t2= datetime('now');  dt = between(t1,t2,'Time') 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required ');  disp(dt);  disp('end'); 

     

 

QLearn_Execution_KNEE_100.m 

close all; clear all; clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   

learnRate = 0.99;    % learning rate     

epsilon = 0.5;   epsilonDecay = 0.98;  successRate = 1;  

maxEpi =100;        % maximum number of the iterations 

initialPoint = 0;   % the initial state to begin from 



219 
 

finalPoint = 90;    % the final state to reach to    

time=0;  state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));    Final_Table = table; 

% main program  

for episode = 1:maxEpi 

% initialization  

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7= count=0;i=0; 

iter_reward =0; iter_time =0; epsilon = 0.5;   size_state =size(state(2:19),2); 

rand_State = randsample(size_state,1); start_state = state(rand_State); 

goal_state = finalPoint;  startState_idx = find(state==start_state); 

endState_idx= find(state==goal_state); Imm_array=[];  

disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state)  tic;  r=rand() ; 

if (r>epsilon || episode == maxEpi) && r<=successRate  

[~,umax]=max(Q(startState_idx,:));  disp('in Exploit'); cnt3=cnt3+1; 

current_action = action(umax); 

else 

current_action=datasample(action,1); cnt4=cnt4+1; end 

action_idx = find(action==current_action);  

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

disp('startState_idx <= endState_idx-1 && startState_idx>=initialPoint'); 

next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx)) 

disp('next_state ==state(startState_idx)');  i=i+1;  if (i>=3) 

next_state = state(startState_idx+1);  disp('in same state for 3 iterations '); 

i=0;   end  end  

elseif (startState_idx >= endState_idx-1 && startState_idx < endState_id 

disp('startState_idx >= endState_idx-1 && startState_idx < endState_idx-1') 

next_state = state(startState_idx+1); 

else  

next_state = endState_idx; disp('goal state reached'); break; end 

next_start_state_idx = find(state==next_state);   

next_reward = exp(-learnRate*(endState_idx-startState_idx)); 

cnt=cnt+1;   start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 

if (next_start_state_idx < startState_idx) 

disp('in if next_start_state < startState_idx'); 

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx) disp('reached 

goal');cnt1=cnt1+1; next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 
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break; end cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx;   

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;  actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *  

  (next_reward + discount* max(Q(next_start_state_idx,:)) -  

  Q(startState_idx,action_idx)); 

cnt6=cnt6+1; epsilon_decay(cnt6)=epsilon; 

epsilon = epsilon*epsilonDecay ;cnt5=cnt5+1;reward(cnt5)=next_reward; 

iter_reward = iter_reward + next_reward; iter_time= iter_time+toc; 

distance_state = endState_idx-startState_idx; cnt2=cnt2+1;             

DISTANCE(cnt2)=distance_state;  count = count+1; 

random_value(count)=r;  toc; 

Imm_array(count,:) =[r,action(action_idx), state(startState_idx), 

state(next_start_state_idx), next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;   

if (epsilon <0.00001)  disp('epsilon <0.00001') break; end  end  

header_array =["Random Number","Current Action","Current State","Next 

 State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_execution_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ 

KNEE_100\Intermediate_KNEE_execution_100.xls',Imm_array,episode,'A2'); 

Imm_array 

header_array =["Random Number","Current Action","Current State","Next 

  State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_execution_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Intermediate_KNEE_execution_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value) 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : '); disp(Q);[C,I]=max(Q,[],2) ; % finding the max values 

disp('Q(optimal):');  disp(C); disp('Optimal Policy'); 

disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]);  

Final_Table.Episode=episode; Final_Table.Iteration=count; 
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Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward; 

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1));Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1)); Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1)); Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1)); Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1)); Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1)); Final_Table.OptPol20=action(I(20,1)); 

Final_Table.OptPol21=action(I(21,1)); Final_Table  

Final_array{1,1} =mean_random; Final_array{1,2}=Q; 

Final_array{1,3}=C;   Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1)); Final_array{1,6}=action(I(3,1)); 

Final_array{1,7}=action(I(4,1)); Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1)); Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1)); Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward; Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR; Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 

Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value; Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 

10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""]; 

action_label(1,:) =["Action Taken :",""]; 

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Header_Final_Data,episode); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{3},episode,'G2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{5},episode,'I2') 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{9},episode,'M2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{23},episode,'R2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution \ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{27},episode,'V2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{33},episode,'AB2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',action_label,episode,'A27'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',next_state_label,episode,'A30'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Final_KNEE_execution_100.xls',Final_array{19},episode,'A31'); 

iter(episode)= count;  total_reward(episode) = iter_reward;  

total_time(episode) = iter_time; time = time +iter_time  

randomValue(episode) =mean_random; 

Iteration_header_arrayValue(episode,:)      

 =[episode,count,mean_random,iter_reward,iter_time]; 

end  Iteration_header_arrayValue 

Iteration_header_array =["Episodes","Iterations","Mean Random","Total 

Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Graph_KNEE_execution_100.xls',Iteration_header_array,1,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ KNEE\ KNEE_100\ 

 Graph_KNEE_execution_100.xls',Iteration_header_arrayValue,1,'A2'); 

=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode');  ylabel('iterations'); 

figure;  p=plot(x,randomValue,'m',x,total_reward,'b--'); 

p(1).LineWidth = 2;  p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest', 

 'NumColumns',2); 
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figure;  plot(x,total_time,'r o-'); xlabel('Episode'); ylabel('Total Time '); 

t2= datetime('now');  dt = between(t1,t2,'Time') 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required ');  disp(dt);  disp('end'); 

 

QLearn_Execution_ANKLE_100.m 

close all; clear all; clc; 

global count total_rewards total_time  % global parameters  

t1= datetime('now') 

% learning parameters 

discount = 0.9;      % discount factor   

learnRate = 0.99;    % learning rate     

epsilon = 0.5;  epsilonDecay = 0.98; successRate = 1;  

maxEpi =100;        % maximum number of the iterations 

initialPoint = -30  % the initial state to begin from 

finalPoint = 30;      time=0; 

state =linspace(initialPoint,finalPoint,21) % state 

action = [0,1];     % actions 

Q = zeros(length(state),length(action));    Final_Table = table; 

% main program  

for episode = 1:maxEpi 

epiStartTime = datetime('now'); 

% initialization  

cnt=0;cnt1=0; cnt2=0; cnt3=0;cnt4=0;cnt5=0;cnt6=0;cnt7=0;count=0;i=0; 

iter_reward =0; iter_time =0; epsilon = 0.5; size_state =size(state(2:19),2); 

rand_State = randsample(size_state,1) 

start_state = state(rand_State); goal_state = finalPoint; 

startState_idx = find(state==start_state); 

endState_idx= find(state==goal_state); 

Imm_array=[];  disp(['Episode: ' num2str(episode)]); 

while(start_state < goal_state)  tic;   r=rand();  

if (r>epsilon || episode == maxEpi) && r<=successRate  

[~,umax]=max(Q(startState_idx,:));  cnt3=cnt3+1; 

current_action = action(umax);  

else 

current_action=datasample(action,1); cnt4=cnt4+1;  end 

action_idx = find(action==current_action);   

if (startState_idx <= endState_idx-1 && startState_idx>=initialPoint) 

next_state = state(startState_idx+current_action) ; 

if (next_state ==state(startState_idx))  i=i+1;  if (i>=3) 

next_state = state(startState_idx+1);  i=0;  end  end  
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elseif (startState_idx >= endState_idx-1 && startState_idx < endState_idx) 

next_state = state(startState_idx+1); 

else  

next_state = endState_idx;  disp('goal state reached'); break;end 

next_start_state_idx = find(state==next_state);  

next_reward = exp(-learnRate*(endState_idx-startState_idx)); 

cnt=cnt+1;      start_stateARR(cnt)=startState_idx; 

start_stateARR_Value(cnt)=state(startState_idx); 

if (next_start_state_idx < startState_idx) 

next_start_state_idx = startState_idx+1; 

elseif(next_start_state_idx ==  endState_idx)  disp('reached goal');   

cnt1=cnt1+1;  next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

break;  end cnt1=cnt1+1; 

next_start_stateARR(cnt1)=next_start_state_idx; 

next_start_stateARR_value(cnt1)=state(next_start_state_idx); 

cnt7=cnt7+1;   actionARR(cnt7)=action_idx; 

actionARR_value(cnt7)=action(action_idx); 

Q(startState_idx,action_idx) = Q(startState_idx,action_idx) + learnRate *  

  (next_reward + discount* max(Q(next_start_state_idx,:)) -  

  Q(startState_idx,action_idx)); 

cnt6=cnt6+1;   epsilon_decay(cnt6)=epsilon; 

epsilon = epsilon*epsilonDecay ;  cnt5=cnt5+1; reward(cnt5)=next_reward; 

iter_reward = iter_reward + next_reward; 

iter_time= iter_time+toc; distance_state = endState_idx-startState_idx; 

cnt2=cnt2+1;  DISTANCE(cnt2)=distance_state; 

count = count+1; random_value(count)=r; toc ; 

Imm_array(count,:) =[r, action(action_idx), state(startState_idx), 

state(next_start_state_idx),next_reward,epsilon,iter_time,distance_state]; 

startState_idx = next_start_state_idx;   

if (epsilon <0.00001)  disp('epsilon <0.00001') break; end end Imm_array 

header_array =["Random Number","Current Action","Current State","Next 

 State","Reward","Epsilon","Time","Distance"]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Intermediate_ANKLE_execution_100.xls',header_array,episode,'A1'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Intermediate_ANKLE_execution_100.xls',Imm_array,episode,'A2'); 

mean_random = mean(random_value) 

disp(['Total Iteration:   ' num2str(count) '   Total exploit:   ' num2str(cnt3) '   

Total explore:   ' num2str(cnt4)]); 

disp('Final Q matrix : '); disp(Q);[C,I]=max(Q,[],2);  % finding the max values 

disp('Q(optimal):');  disp(C); disp('Optimal Policy'); 
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disp([action(I(1,1)) action(I(2,1)) action(I(3,1)) action(I(4,1)) action(I(5,1)) 

action(I(6,1)) action(I(7,1)) action(I(8,1)) action(I(9,1)) action(I(10,1)) 

action(I(11,1)) action(I(12,1)) action(I(13,1)) action(I(14,1)) action(I(15,1)) 

action(I(16,1)) action(I(17,1)) action(I(18,1)) action(I(19,1)) action(I(20,1)) 

action(I(21,1))]); 

Final_Table.Episode=episode;  Final_Table.Iteration=count; 

Final_Table.Mean_Random=mean_random; 

Final_Table.Total_Rewards = iter_reward;  

Final_Table.Total_Time= iter_time; 

Final_Table.OptPol1=action(I(1,1)); Final_Table.OptPol2=action(I(2,1)); 

Final_Table.OptPol3=action(I(3,1)); Final_Table.OptPol4=action(I(4,1)); 

Final_Table.OptPol5=action(I(5,1)); Final_Table.OptPol6=action(I(6,1)); 

Final_Table.OptPol7=action(I(7,1)); Final_Table.OptPol8=action(I(8,1)); 

Final_Table.OptPol9=action(I(9,1)); Final_Table.OptPol10=action(I(10,1)); 

Final_Table.OptPol11=action(I(11,1));Final_Table.OptPol12=action(I(12,1)); 

Final_Table.OptPol13=action(I(13,1));Final_Table.OptPol14=action(I(14,1)); 

Final_Table.OptPol15=action(I(15,1));Final_Table.OptPol16=action(I(16,1)); 

Final_Table.OptPol17=action(I(17,1));Final_Table.OptPol18=action(I(18,1)); 

Final_Table.OptPol19=action(I(19,1));Final_Table.OptPol20=action(I(20,1)); 

Final_Table.OptPol21=action(I(21,1));  Final_Table  

Final_array{1,1} =mean_random;   Final_array{1,2}=Q; 

Final_array{1,3}=C;    Final_array{1,4}=action(I(1,1)); 

Final_array{1,5}=action(I(2,1));  Final_array{1,6}=action(I(3,1)); 

Final_array{1,7}=action(I(4,1));  Final_array{1,8}=action(I(5,1)); 

Final_array{1,9}=action(I(6,1));  Final_array{1,10}=action(I(7,1)); 

Final_array{1,11}=action(I(8,1));  Final_array{1,12}=action(I(9,1)); 

Final_array{1,13}=iter_reward;  Final_array{1,14}=iter_time; 

Final_array{1,15}=start_stateARR;  Final_array{1,16}=actionARR; 

Final_array{1,17}=next_start_stateARR; 

Final_array{1,18}=start_stateARR_Value; 

Final_array{1,19}=next_start_stateARR_value; 

Final_array{1,20}=actionARR_value; Final_array{1,21} =count; 

Final_array{1,22} =action(I(10,1)); Final_array{1,23} =action(I(11,1)); 

Final_array{1,24} =action(I(12,1)); Final_array{1,25} =action(I(13,1)); 

Final_array{1,26} =action(I(14,1)); Final_array{1,27} =action(I(15,1)); 

Final_array{1,28} =action(I(16,1)); Final_array{1,29} =action(I(17,1)); 

Final_array{1,30} =action(I(18,1)); Final_array{1,31} =action(I(19,1)); 

Final_array{1,32} =action(I(20,1)); Final_array{1,33} =action(I(21,1)); 

Header_Final_Data(1,:) =["Iterations","Mean Random","Total Reward","Total 

Time","Q(:,1)","Q(:,2)","C","Action 1","Action 2","Action 3","Action 

4","Action 5","Action 6","Action 7","Action 8","Action 9","Action 
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10","Action 11","Action 12","Action 13","Action 14","Action 15","Action 

16","Action 17","Action 18","Action 19","Action 20","Action 21"]; 

start_state_label(1,:) =["Start State :",""]; 

action_label(1,:) =["Action Taken :",""]; 

next_state_label(1,:) =["Next State :",""]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Header_Final_Data,episode); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{21},episode,'A2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{1},episode,'B2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{13},episode,'C2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{14},episode,'D2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{2},episode,'E2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{3},episode,'G2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{4},episode,'H2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{5},episode,'I2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{6},episode,'J2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{7},episode,'K2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{8},episode,'L2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{9},episode,'M2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{10},episode,'N2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{11},episode,'O2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{12},episode,'P2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{22},episode,'Q2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{23},episode,'R2'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{24},episode,'S2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{25},episode,'T2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{26},episode,'U2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{27},episode,'V2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{28},episode,'W2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{29},episode,'X2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{30},episode,'Y2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{31},episode,'Z2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{32},episode,'AA2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{33},episode,'AB2'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',start_state_label,episode,'A24'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',action_label,episode,'A27'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',next_state_label,episode,'A30'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{18},episode,'A25'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{20},episode,'A28'); 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Final_ANKLE_execution_100.xls',Final_array{19},episode,'A31'); 

iter(episode)= count; randomValue(episode) =mean_random; 

total_reward(episode) = iter_reward; total_time(episode) = iter_time; 

time = time +iter_time  

Iteration_header_arrayValue(episode,:) =[episode, count, mean_random,  

  iter_reward, iter_time]; 

end  Iteration_header_arrayValue 

 Iteration_header_array =["Episodes","Iterations","Mean Random","Total  

  Rewards", "Total Time" ]; 

xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

 Graph_ANKLE_execution_100.xls',Iteration_header_array,1,'A1'); 
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xlswrite('C:\Users\rashmi\Desktop\bipedal execution\ ANKLE\ ANKLE_100\ 

Graph_ANKLE_execution_100.xls',Iteration_header_arrayValue,1,'A2'); 

x=1:episode;  figure;  plot(x, Iteration_header_arrayValue(:,2),'k o-'); 

xlabel('Episode');  ylabel('iterations');   figure; 

p=plot(x,randomValue,'m',x,total_reward,'b--');  p(1).LineWidth = 

2;p(2).Marker = '*'; 

legend({'Random Values', 'Total Reward'}, 'Location', 'northwest', 

 'NumColumns',2); 

figure;  plot(x,total_time,'r o-');    xlabel('Episode');  ylabel('Total Time '); 

t2= datetime('now');  dt = between(t1,t2,'Time'); 

disp(['Total number Episode: ' num2str(maxEpi)]); 

disp('Total time required execute and plot values '); 

disp(dt);  disp('end'); 

 

 

ball_Feature_matching.m 

close all;    clear all;   clc;  disp('hello') 

ballImageRGB = imread('C:\Users\rashmi\Desktop\MATLAB-RL-

Fearturebased\feature extraction\foot_ball.png'); 

[rows, cols, numOfBands] = size(ballImageRGB) 

groundImage = imread('C:\Users\rashmi\Desktop\MATLAB-RL-

Fearturebased\feature extraction\soccer ball_ground.png'); 

groundImageRGB = imresize(groundImage,0.8); 

[rows, cols, numOfBands] = size(groundImageRGB) 

ballImageGRAY= rgb2gray(ballImageRGB); 

[rows, cols, numOfBands] = size(ballImageGRAY) 

groundImageGRAY = rgb2gray(groundImageRGB); 

[rows, cols, numOfBands] = size(groundImageGRAY) 

ballPoints = detectSURFFeatures(ballImageGRAY); 

groundPoints = detectSURFFeatures(groundImageGRAY); 

figure('Name','Ball in RGB, Gray and 200 Strongest Points'); 

subplot(1,3, 1); imshow(ballImageRGB);  title('Image of a Ball'); 

subplot(1,3,2); imshow(ballImageGRAY);  title('Image of a GRAY Ball'); 

subplot(1,3,3); imshow(ballImageGRAY);  

title('200 Strongest Feature Points from Ball Image');  hold on; 

plot(selectStrongest(ballPoints, 200)); 

figure('Name','Ball in Ground in RGB, Gray and 400 Strongest Points'); 

subplot(3,1,1); imshow(groundImageRGB);  

title('Image of a Ground with Ball'); 

subplot(3,1,2); 
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imshow(groundImageGRAY); title('Image of a GRAY Ground with Ball'); 

subplot(3,1,3);  imshow(groundImageGRAY);  

title('400 Strongest Feature Points from netball Image'); hold on; 

plot(selectStrongest(groundPoints, 400)); 

[ballFeatures, ballPoints] = extractFeatures(ballImageGRAY, ballPoints); 

[groundFeatures, groundPoints] = extractFeatures(groundImageGRAY, 

groundPoints); 

ballPairs = matchFeatures(ballFeatures, groundFeatures) 

ballPairs_1 = matchFeatures(ballFeatures, groundFeatures,'Method', 

'Threshold') 

numMatchPoints = int32(size(ballPairs_1,1)); 

matchedBallPoints = ballPoints(ballPairs(:, 1), :); 

matchedGroundPoints = groundPoints(ballPairs(:, 2), :); 

matchedBallPoints_1 = ballPoints(ballPairs_1(:, 1), :); 

matchedGroundPoints_1 = groundPoints(ballPairs_1(:, 2), :); 

figure('Name','Ball matched features with ball in ground'); 

subplot(2, 2, 1); 

showMatchedFeatures(ballImageGRAY, groundImageGRAY, 

matchedBallPoints,matchedGroundPoints, 'montage'); 

title('Putatively Matched Points (Including Outliers) SURF') 

[tform, inlierBallPoints, inlierGroundPoints,status] = 

estimateGeometricTransform(matchedBallPoints, matchedGroundPoints, 

'affine') 

subplot(2, 2, 2); 

showMatchedFeatures(ballImageGRAY, groundImageGRAY, 

inlierBallPoints, inlierGroundPoints, 'montage'); 

title('Matched Points (Inliers Only)SURF'); 

subplot(2, 2, 3); 

showMatchedFeatures(ballImageGRAY, groundImageGRAY, 

matchedBallPoints_1,matchedGroundPoints_1, 'montage'); 

title('Putatively Matched Points (Including Outliers) SURF'); 

[tform1, inlierBallPoints1, inlierGroundPoints1,status] = 

estimateGeometricTransform(matchedBallPoints_1, matchedGroundPoints_1, 

'affine') 

subplot(2, 2, 4); 

showMatchedFeatures(ballImageGRAY, groundImageGRAY, 

inlierBallPoints, inlierGroundPoints, 'montage'); 

title('Matched Points (Inliers Only)SURF'); 

ballPolygon = [1, 1; size(ballImageGRAY, 2), 1;size(ballImageGRAY, 2), 

size(ballImageGRAY, 1);1, size(ballImageGRAY, 1);1, 1]           

newBallPolygon = transformPointsForward(tform, ballPolygon) 

newBallPolygon_1 = transformPointsForward(tform1, ballPolygon) 
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figure('Name','Ball detected in gray and RGB image');; 

subplot(2, 1, 1); imshow(groundImageGRAY); hold on;  axis on; 

rectangle('Position', [310,180,150,150],'Edgecolor', 'r'); 

line(newBallPolygon(:, 1), newBallPolygon(:, 2), 'Color', 'red','LineStyle','--

','Marker' ,'o'); 

line(newBallPolygon_1(:, 1), newBallPolygon_1(:, 2), 'Color', 

'green','LineStyle','--','Marker' ,'o'); 

title('Detected Ball in Gray'); 

subplot(2, 1, 2); imshow(groundImageRGB); hold on;  axis on; 

rectangle('Position', [310,180,150,150],'Edgecolor', 'r'); 

line(newBallPolygon(:, 1), newBallPolygon(:, 2), 'Color', 'red','LineStyle','--

','Marker' ,'o'); 

line(newBallPolygon_1(:, 1), newBallPolygon_1(:, 2), 'Color', 

'green','LineStyle','--','Marker' ,'o'); 

title('Detected Ball in RGB '); 

disp('END') 
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APPENDIX E 

Mathematical Model of Object Identification 

E.1 Detection of Interest Point 

E.1.1 Hessian-Based Interest Points 

In the image (IMG) point A = (x, y) is considered whose matrix of Hessian 

H(A, σ) on point A taking scale σ is given by  

        
                

                
    (E.1) 

Where Lxx(A,σ) - convolution of 2
nd

 order Gaussian derivative at point A of 

an image I.  

Similarly, Lyy(A,σ) and Lxy(A,σ) are calculated. 

For discretization and cropping of an image Gaussians(σ=2s) are required. 

They are optimal for the analysis of scale space.  

Img(x, y) = Img(x, y) + Img(x-1, y) + Img(x, y-1) - Img(x-1, y-1)  (E.2) 

E.1.2 Scale Space Representation 

Box filters of specific dimensions (9x9, 15x15, 27x27, and so on) are 

convolved for each scale. Box filters preserve the high-frequency components 

which get lost in zooming-out of the image. This limits scale invariance. 

Scale-space is further divided into a set of filter responses, octaves. Each 

octave is scaled by a factor of 2. For each successive level increase in a 

minimum of 2 pixels which means one on each side. This keeps the size odd 

and ensures the central pixel should be present which results in increasing 

mask size by 6 pixels. 
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Figure E.1   Scale Space Representation 

E.1.3 Localization of Interest Point  

Localization of interest points is done by suppression of non-maximum points 

in the neighborhood of 3x3x3. Interpolation in terms of scale and image space 

is done for the maxima of the Hessian matrix determinant. 

   

Figure E.2   Interest Point Localization using 3D Non-Maximum Suppression Concept 

E.2 Description of Interest Point 

E.2.1 Feature Vector 

The horizontal and vertical Haar wavelet response is calculated over each 

subdivision and four metrics are extracted from each subdivision using 5x5 

equally spaced points. These metrics are then summed to produce the local 

feature vector which is concatenated to form a 64-element feature vector that 

describes the interest point and surrounding neighborhood. 
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Figure E.3   Haar Wavelet Filters and Sliding Window Orientation 

 

Figure E.4   Descriptor Vector 
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APPENDIX F 

 

F.1 Simulink Reinforcement Controller 

 

 

 

 

 

 

 



236 
 

CURRICULUM VITAE 

Rashmi Sharma  

Research Associate 

University of Petroleum & Energy Sciences 

Educational Qualifications  

 Bachelor of Science (1996) Vikram University Ujjain (M.P.) 

 Master in Computer Application (1999) DAVV Indore (M.P.)  

 Master in Technology (2010) UPTU, Lucknow (U.P.).  

Interest area includes - Soft Computing, Artificial Intelligence, Machine 

Learning, and Machine Vision.  

Papers Published :  

 

1.  Rashmi Sharma, Dr. Inder Singh, Dr. Manish Prateek, Dr, Ashutosh 

Pasricha, (July 2020), " Comparative Study of Learning and Execution 

of Bipedal by Using Forgetting Mechanism in Reinforcement Learning 

Algorithm",  Journal Européen des Systèmes Automatisés  (JESA), 

IIETA(International Information and Engineering Technology 

Association) Volume 53, Number 3, 2020, pp 335-343 

http://www.iieta.org/journals/jesa/paper/10.18280/jesa.530304  

2. Rashmi Sharma, Dr. Inder Singh, Dr. Manish Prateek, Dr, Ashutosh 

Pasricha, (June 2019), "Implementation of Feature-Based Object 

Identification in Bipedal Walking Robot",  International Journal of 

Engineering And Advanced Technology (IJEAT), Volume-8, Issue-5 

ISSN: 2249-8948,  pp 110-113. 

3. Rashmi Sharma, Dr. Inder Singh, Deepak Bharadwaj, Dr. Manish 

Prateek,(May 2019), "Incorporating Forgetting Mechanism in Q-

Learning Algorithm for Locomotion of Bipedal Walking Robot", 

International Journal of Innovative Technology and Exploring 

http://www.iieta.org/journals/jesa/paper/10.18280/jesa.530304


237 
 

Engineering(IJITEE), Volume-8 Issue-7 ISSN: 2278-3075 pp 1782-

1787  

4. Deepak Bharadwaj, Dr. Manish Prateek, Rashmi Sharma,(May 2019), 

“Development of Reinforcement Control Algorithm of the lower body 

of Autonomous Humanoid robot” IJRTE, Vol 8, Issue. 1, pp. 915–919.  

5. Rashmi Sharma, Manish Prateek, Ashok K. Sinha, (May 2013)," Use 

of Reinforcement Learning as a Challenge: A Review" International 

Journal of Computer Application, New York, (0975-8887) Vol 69-

Number 22 pp 28-34 May 2013 DOI:10.5120/12105-8332. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



238 
 

COMMENT INCORPORATED SUMMARY 

Below is the summary list of the actions taken upon relevant review 

comments/ suggestions 

Sl.No Comments/Suggestions Changes incorporated 

1 The proposed methodology would be 

described with a flow diagram for more 

clarity. 

Changes incorporated on 

page no 64-66  

2 How the proposed methods are 

comparable with existing image 

processing techniques 

Changes incorporated on 

page no 90-92 

3 Why learning based control techniques 

as a model-free controller as compared 

to other conventional schemes? 

Changes incorporated on 

page no 114  

4 How the system dynamics and variations 

of the system will be accounted in the 

proposed method? 

Changes incorporated on 

page no 67   

5 Why only lower body (biped), why not 

to the complete body (humanoid)? 

Changes incorporated on 

page no 171  

6 Why Q-learning and why not other 

learning (DQN, SARSA, etc.) 

techniques? (no discussions were there 

in the thesis) 

Changes incorporated on 

page no 99-102 

7 In the scope of future work, it can be 

mentioned how the same technique 

could be extend to full- edged system, or 

some other aspects to modern robotics 

(for example extending to mobile 

manipulators, autonomous manipulation, 

etc along with some reasonable 

justifications, how it can be extended to 

these areas). 

Changes incorporated on 

page no 170 and 171 

8 Add some references within the last 3 

years in the Literature Review of 

Chapter 2.  

Changes incorporated on 

page no 42-45 
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9 At the end of Chapter 2.1, add a 

concluding paragraph to make the article 

read more smoothly. 

Changes incorporated on 

page no 19 

10 Some of the pictures are blurred and the 

font is too small. Please make them easy 

to read. 

Changes incorporated on 

page no 51-53, 55-56, 

58-59, 61-62, 116-117, 

121-122, 124-125, 146, 

148, 150-167 in figure .  

Changes incorporated in 

tables on page no 127, 

130, 138-143 

 

11 This thesis designs a reinforcement 

learning framework with incorporation 

of Forgetting Mechanism in Traditional 

Q-learning Algorithm. However, I 

cannot find any compared algorithm in 

the experiment part of Chapter 9. In 

order to make the thesis more 

convincing, please add at least one state 

of the art algorithm about Q-learning 

into the framework for comparing. 

Changes incorporated on 

page no 90-92,167-168 
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