
An Efficient QoS oriented Multi-Objective Ranking

Algorithm for Cloud Computing Services

A thesis submitted to the

University of Petroleum and Energy Studies

For the Award of

Doctor of Philosophy

in

Computer Science and Engineering

by

Preeti Sirohi

November 2020

Supervisor(s)

Dr. Amit Agarwal

Dr. Piyush Maheshwari

School of Computer Science

University of Petroleum and Energy Studies

Dehradun, Uttarakhand-248007, India

An Efficient QoS oriented Multi-Objective Ranking

Algorithm for Cloud Computing Services

A thesis submitted to the

University of Petroleum and Energy Studies

For the Award of

Doctor of Philosophy

in

Computer Science and Engineering

by

Preeti Sirohi

(SAP ID 500042705)

November 2020

Supervisor(s)

Dr. Amit Agarwal

Professor (On Leave), SoCS, UPES, Dehradun

External Supervisor

Dr. Piyush Maheshwari

Faculty of Engineering & IT

The British University in Dubai (BUiD)

Dubai International Academic City, UAE

School of Computer Science

University of Petroleum and Energy Studies

Dehradun, Uttarakhand-248007, India

.

I dedicate my Ph.D. Thesis to

My loving Parents, In-Laws, and my Supervisors

Dr. Amit Agarwal,

Dr. Piyush Maheshwari

for their endless support, blessings and guidance.

i

DECLARATION

I declare that the thesis entitled “An Efficient QoS oriented Multi-Objective

Ranking Algorithm for Cloud Computing Services” has been prepared by

me under the guidance of Dr. Amit Agarwal, Professor of School of Computer

Science, University of Petroleum and Energy Studies and Dr. Piyush Maheshwari,

Faculty of Engineering & IT, The British University in Dubai (BUiD), Dubai In-

ternational Academic City, UAE. No part of this thesis has formed the basis for

the award of any degree or fellowship previously.

ii

THESIS COMPLETION CERTIFICATE

Internal Supervisor

iii

THESIS COMPLETION CERTIFICATE

External Supervisor

P O Box 345015 Block 11 Dubai International Academic City Dubai U A E T +971 4 279 1400 F +971 4 279 1490

 FB.com/BUiD.Team buid_team youtube.com/buidadmin @BUiD_Team BUID

THESIS COMPLETION CERTIFICATE

I certify that Preeti Sirohi (SAP ID 500042705) has prepared her thesis entitled “An Efficient

QoS oriented Multi-Objective Ranking Algorithm for Cloud Computing Services” for the

award of Ph.D. degree from the University of Petroleum & Energy Studies, under my guidance.

She has carried out the work at the School of Computer Science, University of Petroleum &

Energy Studies, Dehradun.

Dr. Piyush Maheshwari, Ph.D. Manchester, Senior Member IEEE

External Guide

Professor – Computer Science

The British University in Dubai (BUiD),

PO Box 345015, Dubai International Academic City, United Arab Emirates

Email: piyush.maheshwari@buid.ac.ae; Website: www.buid.ac.ae

iv

Abstract

Cloud technology has become a paradigm for providing on-demand cloud resources

and services on a subscription basis. Several cloud players in the market offer var-

ious cloud services with different quality of service (QoS) attributes. In a cloud

environment, the users have diverse requirements that should be fulfilled through

the specified applications and services offered. One of the biggest challenges in

front of the customer is selecting an appropriate cloud service to meet their cus-

tomized demand. The second challenge is how to perform cloud service selection

by simultaneously considering multiple objectives of the customer. The third chal-

lenge is how to complete the process of service selection with high effectiveness and

efficiency. The fourth challenge is that the existing work in the area of cloud service

selection for multi-objective optimization problem first convert the multi-objective

problem into single objective and then find the best service to meet the customer

requirement. Therefore the optimal service which should include all the objectives

is not taken rather the focus goes to find the best service. Therefore a judicious

decision is needed for a thorough evaluation of the cloud services from the customer

perspective. The non-dominated sorting and ranking of services (NDS-ROS) algo-

rithm proposed to overcome the above challenges and to address the above issues

for cloud service selection. The NDS-ROS algorithm is efficient in reducing com-

plexity, lowering down execution time, and the number of comparisons required for

finding an optimal solution in the multi-objective optimization problem.

Keywords: Cloud Computing, Multi-Objective Optimization, Optimal Service

v

Acknowlegement

I earnestly take this opportunity to thank everybody who has contributed directly

or indirectly in realizing this thesis. First and foremost, I have to bow my head

modestly to pay my deepest regards to the almighty for looking at me with the

benevolent intentions and showering his blessings on me to complete this thesis.

Having an opportunity to acknowledge the help I received in completing my thesis,

and here the names first come to my mind are my learned supervisors Prof. Amit

Agarwal and Prof. Piyush Maheshwari, who has guided me in real sense. I wish to

express my deep feeling of gratitude and appreciation to them for their inspiring

supervision and invaluable suggestions, without whom this thesis would not have

taken shape.

I wholeheartedly acknowledge their full cooperation that I received from the very

beginning of this work up to the completion in the form of this thesis. My advisors

have given me complete freedom to explore the ways cloud computing has drifted

over these years and always guided me with new solutions to the problems. Their

encouragement meant a lot to me. I learned a lot from them in the academic area

and other spheres of life.

Besides my advisors, I would like to thank Chancellor Dr. S.J. Chopra, Vice

Chancellor Dr. Sunil Rai, and Dean SoCS Dr. Manish Prateek, Dean SoCS R&D

Dr. Kiran Kumar Ravulakellu at the University of Petroleum and Energy Studies

for their continuous encouragement, valuable suggestions, and all-time support.

I want to express my special thanks to Dr. J.K Pandey, R & D Director, and

Dr. Rakhi Ruhal, Program Manager Ph. D at the University of Petroleum and

Energy Studies (UPES) assistance during the research work. I am also grateful

to the UPES for providing me all the necessary support in smooth conduction of

my research work and allowing me to be the part of this university I would like to

express my sincere thanks to Prof. Alok Pandey, Director, IMS Ghaziabad. Dr.

Tapan Kumar Nayak, Dean Academics, Dr. Sachin Malhotra, Dean MCA, and all

my faculty colleagues provide me with enormous support to complete my research

vi

work.

It was a wonderful moment when I choose to proceed ahead with pursuing my

Ph.D. even when I was entering the busiest phase of my personal and professional

life. I am eternally indebted to have a wonderful and loving family and express

my gratitude to my parents, my in-laws, sisters, and all the sacrifices and support

throughout my Ph.D. journey. I want to express my appreciation for my all-time

supporting husband, Sameer, and my daughter Jia, Saara, Saee for unconditional

love, encouragement during the tough time, and believing in me. I am incredibly

thankful to all my family and friends for making my research journey memorable.

Contents

Declaration i

Thesis Completion Certificate ii

Thesis Completion Certificate from External iii

Abstract iv

Acknowledgment v

Contents vii

List of Abbreviations xii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Background of the Research . 1

1.2 Problem Statement . 3

1.3 Research Objectives . 5

1.3.1 Sub-Objectives . 5

1.4 Contribution of the Thesis . 5

1.5 Road Map of the Thesis . 6

vii

CONTENTS viii

2 Cloud Computing 8

2.1 Cloud Components . 10

2.1.1 Characteristics of Cloud Computing 11

2.2 Cloud Deployment Models . 12

2.3 Cloud Service Models . 13

2.4 Quality of Service . 15

2.4.1 QoS Parameters . 15

2.4.2 QoS Monitoring . 17

2.4.3 QoS Normalization . 17

2.5 Cloud Service Selection . 18

2.5.1 Generalized Process Involved Cloud Service Selection 18

2.6 Traditional Techniques of Cloud Service Selection 19

2.6.1 MCDM approach for service selection 20

2.6.2 Trust Model for Cloud Service Selection 24

2.6.3 Fuzzy- Based Service Selection 25

2.6.4 Broker-Based Service Selection 27

2.6.5 QoS Attributes for Service Selection 28

2.7 Cloud Service Selection and Ranking using Evolutionary Algorithm 29

2.7.1 Optimization Problem . 30

2.7.1.1 Constrained Vs. Unconstrained Optimization . . . 31

2.7.1.2 Single objective optimization 31

2.7.1.3 Multi-objective optimization 32

2.7.2 Cloud Service Selection as MOOP 33

2.7.3 Multi-Objective Optimisation using Evolutionary Algorithm 35

2.7.3.1 Decomposition based MOEA 36

2.7.4 Weight based MOEA . 37

2.7.4.1 Indicators based MOEA 38

2.7.4.2 Non-Dominated Sorting based MOEA 39

CONTENTS ix

2.7.4.3 Pareto Solutions and Pareto Front 41

2.7.4.4 Non- Dominated Sorting for Cloud Service Selec-

tion and Ranking 41

2.8 Comparative analysis and Research Issues in Cloud Service Selection

Technique . 43

2.8.1 Analysis based on Techniques and QoS parameters 50

2.8.2 Identified Research Gaps in Cloud Service Selection 52

2.9 Summary . 53

3 Non-Dominated Sorting and Ranking of Services (NDS-ROS) Al-

gorithm 54

3.1 Overview of NDS-ROS . 55

3.2 Architecture of NDS-ROS . 56

3.2.1 Candidate Service Filtration 57

3.2.2 Candidate Service Sorting 57

3.2.3 Candidate Service Ranking 57

3.2.4 Dominance Comparison . 58

3.3 Illustration of Proposed NDS-ROS approach through a working ex-

ample . 58

3.4 Assumptions in NDS-ROS algorithm 61

3.4.1 Assumptions on Number of Users 62

3.4.2 Assumptions on the number of Services 62

3.4.3 Assumptions on the QoS attributes 63

3.5 Mathematical Modeling of NDS-ROS 63

3.5.1 Dominance Comparison Rules 64

3.5.2 Fitness Function . 65

3.6 NDS-ROS Algorithm . 66

3.6.1 Filtration . 66

3.6.2 Sorting . 67

CONTENTS x

3.6.3 Ranking . 68

3.6.4 Dominance Comparison . 69

3.7 Summary . 69

4 Experimental Environment 71

4.1 Cloud Dataset . 71

4.2 J Metal Simulator . 72

4.3 Performance Parameter . 73

4.3.1 Number of Comparisons . 73

4.3.2 Execution Time . 73

4.3.3 Computational Complexity 74

4.4 Computational Complexity . 74

4.4.1 ANOVA . 74

4.5 Summary . 75

5 Experimental Results and Performance Analysis 76

5.1 Performance Analysis . 76

5.2 Computational Complexity . 77

5.2.1 Deductive Sort Algorithm 77

5.2.2 ENS-SS Algorithm . 77

5.2.3 GBOS-SS . 77

5.2.4 NDS-ROS Algorithm . 78

5.3 Experimental Outcomes . 81

5.3.1 Number of Comparisons . 81

5.3.2 Execution Time . 84

5.4 Validation of NDS-ROS . 87

5.4.1 One-way analysis of variance (ANOVA) 87

5.5 Summary . 90

6 Conclusion and Future Work 92

CONTENTS xi

7 List of Publications 95

References 97

CONTENTS xii

.

List of Abbreviations

QoS Quality of Service 2
EA Evolutionary Algorithm 2
NDS-ROS Non-dominated sorting and ranking of Services 5
SOA Service Oriented Architecture 10
IaaS Infrastructure as a Service 13
PaaS Platform as a Service 13
SaaS Software as a Service 13
NIST National Institute of Standards and Technology 13
SMI Service Measurement Index 15
SOAP Simple Object Access Protocol 18
WDSL Web Service Description Level 18
MCDM Multi Criteria Decision Making 18
AHP Analytical Hierarchy Process 18
ANP Analytical Network Process 19
SAW Simple Additive Weight 23
SLA Service Level Agreement 24
HEIM Hypothetical Equivalent and Inequivalent Methods 26
SOP Simple Objective Optimization 29
MOOP Multi-Objective Optimization Problem 29
BOS Best Oder Sort 40
GBOS Generalized Best Order Sort 40
CSP Cloud Service Provider 43
ENS-SS Efficient Non-Dominated Sorting –Sequential Search 54
ANOVA Analysis of Variance 74

List of Figures

2.1 Outline of Cloud Computing Paradigm 9

2.2 Cloud Service Providers . 9

2.3 Cloud Components (Dikaiakos et al., 2009) 10

2.4 Cloud Computing Characteristics 12

2.5 Cloud Deployment Model (Buyya et al., 2009) 12

2.6 Cloud Service Delivery Models . 14

2.7 Relationship User, Service Models, Deployment Models and Service

Providers (Luo et al., 2011) . 15

2.8 Relevant QoS for Cloud Service Model (Dong et al., 2013) 17

2.9 Generalized model for Cloud Service Selection 19

2.10 MCDM Model for Cloud Service Selection 20

2.11 Analytic Hierarchical Process (AHP) (Görener, 2012) 21

2.12 Single- Objective Vs. Multi-Objective 33

2.13 Trivago – Search Engine . 34

2.14 Pareto Front and Pareto Solutions 41

2.15 QoS parameters according to their relevance in Research 51

3.1 Architecture of Non-Dominated Sorting and Ranking of Service (NDS-

ROS) . 56

5.1 Dominance Comparisons at M=2 81

5.2 Dominance Comparisons at M=3 81

5.3 Dominance Comparisons at M=4 82

xiii

LIST OF FIGURES xiv

5.4 Dominance Comparisons at M=5 82

5.5 Dominance Comparisons at K=100 82

5.6 Dominance Comparisons at K=150 83

5.7 Dominance Comparisons at K=200 83

5.8 Dominance Comparisons at K=250 83

5.9 Execution Time at M=2 . 84

5.10 Execution Time at M=3 . 84

5.11 Execution Time at at M=4 . 85

5.12 Execution Time at at M=5 . 85

5.13 Execution Time at K=100 . 85

5.14 Execution Time at K=150 . 86

5.15 Execution Time at K=200 . 86

5.16 Execution Time at K=250 . 86

List of Tables

2.1 SMI framework for QoS Parameters. 16

2.2 Summary of Selection Approaches to Cloud Services 50

2.3 QoS Parameters about their importance in the selection of services. 51

3.1 Illustrative Example of NDS-ROS approach 59

3.2 Filtration step for candidate services 59

3.3 Sorting for candidate services . 60

3.4 A ranking step for candidate services 60

3.5 Non-dominated - Dominance Comparison 61

3.6 Main Variables in NDS-ROS . 62

5.1 Time and Space complexity Comparisons of all four algorithms . . . 80

5.2 ANOVA Test at M=2 . 88

5.3 Test of Homogeneity of Variances [M=2] 89

5.4 ANOVA Analysis at M=2 . 89

5.5 ANOVA Analysis at M=2 . 89

5.6 Post Hoc Tests [Multiple Comparisons] at M=2 90

xv

Chapter 1

Introduction

1.1 Background of the Research

Cloud technology enables an on-demand service delivery and also offer virtual
computing resources (Stienhans & Klimentiev, 2011) to the cloud users. Cloud is a
cost-effective model because it helps organizations to prevent spending money on
buying resources such as hardware and software licenses (Ferris & Riveros, 2018).
The cloud model offers a shared pool of computing resources amid several tenants
simultaneously and which shows the benefits of the economies of scale (Wang et
al., 2011) in the cloud. The resources are assigned dynamically to the cloud users,
and these resources can be upgraded or downgraded as per the user’s requirement
(Gao et al., 2011).

In the current scenario, more and more organizations are shifting their day to
day activities into the cloud due to flexibility. Different customers have diverse
requirements, and therefore cloud-based customized service selection approaches
are scheduled and applied to fulfil users’ demands. The cloud model offers its cus-
tomer the cloud resources in the form of infrastructures, platforms, and applications
through a pay-per-usage basis (Ibrahim et al., 2011), which enormously cuts the
upfront cost of buying the cloud resources. In the traditional computing model,
the cloud user has to arrange enormous upfront costs to buy and use resources.
In the cloud, the customer is not concerned about the initial investment in pur-
chasing computing hardware, software, licenses, etc. before starting any business.
The cloud user instead has the facility to access the required shared computing
resources and pay only for the consumed resources. Several cloud service providers
offer their cloud services to their customers over the internet. Some of the popular
cloud service providers are cisco Webex, salesforce, google. Code, force.com, cloud
works, amazon web services, etc.

1

Chapter 1. Introduction

Cloud technology has played an important role in dispensing its services through
the internet. The computing model facilitates computing resources’ to access them
whenever required (Buyya et al., 2009). Each cloud service has a quality of service
(QoS) attributes (Ding et al., 2014) that distinguish one service from another. To
select the appropriate cloud service, the user should consider these QoS attributes.
The accuracy and promptness involved in selecting service from the enormous list
of available services is a real task. It is also challenging to choose solely individual
service from a vast list of available services that meet the user’s requirement. There-
fore, to obtain high performance in efficiency and accuracy, there is a necessity to
develop a proficient decision system for choosing and ranking the services. The
decision system will identify candidate services built on the user’s needs and then
allow the services (C.-T. Chen & Lin, 2010) (Hao et al., 2010). The optimal service
is one of the ranked services which fits best into the user’s customized requirements.

The QoS attributes are classified into qualitative or quantitative features (Mabrouk
et al., 2009). The proposed NDS-ROS algorithm will use quantitative QoS at-
tributes to select, rank, and compare the services until the optimal service is
identified (Stojanovic et al., 2010) (L. Chen et al., 2011). The assessment and
evaluation of numerous cloud services are possible only by measuring the services’
quality attributes. In the traditional approaches, the QoS-based service selection
and ranking are not considered essential, though the QoS attributes dependency in
cloud service selection can not be ignored. Therefore recently, QoS-based service
selection and ranking have taken massive attention recently in research due to vast
business immigration on the cloud.

Real-life engineering problems shows that the user requirements, most of the time,
be fulfilled through multiple objectives (Dhiman & Kumar, 2018). At the time
of presenting the cloud services, these objectives are considered by the provider.
Therefore a cloud service selection and ranking are formulated as a multi-objective
optimization problem (Ding et al., 2017). The optimal solution considers the trade-
off between multiple different objectives specified by the user (Jannat et al., 2010).
The existing work on multi-objective optimization problems mounts the numerous
objective problems into a single-objective optimization problem and then finds the
best solution using traditional techniques (Zeng et al., 2004). The single-objective
optimization problem find the best solution, and this solution has considered prior-
ity objective function to identify the service which best suits the objective (Knowles
et al., 2001).

The Evolutionary algorithms (EAs) (Van Veldhuizen & Lamont, 2000) use a heuris-
tic approach (Gabbani & Magazine, 1986) to find optimal solutions in a multi-
objective problem. The critical aspect of the EAs approach deals with discovering
the list of all the potential solutions that meet the multi-objective criteria. The

2

Chapter 1. Introduction

genetic algorithms are the common EAs, which includes various steps of search-
ing, selecting, mutation, and recombinations of available solutions (Sardinas et al.,
2006). The vital step in the evolutionary algorithm lies in choosing the solution
in the next generation. Therefore, it is essential to identify some criteria that will
decide if one solution is better. Generally, solutions that have better QoS values
than others are considered superior to the rest. The non-dominated sorting strat-
egy (Peng et al., 2010) is the primary technology behind the evolutionary approach
for comparing two solutions. Two solutions are said to be a non-dominated solu-
tion (Kukkonen & Deb, 2006) when one solution is found better in at least one of
the objectives functions from the other solution. The dominant solution (Özlen &
Azizoğlu, 2009) has one solution better than the other solution’s objectives.

The software as a service (SaaS) model (Coello et al., 2007) is the most service
model in the market; therefore, research emphasis on the selection and ranking
of SaaS cloud (Benlian et al., 2009)(Wei-Wen, 2011)(Seethamraju, 2015). The
SaaS model helps the user quickly deploy SaaS applications and start using it,
thereby eliminating the upfront cost of purchase, installations, and the resources’
ongoing maintenance cost. The users of SaaS applications also can download the
application and use it at their convenience. Thus the user of SaaS always has a
competitive edge and can speed up the business benefits faster. Therefore SaaS
is the most widely used service model compared to other services models. Thus,
SaaS’s demand has increased in recent years and gained popularity among users,
making a customized service selection approach in the SaaS cloud (Tsai & Sun,
2013).

The research aims to design and develop an efficient selection and ranking algo-
rithm for the cloud by optimizing the QoS attributes for SaaS user’s customized
requirements. The overall idea behind our proposed approach is to decrease the
methodological gap in the literature and improve the performance of the selection
procedure involved in SaaS cloud selection (Cusumano, 2010). The performance
parameter in the research work will reduce the complexity, the total number of
comparisons required and, also the execution time taken to find optimal service.
The remainder of this chapter elaborates on the problem statement, research ob-
jectives, and the main contribution of the research and thesis roadmap.

1.2 Problem Statement

The swift upsurge in the cloud services makes the service selection and ranking
process strenuous for the customers as they have to choose from the diverse list of
available services. The SaaS applications are gaining popularity due to the ease it

3

Chapter 1. Introduction

offers to its customer in accessing the applications through the web interface. Sev-
eral SaaS providers in the market offer diversity of services in terms of portfolios,
wide pricing range, and different QoS attributes put a challenge for the customer
to select SaaS cloud is very intricate and challenging (Hussain et al., 2020).

The researchers have proposed a few service selection approaches, but these are a
generalized approach that fits in different cloud service models (Yadav et al., 2014).
The current study shows that each service models have their own important QoS
attributes which should be considered at the time of service selection and ranking.
The generalized model will not help the customer opt for any specific cloud ser-
vice model (IaaS, SaaS, or PaaS) (Kavis, 2014)because the QoS requirements vary
from one service model to another. In case if the generalized selection model is
used, then it will not produce an efficient result. Different users have different QoS
attributes requirements, and therefore, it is challenging for the decision-makers to
identify the appropriate services model that fits into their customized needs.

The service selection and ranking consider multiple objectives simultaneously for
identifying and selecting appropriate services. Therefore, choosing the best possible
services is essential, which considers all the user’s goals. The existing techniques
proposed in cloud service selection by assessing multiple objectives and evaluating
the optimal solution are not sufficiently studied in the literature. The variety of
cloud services leads to some research questions: How to identify the optimal service
by considering multiple customer objectives. For example, the decision-maker will
match the available services for numerous conflicting goals; it is not easy for the
decision-maker to generalize the customer’s necessities and find the service. For
instance, one service’s cost is low, but the response time is 30% high compared to
other services. Similarly, the decision-maker might choose one service by consider-
ing its price and another for its response time.

Evolutionary algorithms are considered efficient to find an optimal solution, espe-
cially in optimization problems (Coello et al., 2007). The technique’s efficiency
lies in lowering the search space by reducing the number of comparisons required
to find an optimal solution. The existing literature suggests a massive scope in
reducing the search space for comparison by removing un-necessary and duplicate
comparisons. The design and development of an efficient approach are required,
which reduces the overall search space and provides a fast and accurate optimal
service to the customer.

4

Chapter 1. Introduction

1.3 Research Objectives

The research contributes to cloud service selection and ranking by developing ”an
efficient QoS oriented multi-objective ranking algorithm for service selection in
SaaS cloud model.”

1.3.1 Sub-Objectives

1. Study and review of various cloud service selection and ranking approaches,
framework, and algorithm to identify existing cloud service selection issues
and ranking issues.

2. Development of QoS oriented multi-objective non-dominated sorting approach
for selection and ranking SaaS cloud (NDS-ROS).

3. Implementation of the NDS-ROS using simulator- Jmetal.

4. Experiments were steered to show the competence of the NDS-ROS with
three current algorithms.

5. The validation of the NDS-ROS approach by ANOVA using the SPSS tool.

1.4 Contribution of the Thesis

The research in the thesis considers the services selection and ranking. The the-
sis contributes to a new methodology for SaaS cloud service identification as per
customized requirements. The proposed NDS-ROS algorithm will be efficient in
reducing the search space by lowering the number of comparisons and execution
time taken to find the optimal service as per the customized requirements of the
customer. The research contributes to cloud service selection by developing an ef-
fective and scalable algorithm for addressing the QoS-based service selection for the
multi-objective problems in the SaaS environment. Specifically, the thesis makes
the following contributions.

1. The comprehensive study is done related to cloud service selection, multi-
objective optimization problem, evolutionary algorithms, cloud service selec-
tion, and ranking approach. The research develops an outline with future
research directions into cloud service selection based on the survey findings.

2. The QoS-based novel NDS-ROS algorithm is proposed for service selection
and ranking. The NDS-ROS algorithm will meet the research objectives and
overcome the research problem. Therefore, the main research contribution

5

Chapter 1. Introduction

lies in evolutionary computation by considering multiple objectives simul-
taneously and selecting the cloud’s software (SaaS). The novice NDS-ROS
includes four steps (i) filtration, (ii) sorting, (iii) ranking (iv) dominance com-
parisons. The NDS-ROS algorithm reduces the methodological gap of the
literature and offers SaaS service according to user-customized requirements
The NDS-ROS algorithm uses QoS attributes, facilitating optimal service
delivery to its cloud customers responsively and efficiently. During the NDS-
ROS algorithm development, the research introduced different parameters
for comparing cloud services, which will improve the search space and help
the user find customized optimal cloud service. The study provides a com-
prehensive evaluation of the NDS-ROS algorithm, which adds substantially
to the understanding of using an evolutionary algorithm to address the QoS
aware cloud service selection.

3. The research also incorporates various QoS attribute for the assessment of
cloud services. Including the QoS attributes in research will measure service
performance. The study utilizes a dataset from Kaggle for decision-making.
The contribution is the design and development of the proposed approach
in the form of pseudocode and implementing the simulation environment
approach.

4. The proposed NDS-ROS approach is further compared with three existing
methods to determine NDS-ROS’s efficiency. The research evaluates the
NDS-ROS approach is efficient on the following parameters, number of com-
parisons, execution time, and computational complexity.

5. The outcome of the proposed NDS-ROS is validated through ANOVA using
the SPSS tool. The results favor the NDS-ROS approach in the number of
comparisons.

The research outcome will be beneficial to the cloud customers, cloud providers,
SaaS vendors involved in SaaS services. The NDS-ROS algorithm is helpful in a
cloud selection system to provide efficient selection and ranking processes without
compromising the performance.

1.5 Road Map of the Thesis

The thesis organized as follows:

Chapter 2 defines this research background and introduces basic cloud computing
concepts, QoS qualities, service selection, multi-objective problems, and different
approaches developed in the SaaS model for selection. Evolutionary algorithms
and non-dominated sorting techniques proposed by authors have been discussed in

6

Chapter 1. Introduction

detail. Comparing various methods based on a parameter such as their QoS values,
publications, model/ framework used discussed in detail in tabular format.

Chapter 3 The NDS-ROS approach proposed cloud service selection architecture.
The different stages involved in NDS-ROS are described, and pseudocode is written
for the proposed system, and the dominance comparison rules are defined.

Chapter 4 defines the experimental environment, and tools such as JMetal and
ANOVA discussed in detail. The performance parameters considered and the rel-
evance of these parameters in the research are discussed in detail.

Chapter 5 describes the NDS-ROS algorithm’s experimental implementation with
three existing algorithms, and performance evaluated for the NDS-ROS on fixed
objectives or fixed candidate services. The results were calculated for the compar-
ison required and the execution time represented in tabular format and graphical
representation.

Chapter 6 discusses the conclusion and future work according to the evaluation
of the results achieved in chapter 5.

7

Chapter 2

Cloud Computing

The Cloud environment provides an ideal platform that allows users to access
services distributed globally and provides the platform to accesses these services
via the internet using cloud technology. The chapter talks about cloud concepts,
cloud characteristics, deployment models (Savu, 2011), and service models (Gibson
et al., 2012). The quality of services (QoS) attributes (Cao et al., 2009) and the
prominence of these parameters supporting the service selection have discussed in
detail. The existing literature and techniques proposed by researchers in cloud
services thoroughly studied the set of pre-defined parameters. The comparative
analysis of existing work helps identify open research issues in service selection and
ranking.

Background of Cloud Computing

The cloud technology gaining is popularity in the market due to its features and
the wide range of services presented by service providers. The cloud model elim-
inates planning requirements ahead of the resource provisioning and permits an
enterprise to begin from small infrastructure and grow its resources at the time of
service demand. Cloud computing is not a new technology; the concept is built on
existing technologies that help run a business differently. The technologies used by
the cloud, such as virtualization (Xing & Zhan, 2012) and utility computing (Nick-
olov et al., 2013) for the payment model on resource pricing perspective, where a
customer will pay for the services used, that of grid computing (Hey & Trefethen,
2003). The outline of the cloud computing paradigm is shown in FIGURE 2.1.

8

Chapter 2. Cloud Computing

Figure 2.1: Outline of Cloud Computing Paradigm

The traditional business model engages the purchase of both hardware and soft-
ware before beginning its day-to-day activities, thereby increasing the upfront cost
of business. Cloud technology offers a customer-friendly start or shift to the cloud
and pays the provider only for the services taken and used (Binnig et al., 2009).
The Cloud model has gained popularity due to its features like up-front investment
required, broad network access, highly scalable, resource pooling, rapid elasticity,
easy access, low business risks, management costs (Lewis, 2010), etc. The increas-
ing demand for cloud services among the customers shows growth in providers’
numbers and their varied cloud services list. FIGURE 2.2 displays some service
providers’ prevalent services widespread among its customer.

Figure 2.2: Cloud Service Providers

9

Chapter 2. Cloud Computing

The emergence of several cloud providers and their offered services in the market
drove a high competition among the providers and challenges the cloud customers
to identify the most suitable service from the massive list of available services.
The National Institute of Standards and Technology (NIST) explains significant
elements broadly used in the cloud community (Mell et al., 2011). A cloud model
facilitates a user by offering an on-demand pool of services that can be rapidly
increased or decreased as per user requirements. Cloud theory is grounded on
two core technologies; the first is Service Oriented Architecture (SOA) (Erl, 1900),
which divides and integrates small tasks known as services offered to the cus-
tomers. A wide range of services is shortlisted and provided to the customer in
a cloud-based SOA. The second important technology is virtualization (Lombardi
& Di Pietro, 2011), which offers different virtual applications and machines. The
computing devices and resources virtually represented also help the user carry out
computational tasks without worrying about the hardware deployment.

2.1 Cloud Components

A Cloud computing environment works on three major elements: clients, dis-
tributed servers, datacenter, and all three components contributing to cloud tech-
nology in one way or another (Velte et al., 2009). The clients provide the platform
through which the user cooperates with the cloud environment and is distinguished
as mobile clients, thin clients, and thick clients (Dikaiakos et al., 2009). The dat-
acenter is an assembly of servers and might be situated far from the clients. Dis-
tributed Servers (Chan & Tobagi, 2001) also participates in the cloud by providing
access to the user for using the applications through the internet (Siegel & Perdue,
2012). FIGURE 2.3 depicts various components involved in a cloud environment.

Figure 2.3: Cloud Components (Dikaiakos et al., 2009)

10

Chapter 2. Cloud Computing

2.1.1 Characteristics of Cloud Computing

The definition of cloud includes architectures (Varia, 2008), security issues, deploy-
ment strategies, and characteristics (Gong et al., 2010), which are the backbone
of cloud technology. The key features that have attracted both providers and
consumers towards the cloud are discussed as below (Mell et al., 2011).

1. On-demand self-service: The objective of on-demand self-service (Malathi,
2011) is to reduce the delivery time with minimal service provider interven-
tion. The cloud services such as network storage, CPU time, etc. can be
taken instantaneously or for a particular time slot.

2. Broad network access: Customers can use the virtualized services for their
applications and are made available to the customers through heterogeneous
devices.

3. Resource Pooling (Wischik et al., 2008), The cloud services are offered and
used by multiple customers simultaneously using a cloud multi-tenancy con-
cept (Goyal et al., 2019). The resources are dynamically assigned and reas-
signed or taken back as per customer requirements.

4. Rapid elasticity: The cloud technology makes computing resources available
to the customer as per their choice (Shawky & Ali, 2012). Customer’s com-
plete discretion is to decide the type of services they would like to take from
the provider and its duration. There is no upfront cost or commitment from
either side, and the customer can scale up or scale down resources as per
their usage.

5. Measured services: The cloud provider creates the pool of virtual resources
over the physical resources. Although the cloud customers are using resources
through a pooled or shared approach, the cloud service provider can easily
calculate the usage through its metering applications.

6. Effortless Maintenance: The servers are maintained easily with significantly
less downtime. The regular update feature adds more efficiency in terms of
compatibility and improved performance of cloud computing services.

7. Availability: The cloud competencies ensure that data and services will be
available whenever required. The provider also guarantees that the data and
services can be modified and extended as per customer need. The cloud
service is accessible anytime and from anywhere.

8. . Automation Support: The cloud automatically analyses the user require-
ments and offers services to the user as per their requirements. The data and
service users metered, monitored, and controlled to provide transparency to
the provider and user.

11

Chapter 2. Cloud Computing

9. Cost-effective: The cloud is an economic model as the customer does not
have to spend money buying hardware and resources. The company can rent
the hardware, software, and resources as per their requirements, which saves
lots of their money from buying resources and later on maintenance.

10. Security: The cloud provides a trustworthy storage service and has the best
security features attached. The data will not be hacked or lost, even if any
server damages.

Figure 2.4: Cloud Computing Characteristics

2.2 Cloud Deployment Models

The selection of a deployment model (Savu, 2011) depends on that model’s practice
in the organization.

Figure 2.5: Cloud Deployment Model (Buyya et al., 2009)

12

Chapter 2. Cloud Computing

NIST classifies the deployment models into Public Cloud, Private Cloud, Hybrid
Cloud, and Community Cloud (Mell et al., 2011). The deployment models access
the cloud resources from within the organization or outside the organizations and
shown in FIGURE 2.5.

1. Public Clouds The most common way of deploying cloud services is through
the public. The model allows any individual organizations to use these mod-
els. The resources are open for the people and retrieved at a low cost. The
services’ controls are with the service providers rather than the cloud user,
and therefore security threats associated with the model.

2. Private Cloud The private cloud deployment model is more safe and secure
because the individual or organization exclusively uses it. The resource avail-
ability and access control are within the network and protected by the firewall
(Latif et al., 2014). A private cloud can be taken as per the need of the user
and is costlier as compared to a public cloud

3. Community Cloud The community cloud includes both public and private
clouds; the resources are shared and accessed among individuals with similar
requirements. The community cloud provides a perfect balance between the
resources, security, and privacy risk associated with the cloud.

4. Hybrid Cloud The hybrid cloud involves the grouping of two or more cloud
deployment models. The model is beneficial for the customer who wants to
deploy public cloud services and private cloud services. Therefore services
that involve more security are executed in a private cloud, which does not
have any security threats performed in a public cloud.

2.3 Cloud Service Models

The cloud offers a self-driven business model and provides various flexible services
to satisfy the user’s requests. The service model (Rani & Ranjan, 2014) offers
appropriate and usage-based network access to configurable computing resources
(Bohn et al., 2011) (Wang et al., 2011). The cloud services are categorized into
three main types: Infrastructure as a Service (IaaS) (Bhardwaj et al., 2010), Plat-
form as a Service (PaaS) (Beimborn et al., 2011), and Software as a Service (SaaS)
(Dubey & Wagle, 2007) and is illustrated in FIGURE 2.6.

13

Chapter 2. Cloud Computing

Figure 2.6: Cloud Service Delivery Models

1. Infrastructure as a Service (IaaS) The provider gives different types of hardware-
related services (Gates III et al., 2011), such as virtual machines (Smith &
Nair, 2005), networks, storage, processing to the user. In turn, the user can
submit a task or run his applications on cloud infrastructure, where the user
has limited capabilities to control the rented infrastructure. The significant
computing resources are offered through a virtual metered basis. The Differ-
ent IaaS cloud service providers in the market are Amazon EC2 (Ostermann
et al., 2009), Rackspace are a few examples of IaaS.

2. Platform as a Service (PaaS) The providers offer the platform to the user to
develop user-customized applications without worrying about operating sys-
tems, pre-defined tools, editor tools, programming environments, and other
computing resources. Based on the application needs, the resources are scaled
up and down automatically by the provider. The PaaS as a service model is
a cost-effective, efficient model for developing customized applications. The
Google App Engine (Zahariev, 2009), Microsoft Azure are a few PaaS exam-
ples.

3. Software as a Service (SaaS) The SaaS models are the highest delivered ser-
vice model, and the service provider allows its users to access the existing
applications on the cloud. The user uses present software or customizes appli-
cations without worrying about the hardware and other software products.
The virtualized SaaS services can be accessed simultaneously by multiple
users. Google Docs, etc. are a few examples of the SaaS model. The re-
search aims to develop a proficient service selection and ranking system to
optimizes the QoS and meets the customer requirements.

The complete cloud computing architecture is shown in FIGURE 2.7, describes
the relationship among the deployment models, users, service models, and cloud
providers.

14

Chapter 2. Cloud Computing

Figure 2.7: Relationship User, Service Models, Deployment Models and Service
Providers (Luo et al., 2011)

2.4 Quality of Service

The QoS model (G. Chen et al., 2011) describes QoS attributes and their various
cloud computing application requirements. The challenges faced by cloud appli-
cations is the identification of the right QoS and their management. Each quality
attributes have their pre-defined property with a specific measurement metric to
assess its value. The QoS attribute defines the service-related characteristics that
provide insights into its performance, availability, reliability, etc. (Salama et al.,
2013).

2.4.1 QoS Parameters

The associated QoS attributes of the cloud play an essential role in selecting services
to meet user-customized requirements. The understanding of QoS parameters of
the cloud service depends on identifying QoS parameters for cloud services. The
most accepted models include the cloud service measurement index (SMI) (Arab,
2010). The SMI model has identified seven significant attributes and many sub-
attributes.

15

Chapter 2. Cloud Computing

Table 2.1: SMI framework for QoS Parameters.

Category Attributes

Accountability SLA verification
Compliance Ease of doing business
Providers certifications

Agility Scalability
Portability
Elasticity

Assurance Availability
Reliability
Fault Tolerance

Financials Ongoing Cost
Acquisition and Transition Cost

Performance Service Response Time
Functionality
Interoperability

Security and Privacy Access Control
Data Privacy and Data Loss
Data Integrity

Usability Accessibility
Learnability
Suitability

The exponential growth of cloud service providers leads to publishing many similar
services with diverse QoS. The identification of the nuclear service from a similar
service group is an NP-hard optimization problem (Milan et al., 2017). The cloud
services are deployed in various clouds geographically; therefore, network QoS pa-
rameters are essential such as network delay, and network reliability also plays a
vital role in service selection. If the customer uses some cloud-based applications,
then the mostly adopted QoS parameters (Dong et al., 2013) are response time and
efficiency. Therefore, as per the user’s requirement, QoS is essential for the selec-
tion process. FIGURE 2.8 shows the most adopted QoS parameters for different
cloud service models.

16

Chapter 2. Cloud Computing

Figure 2.8: Relevant QoS for Cloud Service Model (Dong et al., 2013)

2.4.2 QoS Monitoring

QoS monitoring (Dong et al., 2013) is a mechanism to measure cloud services’ QoS
values. It is classified into three types depending upon who is counting the QoS
parameters, i.e., at the client-side, the server-side, and third party side.

1. Client-Side Monitoring- The QoS measurement at the client-side rests on
the user involvement with the service. The response time is a QoS metric
measured at the client-side by evaluating the total time taken to receive the
receiver’s response.

2. Server-Side Monitoring- The QoS measurement at the server-side is done
by accessing the server. The availability of service is an excellent example
of server-side monitoring. The technique that is to monitor server-side QoS
is Windows performance counters (WPC) (Arab, 2010) of the windows com-
munication foundations (WCF) (Lin et al., 2007).

3. Automation through third-party Monitoring- The quality is measured
by outsiders as per the requirement to evaluate the service’s performance.

2.4.3 QoS Normalization

The QoS values of non-functional parameters have different dimensions, and to
quantify them to a uniform distribution, the normalization (Raj & Sasipraba, 2012)
is applied to original QoS values. As per the user’s objective function requirements,
the quality parameters are divided into positive and negative criteria. With the

17

Chapter 2. Cloud Computing

increase in positive measures, the objective function will increase, and with an
increase in negative parameters, the objective function will decrease.

2.5 Cloud Service Selection

The cloud environment connects a pool of dynamically provisioned virtualized com-
puters for offering different computing resources per the service agreements (Keller
& Ludwig, 2003) signed by the providers and users. The diversity of the provider’s
services brings a challenge in the cloud service selection and ranking process. There
are a set of pre-defined standards such as SOAP and WSDL (Ardagna & Pernici,
2005), which assist in service selection and allow an elastic way for applications to
communicate over the internet.

Cloud services’ spread increases the demand for a service discovery approach con-
sidering customized user requirements (Garg et al., 2011). The service selection
issue has, therefore, attracted considerable attention for research in this area. Ex-
isting literature talks about different techniques proposed to help decision systems
for assisting in service selection. To solve the above problem, researchers have
worked a lot in designing processes that provide a common platform for showcas-
ing the services and helping the user pick up the required services. Also, cloud
ontologies (Moscato et al., 2011) developed for aiding a standard procedure of
service specification and matchmaking.

2.5.1 Generalized Process Involved Cloud Service Selec-
tion

A generalized model defines the aim of cloud service selection, the role of people
involved in the selection procedure, modelling various criteria of discussed services,
and evaluating the requirements. The generalized model is shown in FIGURE 2.9
also describes how to choose the best service and the people involved in the service
selection procedure.

1. Selecting the best service- The approaches and techniques use multi-
criteria decision making (MCDM) (Lai et al., 1994) for service selection
based on the customers’ requirements. The choice builds on the priority
level given to the criteria by the customers. Each criterion’s priority is taken
from the customer and using that, the best service selected, and therefore,
the chosen service will meet the customer’s requirements. The standard tech-
niques for MCDM include Analytical Hierarchy Process (AHP), Analytical

18

Chapter 2. Cloud Computing

Network Process ANP Görener (2012), weighted sum approach (Marler &
Arora, 2010), TOPSIS (Lai et al., 1994), and fuzzy techniques for decision
making (Hong & Choi, 2000).

2. People in service selection- The people involved in selection include the
cloud providers, cloud consumers, cloud customers, brokers, and each one
has a specific role in service selection.

Figure 2.9: Generalized model for Cloud Service Selection

2.6 Traditional Techniques of Cloud Service Se-

lection

The section discusses the existing techniques used for finding the service that fits
in the requirements. The categorization of methodologies involved in the area of
service selection is explored. The work by various researchers and their proposed
approaches consider service assessment parameters, service choice techniques, the
purpose of service selection, and service criterion evaluation are discussed in detail.
Based on the service assortment process, the approach characterizes into six major
groups: Multi-Criteria Decision Making (MCDM) (Mousavi-Nasab & Sotoudeh-
Anvari, 2017) service selection approaches, trust models for service selection (Ali et
al., 2005), fuzzy service selection (Lin et al., 2007), and broker service selection, QoS
based service selectionv(Huang et al., 2009) and evolutionary algorithms (Coello
et al., 2007). The different techniques, algorithms, methods used in the above
mentioned approaches are discussed in detail.

19

Chapter 2. Cloud Computing

2.6.1 MCDM approach for service selection

This area’s decision-making strategy depends on identifying the services fit appro-
priately into the customer requirements’ demand. The MCDM is the most used
approach when the decision criteria and the alternatives are finite in number. The
MCDM involves different methods for selecting, evaluating, and ranking services
based on QoS values. The MCDM selection approach’s challenge consists of evalu-
ating each service’s performance and for every single attribute as shown in Fig 2.10.
The MCDM approaches use techniques like Analytic Hierarchy Process (Golden et
al., 1989), Analytic Network Process (Saaty, 1988), TOPSIS, ELECTRE Methods
(Figueira et al., 2005), and Simple additive weighting methods.

Figure 2.10: MCDM Model for Cloud Service Selection

AHP is a decision-making technique that helps the decision-maker to discover the
best-suited alternative from a list of available options considering user requirements
as a priority. An AHP ranking process works on decomposition, comparative judg-
ment, and synthesis (Görener, 2012). The hierarchical designing of the framework
in AHP helps the decision-maker systematically evaluate the various alternatives
and compare them for finding the best option. FIGURE 2.11 shows the AHP
hierarchy, aiming to achieve the goal based on different criteria 1, 2, 3, and 4.

20

Chapter 2. Cloud Computing

Figure 2.11: Analytic Hierarchical Process (AHP) (Görener, 2012)

The service selection and ranking techniques proposed by researchers using AHP
are discussed in detail :

In (Godse & Mulik, 2009), Godse and Mulik suggested a SaaS service selection
technique through AHP considering attributes and sub-attributes. The features,
along with sub-attributes, are used to compute the individual performance of ser-
vice. The services are pairwise compared gives the scoring to each attribute scoring,
which helps rank the services.

In (Karim et al., 2013), Raed and co-authors discovered the selection by consider-
ing the QoS of services and assigns ranks to IaaS and PaaS services according to
the user requirements. The author proposed the AHP method, which will match
the QoS for the offered services to that of QoS requirement by the customer, the
services that matched taken as optimal service with QoS guarantees.

Gonclaves and co-authors (Gonçalves Junior et al., 2015) consider an architectural
design in cloud selection. The author proposed an AHP based cloud selection that
relies on non-functional parameters, including efficiency, cost, and scalability based
on the multi-criteria optimization method. The authors implement the proposed
approach on word-press and deploy it in the Amazon cloud.

In (Menzel & Ranjan, 2012), Menzel and co-authors proposed the Multi-Criteria
Comparison (MC2) framework for IaaS selection. The framework helps the user
to identify which infrastructure would be best suited for their requirements. The
(MC2)2 distinguishes the infrastructure alternatives regarding cost-effectiveness,
advantages, prospects, and risk. The framework (MC2)2 is used in various decision-
making scenarios in information technology infrastructures. Menzel and co-authors
(Menzel et al., 2013) further proposed a framework called CloudGenius to help
dynamic decision process and assist him in choosing cloud infrastructure. Cloud-
Genius utilize an AHP technique to automate the decision-making process based

21

Chapter 2. Cloud Computing

on QoS attributes.

In (Sun et al., 2016), Sun and co-authors presented a new framework built on
a fuzzy decision approach, which improves the service selection process. Fuzzy
Ontology-based model developed to reduce the uncertain relations among various
objects defined in the database, and an AHP based multi-criteria technique helps
ranking cloud services.

Boutkhoum in (Boutkhoum et al., 2016) suggested a methodology using the Fuzzy
Analytic Hierarchy Process (FAHP) and Preference Ranking Organization Method
for Enrichment Evaluations (PROMETHEE) to help in analyzing and ranking the
best cloud which removes the issues related to the big data and cloud technology.
The Fuzzy AHP technique helps assign weights for evaluating the criteria, while
the PROMETHEE method will evaluate different value given and rank the decision
alternatives.

Khowfa and Silasai in(Khowfa & Silasai, 2017) proposed a novel approach using
the Association Rules technique and the AHP method. Association Rules are uti-
lized in data mining for finding out relations among various items in the database.
AHP compares and ranks the services; the combination of association technique
with AHP will evaluate and select appropriate services.

Hwang and Yoon developed the TOPSIS technique in 1981 (Hwang & Yoon, 1981),
which considers the ideal solutions and finds the best alternative near the perfect
result and farthest from the non-ideal outcome (Mohammadshahi, 2013). Vec-
tor Normalization is used to normalize the decision matrix, and then perfect and
non-ideal solutions are recognized, keeping in view the normalized decision matrix
(Zavadskas et al., 2006) for cloud service selection. The TOPSIS method does
not consider the attributes’ importance but only finds the ideal solution and the
non-ideal solution. In (Lo et al., 2010), Lo and co-authors discussed the fuzzy
TOPSIS method in which fuzzy triangular numbers parameterize pre-determined
linguistic variables for calculating the weights of different measures, and the rating
of alternative service is calculated, and best service is identified.

Rai and Kumar in (Rai & Kumar, 2016) use the traditional service selection method
based on the criteria weights according to user demand. Different data centers are
used to provide computing environments, referred to as the cloud service providers,
and are responsible for publishing services stored in the database. The broker is
responsible for identifying appropriate services according to users’ requirements.

22

Chapter 2. Cloud Computing

The MCDM approach used in the study is the outranking approach (De Boer et
al., 1998). Several versions of ELECTRE methods were released, including ELEC-
TRE I –VI, ELECTRE TRI (Mousseau & Slowinski, 1998). There are two sets of
parameters in ELECTRE one is the coefficient, and the other is veto fresh (Moham-
madshahi, 2013). ELECTRE performs a pairwise evaluation between alternatives
and eliminates alternatives that less fit the criteria, leaving a small set of alterna-
tives. The ELECTRE technique can be useful for both subjective and objective
parameters. Concordance and discordance indices are applied (Hiessl et al., 1985)
to the partial raking on the set of alternatives left after elimination.

In (Yazdani-Chamzini et al., 2013), Abdolreza Yazdani and co-authors used the
ELECTRE technique for identifying the risk components in the tunnelling project.
The research happens in two phases; in phase one, all the potential risky param-
eters are defined, and in step two, an order is established among them. As the
tunnelling system is complicated and involves many uncertainties; therefore, the
Fuzzy ELECTRE (Sevkli, 2010) approach is taken. Parameters such as damages,
accidents of machinery, unsafe working conditions put on priority, and at high risk,
and delays in project completion and equipment failure are ranked lower.

Silas and co-authors (Silas et al., 2012) offered a middleware for selection known as
SSM EC. The user preference related to QoS parameters and service description in-
formation collected from the provider, the concordance index, and the discordance
index evaluated along with the credibility degree. The concordance index will give
the truthfulness result according to the criteria set to calculate the candidates; the
discordance will provide the QoS with the difference between alternatives. Finally,
the credibility is calculated by aggregating the concordance and discordance index.

Chou and co-authors (Chou et al., 2008) gave novel fuzzy decision-making (FMADM)
considering multiple attributes. The fuzzy process, in coordination with the Sim-
ple Additive Weighting (SAW) method, is known as (FSAWS), which involves the
qualitative and quantitative attributes to identify the facility location’s problem in
group judgment criteria. The FSAWS gives the final score of each alternative after
evaluating the scores derived from different decision-makers.

In (Saripalli & Pingali, 2011), Saripalli and Pingali use the SAW method to rank
alternatives by the values assigned to them and find the best option. The author
presented a MADMAC framework for the adoption of cloud services. The frame-
work has three functions, which will act as the decision areas known as cloud switch,
cloud type, and vendor choice. Upadhyay in (Upadhyay, 2017) talked about various
challenges faced at evaluating cloud service performance. The paper also discussed
cloud computing concepts along with the significance of QoS in cloud computing.
The framework proposed to assess the services built on QoS parameters.

23

Chapter 2. Cloud Computing

2.6.2 Trust Model for Cloud Service Selection

The service providers offer numerous services with different performance param-
eters, keeping customers confused about whether the provider will deliver the
promised services. The cloud user trusts that whatever the cloud provider has
mentioned in SLA will be given to him without fail. Therefore the main challenge
is the selection of trustworthy cloud providers. Several models studied in the liter-
ature show a different approach proposed in this area, which helps select the best
services from a reliable cloud provider. In (Pan et al., 2015), Pan and co-authors
suggested a service selection model known as a trust-enhanced similarity model,
which will improve trust between the provider and the consumer. This model will
combine QoS of the cloud service, fills all the absent QoS, and finally assign rank
the cloud services, eventually building trust in the cloud users. The cloud service
selection model is classified into four parts. In the first part, the author proposes a
trust modelling method in which a mutual trust degree is built between two users
for general cases and is assumed to be equivalent. The second part stores experi-
ence user feedback, and numerical values are assigned based on their experience of
QoS values. The third part includes utilizing the trust-enhanced similarity model
to identify all the similar trusted neighbors and, finally, rank the service. After
experimental analysis, this model is found better than other approaches in cloud
service selection and order of cloud services.

Josang and co-authors (Jøsang et al., 2007) presented trust from a different per-
spective. The author talked about the trust-based selection in cloud computing as
the trustworthiness between cloud providers and cloud users, i.e., both the parties
can provide some rating to each other to derive trust and reputation. Various
trust-based approaches discussed in the paper have taken both the qualitative
and quantitative attributes in drawing out the conclusion of trust and reputation
(Pawar et al., 2012) between the cloud provider and cloud consumer. Qualitative
parameters evaluated using user feedback, expert judgment, and Quantitative pa-
rameters evaluated through some QoS performance evaluation approach.

Wu and co-authors (Wei-Wen, 2011) talked about reliability as an essential pa-
rameter for ensuring trust. The novel unfair rating filtering method proposed for
revising the already existing reputation system. The proposed method filters all
the unjust and unimportant ratings, thereby increasing the method’s overall perfor-
mance and assisting the service providers and consumers in opting for appropriate
service. The proposed method shows an improved reputation revision system.

In (Ghosh et al., 2014), Ghosh and co-authors recommended a SELCSP trust
framework for computing the interaction risk between the provider and consumer.
The author discussed the importance of service level agreement (SLA) to ensure

24

Chapter 2. Cloud Computing

guaranteed service quality and ensure the cloud provider’s reliability. The SELCSP
framework includes trustworthiness, reliability of estimating risk involved in inter-
action among the provider and the consumer.

Hu Ma and co-authors (Huang et al., 2009) gave a novel cloud service interval
neutrosophic set (CINS) using a time-aware approach (M. Liu et al., 2017) to eval-
uate the trustworthiness in service selection. The time-aware problem consists of
multiple criteria for decision problems, and then the solution is considered, and
the proposed CINS method is used in ranking cloud services. The experimental
evaluation of CINS done using real data sets and the efficiency assessed for the
proposed approach.

Supriya and co-authors (Supriya et al., 2016) discuss the importance of the trust
parameter among the cloud consumer and provider. The growth in cloud services
poses a dare in front of the consumer to select trustworthy providers. The au-
thor discussed various multi-criteria decision-making techniques to help providers
to rank services. Combining the fuzzy approach and the analytic method (Talja,
1999) proposed evaluating the trust parameter in identifying from different cloud
providers. N. Sasikaladevi, in (Sasikaladevi, 2016), talked about how trust plays a
vital role in service selection. The author raises his concern regarding the trustwor-
thy service for cloud service composition, which is not a simple task but includes
lots of complexity. The author recommended a service trust estimation technique
based on the Beta distribution in which a trust-based cloud service selection struc-
ture. The experimental outcomes prove that the offered framework performs en-
hanced on execution time and optimality value than other approaches.

Li and co-authors (X. Li et al., 2016) proposed a trust-based system for cloud
service selection. The method includes the chosen services. These services are also
delivered by determining the service’s trust value, satisfying customer requirements
by meeting safety parameters, and mark trust-based decisions to attain service
controllability. Instance results show that the scheme is effective and can promise
service selection under a safe and controlled scenario.

2.6.3 Fuzzy- Based Service Selection

Achar and Thilagam in (Achar & Thilagam, 2014) carried out the cloud service
selection to support three steps. The first step is the identification of the criteria
according to Service Measurement Index (SMI) (Siegel & Perdue, 2012), the second
step is the determination of the priority of the involved measures, the last stage in-
volves the TOPSIS technique (Mahmoodzadeh et al., 2007) for ranking alternative
services. The result of the study evaluated using the CloudSim toolkit (Calheiros

25

Chapter 2. Cloud Computing

et al., 2011).

In (Srivastava & Sorenson, 2010), Srivastava and Sorenson discussed all the related
literature about QoS and proposed a technique that compares the user ratings and
real QoS performance. The method used in the process is the mid-level splitting
method. The author in the research only took subjective parameters for the study.
According to Hypothetical Equivalents and Inequivalents (HEIM) methods, the
weights are assigned to the customer preference attributes. In (Pandey & Daniel,
2017), Pandey and Daniel proposed a cost-based framework named QoCS, which
helps identify cloud environment services. The framework is based on trustworthi-
ness and uses fuzzy logic, which allows the user to analyze the cloud services on
multidimensional perspectives. Numerous QoS parameters are used in which cost
is one of the main criteria for service selection. Experimental results also show a
better performance of the framework under various cost constraints.

Sun and co-authors (Sun et al., 2016) presented a fuzzy-based decision framework
for improving the overall service selection approach. A fuzzy ontology (Tho et
al., 2006) models to match the services stored in the database and built the re-
lationship among the objects. The novel Analytic hierarchy process approach is
proposed to calculate the semantic similarity among parameters. The framework
uses an MCDM technique for ranking services; the experimental outcomes show
that the suggested method is efficient.

Kumar and co-authors (R. R. Kumar et al., 2017) suggested and designed a novel
approach for the service selection using the AHP (Lai et al., 1994) and fuzzyTOP-
SIS (Saaty & Vargas, 2013). The method uses the weights criteria for comparing
solutions pairwise, and the TOPSIS technique assigns the rank to the solutions.

The model considers the non-functional QoS requirements for selecting appropriate
service and for evaluating each criteria weights. Tajvidi and co-authors (Tajvidi et
al., 2014) discussed the cloud service selection issue due to several providers and
service lists, several selection norms, and customer inclinations. The new fuzzy
logic framework proposed considers individual QoS criteria of customers for cloud
service selection. The framework also includes the essential services with their QoS
data, monitors services, evaluates customers’ feedback, and takes information from
certified cloud providers. Hussain and co-authors (Hussain et al., 2020) talk about
numerous factors considered for making a decision and removing the uncertainty
in the whole process of making a decision. The complexity involved in the selec-
tion procedure’s existing approaches makes the overall process challenging and less
trustworthy. The paper proposed the novel framework to make room for cloud
Service Selection. The ranking system under a fuzzy environment enhances the
procedure of cloud service selection.

26

Chapter 2. Cloud Computing

2.6.4 Broker-Based Service Selection

The cloud service provider available in the market assures that the best cloud
service will be provided. Selecting an appropriate service that can meet the user
requirement involves lots of decision-making skills. The emergence of cloud service
brokers resolves the issue of identifying services efficiently. A broker (Guzek et
al., 2015) gathers information about providers’ offered list of services by under-
standing the customers’ requirements, intending to find the best match. The cloud
broker is responsible for coordinating with CSPs and the customer by ensuring
that SLA-based services are maintained. The involvement of CSBs is assisting
both the parties by building the trust that appropriate services provided, which
match customers’ needs. The Cloud Broker also manages cloud services’ perfor-
mance, delivery, and exchanges relationships between cloud providers and cloud
consumers.

Aazam and Huh (Aazam & Huh, 2017) predict user behavior based on relinquish
probability by recommending a broker who ensures the ease of selecting an appro-
priate service that meets the requested services. The study also includes a refund
mechanism if the customer is not happy with the services or wants to shift to an-
other provider.

Kanagasaba and Rajaraman in (Kanagasabai et al., 2012) talk about the growing
demand for cloud technology adoption and services. The author proposed a frame-
work for SaaS provisioning, which depends on SaaS providers and customers’ cloud
brokerage. The CSB help consumers to select the SaaS provider that understands
his requirements and fulfil them. The CSB responsibility is to match the QoS
offering with the needs and also ranks the services. Lucas-Simarro and co-authors
(Lucas-Simarro et al., 2013) talk about the features and other essential components
of cloud brokerage architecture. The author identifies the cloud broker administra-
tor and the cloud broker user as prominent leaders in the decision-making process.
The cloud broker’s role is to identify the cloud provider’s complete details regarding
the services and the accounting information. The broker administrator decides on
the available information provided by the broker. Annette and Banu in (Annette &
Banu, 2015) proposed a service broker framework to select and provide the cloud-
based render farm and converse the 3D Animation industry cloud to represent the
3D images. The cloud-based render farms help in scaling up and down as per the
demand. One of the vital challenges is that the 3D studios face used for comparing
and selecting the cloud-based render farm service provider. The provider will con-
sider the quality of service QoS requirements and ensure that the condition is met.
The CSB helps them identify the service provider based on the QoS. The CSB also
simplifies the service level agreement (SLA) negotiation and third-party monitoring
services. Sundareswaran and co-authors (Sundareswaran et al., 2012) discuss the
challenges faced in selecting the appropriate service from the vast pool of offered

27

Chapter 2. Cloud Computing

services. Identifying cloud services is a time-consuming process because customers
have to gather all the crucial evidence and then analyze all service providers to
decide. As multiple customers have similar requirements, the same computation
is repeatedly required. The author proposed a novel brokerage-based architecture
that uses a unique indexing technique for managing the information and ranking
potential service providers.

Wu and co-authors (Wu et al., 2014) proposed the QoS-based service composition
to meet the customers’ customized requirements at the service composition time.
The research focused on understanding individual users’ demand and applying a
QoS- strategy replaces the traditional service composition strategy. The service
broker facilitates implementing an on-demand system by purchasing several ser-
vice instances from the providers and then using these instances to provide the
set of composite services with different QoS parameters, which will vary from con-
sumer to consumer.

Prasad and co-authors (Prasad et al., 2016) suggested a cloud-based algorithm,
CLOUD-CABOB, to solve the optimization problem. The user requirements are
taken in advance, and vendors also submit their offers for the services, including
price, QoS for services, and other sets of resources. The SMIcloud framework [169]
substantially creates vigorous competition among providers. The services that fit in
the user requirements satisfies are taken further for service level agreement (SLA)
and Sundareswaran and co-authors (Sundareswaran et al., 2012) offered a novel
indexing technique using cloud brokerage architecture. The indexing will assist
in supervising and dealing with the available information of the service provider.
B+ tree method is used as an indexing factor to understand the provider list
and encodes the information about all the user-related services requirements. The
indexing architecture helps store the available cloud service properties and helps
the cloud user match and facilitate fast information retrieval. A greedy algorithm is
also designed based on the CSP index, which will rank the various service providers
and improve cloud service selection. Multiple parameters and criteria are taken to
mend the parameters, such as reliability and availability.

2.6.5 QoS Attributes for Service Selection

The cloud service selection and ranking are time-consuming and costly because
the services filtered from a massive list of available services. The quantitative and
qualitative assessments are done to find the optimal service. The QoS is essential
in inspecting, evaluating, and selecting the service as necessary in the searching
process. The QoS criteria, along with the weights, are used for ranking. The
cloud vendors use their experience and QoS attributes to find the optimal service.

28

Chapter 2. Cloud Computing

Saurabh Kumar Garg and co-authors (Garg et al., 2013) recommend a ranking
framework for finding the services that consider a method to find and measure
the service quality and rank the cloud services. The proposed framework will help
analyze the benefits and generate healthy competition in the process of service
selection. The SLA requirements are fulfilled through the metrics designed at var-
ious dimensions to every single attribute for each provider. Mojtaba Khezrian and
co-authors (Khezrian et al., 2012) applied an AHP along with VIKOR technique to
propose a hybrid approach for assisting the web service selection process. The AHP
technique will estimate each criterion mentioned by the customer, and VIKOR ap-
plied to identify and rank the suitable candidate services. The proposed approach
will make use of four different QoS criteria and five services. The result shows that
this technique is helpful and selects the best service.

Dinesh Kumar and co-authors (R. D. Kumar & Zayaraz, 2011) recommend a model
for web service selection based on using the AHP technique and QoS parameters.
The model assists in selecting the most appropriate service instance using the
QoS. The broker in this approach is the QoS manager, the middle person between
providers and customers Dou Wanchun and co-authors (Wanchun et al., 2011)
discusses that the service selection depends on service selection’s personal prefer-
ences in qualitative attributes. The novel approach based on QoS- Aware Service
Evaluation is proposed. The model inspects a service and assessment technique
to encourage and evaluate the service and later get shared among the users. The
AHP technique is used to deploy the QoS model and convert user preference by
prioritizing the best service.

A Kumar N. and co-authors (N. Kumar & Agarwal, 2014) presented the framework
by considering QoS for the service selection procedure. The framework assists the
user in finding the appropriate service provider from the repository. The AHP ap-
proach understands the user’s requirements and multiple criteria decision-making
using QoS that smoothens the overall selection process. The framework shows
that the results help users quickly select the best choice based on their tailored
user needs.

2.7 Cloud Service Selection and Ranking using

Evolutionary Algorithm

Evolutionary algorithms are considered an appropriate method for multi-objective
optimization (MOOP). These algorithms are used in many real-world challenges to
find an optimal solution that can be solved using two methodologies. Firstly, the
MOOP gets distributed to a set of different single-objective problems (SOP) by

29

Chapter 2. Cloud Computing

considering the priority of the user and then solving the issue as a single-objective
problem. Secondly, all the objectives are taken concurrently, and the optimal
solution is assessed. A non-dominated sorting approach is the primary technology
behind the evolutionary algorithm. It is beneficial to compare various solutions
and find optimal solutions. Therefore, the research will consider a non-dominated
sorting-based approach to find an optimal solution.

2.7.1 Optimization Problem

The optimization problem is a computational problem, aiming to identify the fea-
sible solution from the available solutions list. The possible solution must consider
maximization/minimization objective functions (Q. Zhang & Li, 2007) for finding
optimal service. The user required objectives to assist in comparing the differ-
ent choices for determining the ”optimal solution.” Therefore, optimization is a
quantitative analysis to find optima using techniques, methods, procedures, and
algorithms. Optimization problems are visible in real-life applications and find solu-
tions to those problems, various modelling techniques, frameworks, and algorithms
identifying optimal solutions. The optimization problem is shown in equations 2.1
and 2.2.

Mathematically, we can represent the optimization problem as(Huang et al., 2009).

Optimize y = f(x1, x2,xp.....xn) (2.1)

Subjected to gj(x1, x2,xp.....xn)

 ≤≥
=

 bj (2.2)

Where j = 1 to k.

Equation 2.1 and 2.2 represents the MOOP mathematically. The xp variables, lies
in the set of {xp | x1, x2, ..., xn} , represented by decision variables y. represents the
f(x1, x2, ..., xn) . The problem will decide whether the objective functions are to
be maximized or minimized. Equation 2.2 shows the constraint which represented
in any form of (≤,=,≥) relationship.

Different reasons that increase the multi-objective problem’s complexity include
the multiple decision variables considered in a single situation and their complex
relationships. The constraints handled at the time of the decision problem and
techniques can identify the feasible solution.

30

Chapter 2. Cloud Computing

2.7.1.1 Constrained Vs. Unconstrained Optimization

The mathematical techniques for solving optimization problems depend on partic-
ular criterion and constraint functions, but some straightforward situation is an
unconstrained optimization problem.

1. Constrained Optimisation- Constrained optimization has some of the con-
straints imposed on the attributes. In general, all the constraints specified
should be considered as they define the dependencies among variables and
parameters of the given problem . The optimization problem express equal-
ity and inequality expressions as constraints and is shown mathematically in
equations 2.3 and 2.4.

gi(x) ≤ 0 (2.3)

Where i = 1,2,3,...,n

or

equalities:
hj(x) ≤ 0 (2.4)

Where j = 1,2,3,...,q

2. Unconstrained Optimisation- The optimization problems having uncon-
strained minimization/minimization objective function. Many of the practi-
cal applications consist of unconstrained optimization. Some of the research
proposed that constrained optimization is replaceable by a penalty function
in the objective function. The constrained problems are considered when the
applications have an explicit constraint on the variables.

2.7.1.2 Single objective optimization

The real-world applications involve different objectives to be considered in making
a decision and to meet the QoS, such as minimizing risks and cost and maximiz-
ing reliability and security. A single-objective optimization problem finds the best
solution using two ways. Firstly the priority related to objective function (either
minimum or maximum) value is taken. Secondly, the different objectives are com-
bined to form a single goal, and then the user requirements are integrated as an
SOP. Therefore the best solution is recognized based on the priority of the objec-
tive function.

31

Chapter 2. Cloud Computing

A single-objective algorithm finds the best solution considering a specific criterion
such as execution time, cost, energy consumption, or power dissipation metrics.
Also, if there are multiple criteria, then they are combined into a priority objective
based on cost function as a weighted sum of the normalized costs associated with
each of the metrics as given in equation (2.5) and (2.6).

Generally, a single-objective optimization problem is defines as:

optimize x = [x1, x2, . . . , xn]T (2.5)

subject to gi(x) ≤ 0, hj(x) = 0 (2.6)

Where i= 1. m and i= 1. p

where gi(x) is the ith inequality constraint and equality constraints is hj(x).

2.7.1.3 Multi-objective optimization

The Multiobjective Optimization Problem (MOOP) involves multiple objectives
that the decision-maker should consider when selecting services. These objec-
tives are often conflicting in nature. Therefore an optimized solution is one that
thinks all objective functions before making any decision. A list of feasible so-
lutions is identified in a multiobjective optimization problem, which considers all
the conflicting objectives. The collaboration among conflicting objectives provides
agreed-upon solutions, known as the Pareto-optimal solutions. In MOOP, to iden-
tify the optimal service, the decision-maker has to make the pairwise comparison
by considering all the objectives, and this process is known as Pareto domination.
Two solutions are non-dominating to each other when it is impossible to improve
one solution on some objective without making other objectives worse. However,
there is a need to identify feasible solutions within the Pareto-optimal range to
certify that an acceptable solution is selected. The mathematical representation of
(MOOP) is defined below shown in equation (2.7) and (2.8).

minimizing/maximizing f(x) = (x1, x2, x3. . . , fk(x)) (2.7)

subject to gi(x) ≤ 0hj(x) = 0 (2.8)

Where i = 1,2.3....,m, and j = 1,2,3,...,p x ∈ Ω. and f(x) represents the n-
dimensional decision variable for x = (x1, ..., xn) from search space Ω. The gi(x) ≤

32

Chapter 2. Cloud Computing

0 and hj (x)=0 shows the constraints and Ω contains possible solution to satisfy
objectives. Single-objective optimization identifies a single optimal solution that
satisfies the user’s priority objective and involves aggregating different objectives
combined into one objective function and find the best solution. In multi-objective
optimization, the goals are expressed as constraints and to attain the respective
objective functions. Several runs applied to obtain solutions corresponding to dif-
ferent satisfaction of conditions. In a multiobjective problem, the methodologies
involved mainly consider multiple alternatives simultaneously and find the optimal
solution. Therefore in single-objective functions, all the defined objectives to be
measured as a single function, and in multi-objective a trade-off curve considering
multiple objectives are considered where the result is the optimal service.

2.7.2 Cloud Service Selection as MOOP

The procedure for selecting service uses QoS values to compare the services’ perfor-
mance. QoS attributes taken through boolean, numerical value, or range. For ex-
ample, response time can be in the field of (20, 40) sec. The cloud user requirements
are taken as objectives; if the customer has one objective, it is a single-objective op-
timization problem. If there are two or more objectives that should be considered
simultaneously for decision making, then the problem is a bi-objective or multi-
objective problem. Therefore, in MOOP, two or more objectives and constraints
included in the problem domain and service selection simultaneously consider all
objectives. The comparison between single objective and multiple objectives on
the basis of their approaches is shown in FIGURE 2.12. These objectives need to
be optimized at the same time to find optimal service. Figure 2.12 below shows
the user requirements are taken as either a single objective in which the user gets
the best solution. The user gets an optimal solution in multiple objectives, also
known as a Pareto-optimal solution.

Figure 2.12: Single- Objective Vs. Multi-Objective

33

Chapter 2. Cloud Computing

Example: Cloud SaaS Model as a Multi-Objective Optimisation Prob-
lem

To show service selection in the cloud as multiple objective problems, The exam-
ple of a SaaS application, namely ”TRIVAGO- Compare hotel price worldwide.”
Trivago is a global search platform that helps customers compare hotel prices from
thousands of travel sites and give customers the best price. Each customer has
different requirements, and therefore the customized service needs to be given ac-
cording to the condition. Also, customer requirements cannot fit into the single
objective, and therefore multiple objectives are considered in finding the best deal
for the customer. Trivago uses a metasearch engine to understand the customer
needs to provide an appropriate solution. Therefore, the above example shows that
cloud service selection can be said as a multi-Objective Optimisation problem.

Figure 2.13: Trivago – Search Engine

The growing demand for cloud services provides excellent opportunities for cus-
tomers to find the appropriate service according to their customized requirements,
which further raises the challenge of picking the vast list service. The service iden-
tification is a time-consuming and tedious process for the customer as they have to
collect necessary information and analyze all the available services. The above Fig-
ure 2.13 shows the real-world example of selecting SaaS through a service selection
algorithm to get for faster and efficient results. The service selection approach is
generally used by the cloud service provider or the brokers to understand the cus-
tomer’s needs and to find the optimal service as per the customized requirements.

34

Chapter 2. Cloud Computing

The Cloudcmp, Salesforce, AWS, IBM Cloud, etc. use cloud service selection and
ranking algorithms to meet customer demand.

2.7.3 Multi-Objective Optimisation using Evolutionary Al-
gorithm

The two or more objectives are considered simultaneously to identify the feasi-
ble solution. The objective functions are either be minimization/maximization or
both. The optimal solution is the one that has the best tradeoff between com-
peting objectives. The user requirements are not reasonable if the multi-objective
problem gets converted to a single-objective problem.

In multi-objective optimization, the traditional optimization approaches operate
on candidate solutions do not yield efficient results. Simultaneously, evolutionary
algorithms are more efficient in efficiently identifying optimal service as they rec-
ognize the set of promising solutions. A generalized of the multi-objective problem
is given by Edgeworth and Pareto (Abbas et al., 2017).

The challenge faced by the researchers in finding appropriate answers to problem
impacts in most of the disciplines. However, various techniques developed to handle
such issues, but the complexities arise due to the alternative approaches associated
with a particular problem. The evolutionary algorithms (EAs) are found to solve
MOOP and have motivated the researchers to use EAs, allowing generating Pareto
optimal solution in a single execution. An EA involves the user’s requirements and
evaluates the fitness to find a feasible solution. Simultaneously, the fitness func-
tion measures the efficiency of any solution that satisfies the condition and gives
corresponding real-value to that optimal solution Evolutionary algorithms are a
heuristic approach to resolving difficult problems in the polynomial time frame
and classified as NP-Hard problems. The evolutionary process is considered effi-
cient for solving NP-Hard problems. The EA works on natural selection, which has
four steps: initialization, assignment, genetic operators, and termination. EAs, in
most cases, use multiple fitness functions and, instead of identifying a single op-
timal point to identify optimal solutions. The solution lies on Pareto front, and
no solution dominates any other solution by reducing the answers based on some
problem context. The evolutionary algorithms use population and allow the gen-
erations of possible solutions at a single execution.

The objective of an EA algorithm is identifying solutions to achieve the following:

1. Identification of the fitness function for the solution

35

Chapter 2. Cloud Computing

2. The best-found Pareto front should come near to the Pareto front.

3. Maintain diversity by preventing convergence from achieving a well-distributed
trade-off front.

4. All feasible solutions in the front should be uniformly distributed to give the
real picture of the decision-makers trade-offs.

5. Provide a possible number of answers to contribute to choosing the most
suitable solution.

The MOEA approaches designed for different application areas are classified as de-
composition, weight-based/ preference, Indicator based, and Non-dominated sort-
ing and ranking (Rai & Kumar, 2016).

2.7.3.1 Decomposition based MOEA

The decomposition process involves dividing the objective space into sub-objectives,
which individually has a Pareto optimal solution. The list of solutions helps in
maintaining the diversity of obtained solutions and assist in solving MOP prob-
lems. Suppose one solution dominates the other in Pareto front even then, the
solution can produce new solutions, making each sub-objective solution to assem-
ble to reach appropriate solutions.

The multiobjective evolutionary algorithm based on decomposition (MOEA/D)
uses traditional aggregation methods and alters MOOP into a single-objective
problem. MOEA/D is efficient for multiobjective problems and discrete decision
variables. MOEA/D uses a decomposition approach of mathematical program-
ming, can be easily incorporated into EAs. MOEA/D helps optimize scalar prob-
lems and does not solve fitness function assignment, diversity, and convergence.
MOEA/D is less complicated, and corporate normalization techniques for dealing
with objectives. The most adopted method in many MOEA/D is the weight vector
generation, which uses a uniform random sampling approach. The benefit of using
this approach is that the sample size is flexible. Qi and co-authors (Qi et al., 2014)
talked about the uniform distribution of Pareto optimal solutions using distributed
weight vectors in MOEA/D. Furthermore, the authors stressed the initialization
technique for the transformation weight vector would not work efficiently in elab-
orate Pareto fronts.

Li and co-authors gave a stable matching model (STM) (K. Li et al., 2013) known
as MOEA/D-STM to select promising solutions for problems in MOEA/D. The

36

Chapter 2. Cloud Computing

proposed approach ranks the solutions present in the list using aggregation func-
tion, and the solutions having better aggregation function values are preferred. The
solution having a smaller distance value to the direction vectors is the preferred
solution. Li and co-authors extended MOEA/D-STM by presenting MOEA/D-IR,
using incorporation based on selecting MOEA/D. The proposed approach also de-
fines the mutual preferences between solutions. The experimental study showed
that MOEA/D-IR is better than MOEA/D-STM on several test-suites. Pilat and
Neruda (Pilat & Neruda, 2015) proposed a user preferences approach named cw-
MOEA/D, an extension of MOEA/D. In cwMOEA/D, user requirements are takes
as preference and recorded as a function and evaluate all the solutions at each
iteration. The negative number represents the preferred solutions, and positive
numbers represent the less preferred numbers.

Li and co-authors (Lin et al., 2015) proposed C-MOEA/DD an extended of MOEA/DD
to solve constrained MaOPsm. In C-MOEA/DD, the tournament selection selects
feasible solutions and also, the steady-state update process of MOEA/DD is im-
proved to get possible results.

2.7.4 Weight based MOEA

The multi-objective optimization consists of many conflicting objectives that should
consider for finding an optimal solution. The priority for the objective functions
makes it easy to identify the preferred solution according to the priority objective.
The existing preference-based optimization is a priori, interactive, and a posteriori
methods. A priori method, the input conditions are put in advance before starting
the optimization process. The limitation lies here due to the limited knowledge
to the DMs related to the problem. A posteriori method obtains a set of Pareto
optimal solutions to choose a different trivial number of explanations as per their
user’s preferences. Interactive methods helps the decision-maker to infuse their
preferences between the optimization. In interactive processes, the decision can
modify their choices depending on the area information acquired during the opti-
mization. Sakawa and Kato in (Sakawa et al., 2003) used a fuzzy-based approach
and presented the requirements in the form of reference points created until a
satisfactory result was is achieved. Phelps and koksalan in (Phelps & Köksalan,
2003) compared individual solutions for their fitness value while considering each
iteration’s decision maker’s preferences. A weighted sum of objectives uses a single
substitute to get some generations.

Jin and Sendhoff proposed a methodology and converted fuzzy preferences to the
weight intervals to calculate dynamic weighted aggregation EA and find equivalent
solutions . The method transforms the multiobjective to a single objective problem

37

Chapter 2. Cloud Computing

using a weighted accumulation methodology to find a solution.

Fonseca and Fleming (Fonseca et al., 1993) and Deb (Deb, 1999) use goal pro-
gramming helps the DM to identify a goal. Fonseca and Fleming remove all those
objectives that do not find a solution according to the purposes specified. Deb also
used the goal strategy and modified the optimization criteria. The plan decided
should neither be too high or too low; otherwise, the solutions will not reach the
goal. Zibin Zheng and co-authors (Zheng et al., 2012) talked about cloud services’
performance and how it helps users select the right services. The author proposed a
cloud ranking framework that improves the selection efficiency and reduces the cost
and time required to find the best services. The extensive real-time experiments
were conducted to check the cloud ranking algorithm’s accuracy and compared it
with other existing ranking algorithms. The proposed algorithm was found more
efficient as compared to the existing ranking algorithm.

Yang and co-authors (Yang et al., 2014) explored different service selection tech-
niques in the cloud environment and concluded that it is a challenging and compli-
cated process. A service selection approach is proposed to find services from dif-
ferent perspectives: functional dimensions, non-functional dimensions, and trans-
actional dimensions. The proposed work considers the user’s simultaneous service
request and designed a novel strategy based on hybrid particle swarm optimiza-
tion that uses a genetic algorithm to find a solution. Ye and co-authors (Ye et
al., 2011) talked about two cloud categories: application services and the other is
utility services. The author proposed a genetic algorithm-based service composi-
tion approach and considers four attributes, response time, price, availability, and
reputation. QoS values and constraints to find cloud services.

Qiang He and co-authors (He et al., 2012) proposed a novel MSSOptimiser (multi-
tenant SaaS optimizer) approach for making SaaS service selection. The process
assists the SaaS developers to use QoS requirements and use them in achieving
various optimization goals. The method is efficient even if users or services is
increased. The experimental study shows that MSSOptimizer is more efficient as
compared to other techniques.

2.7.4.1 Indicators based MOEA

The indicator MOEAs used the indicators to measure solution value and use the
criteria for selecting cloud environment services. The indicator-based EA (IBEA)
(Zitzler & Künzli, 2004) uses an evolutionary algorithm (SMS-EMOA) (Beume
et al., 2007) for service selection. There are also generational distance MOEA

38

Chapter 2. Cloud Computing

(Menchaca-Mendez & Coello, 2015) indicator for many objetive, and metaheuristic-
II (MOMBIII) (Hernández Gómez & Coello Coello, 2015). The hypervolume indi-
cator based MOEA is proposed in (Zitzler & Künzli, 2004) to identify the candidate
solutions. The proposed Pareto compliant Sharpe-Ratio indicator is an alternative
way for generalizing the hypervolume to many-objective optimization (Fonseca et
al., 1993). Zitzler and Kunzli in (Zitzler & Künzli, 2004) gave the first indicator-
based evolutionary algorithm [IBEA], which uses a genetic algorithm based on a
predefined binary indicator and find the solution. The results show IBEA is better
among MOEAs, NSGA-II, and SPEA2.

2.7.4.2 Non-Dominated Sorting based MOEA

The genetic algorithm for solving MOOP generates a solution set that under-
goes various operations selection, crossover, and mutation. During the process,
the non-dominance of the final solution set is obtained retrived all the solution,
whereas no solution is considered to be strictly superior to other solution in the
set. Non-dominated sorting for a maximization problem with m objectives, where
two solutions x and y are solutions is mathematically defined in equation (2.9):

x < y | ∀i : fi(x) ≥ fi(y)and∃j : fj(x) > fj(y) (2.9)

where fi(x) and fi(y) are the i-th objective values for function x and y. The above
equation (2.9) shows that objectives in correspondence to solution x are either
greater or equal to the goals of solution y, and there is at least one objective value
for x, which is greater than y. The Pareto front includes a set of all the non-
dominated solutions, and therefore in a given population, there may be several
fronts. Each of the fronts represented by a unique front number such as k in this
case, where k: k¿1. The thesis research considers all the fronts, and the solutions
smaller front numbers represent higher ranks. The non-dominated fronts are said
to consist of properties mentioned below:

1. The solution in front k must dominate at least one solution from front k+1.

2. The solution in front k+1 may or may not dominate solutions from front
k+2.

Therefore the solutions lying in front of having low rank are preferred than those
having a high rank. According to the Pareto dominance principle, the non-dominated
sorting approach sorts the population’s solutions, which plays a vital part in the
selection procedure. The Non-dominated Sorting Genetic Algorithm (NSGA) is a
technique of evolutionary algorithm and is an extension of the Genetic Algorithm.
NSGA also falls into the category of algorithms such as (EMOO) . The NSGA al-
gorithm’s foremost objective is to increase the overall searching process to identify

39

Chapter 2. Cloud Computing

the feasible solution from the list of candidate solutions constrained by a set of
objective functions.

Deb and Jain (Deb, 1999) suggested a non-dominated sorting genetic algorithm,
considering a reference point-based to solve optimization problems. The proposed
algorithm originated from the NSGA-II algorithm to improve its capability by
changing its predecessors during the selection process. The difference between
them lies in the way of selecting cloud services. Fang and co-authors proposed a
non-dominated sorting method using a divide-and-conquer technique, where sev-
eral redundant comparisons are removed. Drozd́ık M and co-authors (Drozdik et
al., 2014) gave a non-dominated sorting technique called M-front; this method’s
key objective lies in utilizing the existing information the population used in the
dominant relationship. In M-front, the mathematical properties are used for Pareto
dominance by increasing the insertion speed of feasible solutions and remove non-
dominated solutions.

Zhang and co-authors (X. Zhang et al., 2016) suggested a professional ENS-SS
approach to sort solutions suited for MOPs even when the number of objectives is
less. ENS-SS is considered efficient due to the method used here; the pre-sorting
done in which sorted population is put in the first front, and the rest of the solu-
tions are left behind. The pre-sorting sorts the candidate solutions according to
the first objective function. The ENS-SS algorithm practices the strategy, which
ensures that the latter solutions cannot lead the former.

Jensen (Jensen, 2003) proposed a sorting technique, called Jensens sort, an en-
hanced form of the non-dominated sorting approach for two objectives, using the
divide-and-conquer strategy. The Jensen algorithm presorted all the solutions and
stored them in ascending order.

Roy and co-authors (Roy et al., 2016) offered the Best Order Sort (BOS) method’s
whose primary objective is to find the ‘not-worse’ solutions. Suppose there are M
sets of an objective function, then the algorithm searches the smallest group to
compare, and once the solutions are compared, then these solutions are picked one
by one, and rank is applied. Sumit Mishra and co-authors (Mishra et al., 2018)
used the BOS algorithm and generalized the complete process of BOS, known
as Generalised Best Order Sort (GBOS). The approach reduces the comparisons
required to identify an optimal solution. The GBOS is the generalized approach
of the BOS method and helps to handle the limitation of BOS without negotiating
on time and space complexity.

40

Chapter 2. Cloud Computing

2.7.4.3 Pareto Solutions and Pareto Front

A solution is called Pareto optimal solution when one solutions objective function
is said not to be improved without debasing other solutions objective values. The
Pareto approach handles the MOOP and provides optimal solutions considering
trade offs among various objectives. Figure 2.14 shows the Pareto solution for a
minimization bi objective problem.

Figure 2.14: Pareto Front and Pareto Solutions

Evolutionary algorithms are appropriate for managing and controlling solutions
by finding all the feasible solutions in a single execution. Deb showed if the pop-
ulation’s size increases, then the number of required comparisons automatically
increases. The Pareto concept for evolutionary algorithms is practical; otherwise,
it is computationally expensive to identify Pareto solutions.

2.7.4.4 Non- Dominated Sorting for Cloud Service Selection and Rank-
ing

Jahani A and Khanli LM in (Jahani et al., 2017) offered the NSGA SR algorithm,
exploits both objective and subjective parameters, and uses a non-dominated sort-
ing method to rank the solutions. The technique allows the customer to enter the
requirements in either Boolean, numerical, and range. Also, the approach makes
use of feedback collected from an experienced user. The experiments conducted
assure that this approach is better in flexibility and scalability than the existing
approach.

41

Chapter 2. Cloud Computing

Zhang and co-authors (M. Zhang et al., 2012) suggested a declarative approach
based on the logic that covers transactional aspects, and SQL semantics to man-
age the transactional parts. According to the author, this approach is better than
the traditional sorting and selection algorithm. The process also helps the user to
optimize the query and find the result using the Cartesian product.

Hussain and co-authors (Hussain et al., 2020) proposed a Methodology for Op-
timal Service Selection (MOSS), which includes different stages such as prequel,
calculation, ranking, combination, and selection. The MOSS considers both QoS
and QoE parameters to find a feasible solution. All the stages work in coordina-
tion with each other to find optimal results. Fletcher and co-authors (Fletcher &
Liu, 2015), the CF-based service commendation system proposed, have steps like
retrieving service QoS values, generating missing QoS values, and selecting the
suitable weights. The missing QoS values are anticipated based on the historical
data and customer preference of the past services. CF-based service selection has
become the most popular algorithm for personalized product ranking.

Ding Shuai and co-authors (Ding et al., 2017) proposed the novel service recom-
mendation system two rank prediction algorithms. This recommendation system’s
main objective is to mend ranking accuracy and meet the range of requirements of
cloud users. The idea behind this recommendation system is to provide user satis-
faction by formulating cloud service selection and ranking as MOOP. The approach
identifies the best solution, which is a trade-off between the competing objective
functions. The experimental outcomes specify that the suggested service recom-
mendation system is efficient and the results achieved are also accurate.

Jahani and co-authors (Jahani et al., 2014), the new W SR (Weight Service Rank)
approach provides ranks to the cloud service. The author discusses the different
users have different QoS requirements leading to exploring cloud Service providers
that can meet their customized demand. The author determines the best service
with a specific user’s requirement. The W SR compares and ranks the services by
quality of services (QoS) value to select a suitable service.

Jahani and co-authors in (Jahani et al., 2017) proposed another approach called
a multi-agent-based method (ARank) system. The author discusses the user’s
challenges in selecting an appropriate service from the vast available services list.
Therefore to choose a suitable service that matches the user requirements is chal-
lenging. The ARank technique uses intelligent agents from the list of candidate
services and ranks these services. The experimental results show users’ waiting
time is reduced in comparison with other algorithms.

42

Chapter 2. Cloud Computing

In (Urena et al., 2019), the author proposed the Fuzzy MOOP based on the trust
framework. The author discussed cloud computing technology, along with differ-
ent cloud service models. The author talks about the drastic increase in Cloud
Service Providers (CSPs), and the challenge user has to face. These providers
offer a diversity of services in front of the customer, making it difficult for them
to choose the appropriate service to meet their customized requirements. The au-
thor’s Fuzzy approach will simplify the process of identifying a suitable service
to meet user-specified needs. In (Abdel-Basset et al., 2019), the decision support
system selects an infrastructure service that will help determine the appropriate
cloud infrastructure and help choose the best services.

2.8 Comparative analysis and Research Issues in

Cloud Service Selection Technique

TABLE 2.2 below gives an overview of research done in the area of cloud service
selection and ranking. The proposed work, techniques, etc. are discussed on a few
parameters such as technique used or algorithm designed, QoS parameter, brief
overview of working, and the approach.

Technique Framework QoS Parameters Cloud Approach

AHP SFA (Sales Force Au-
tomation) to identify
the services

Integration, Scalabil-
ity Security, Usabil-
ity, Vendor Reputa-
tion, Cost

SaaS MCDM

AHP Case Study Based
Approach (a set of
rules)

QoS Attributes SaaS,
IaaS

MCDM

AHP AHP based frame-
work is proposed,
and the QoS pa-
rameters are used to
select service

Non Functional
QoS attributes
(Efficiency- Time
Behaviour and Re-
source utilization,
Response Time –
CPU utilization and
Memory Utilisation,
Cost, Scalability)

SaaS MCDM

AHP Framework (MC2)2
which considers QoS
parameters to iden-
tify the solution

Cost, Benefits, op-
portunities, and Risk

IaaS MCDM

43

Chapter 2. Cloud Computing

AHP Framework (Cloud
Genius)

Cost, Low Latency,
performance, Uptime

IaaS MCDM

TOPSIS The TOPSIS tech-
nique is considered to
evaluate the solution

Scalability, Capabil-
ity, Performance, Re-
liability, and Avail-
ability

MCDM

Fuzzy
ELECTRE

Tunnel construction
of projects

Risk (Delay and Fail-
ure) are at the lowest
rank Damages, un-
safe working, acci-
dents of machinery

Other MCDM

ELECTRE SSM EC middleware Subjective
(turnaround time,
Service Cost, Trust,
Reliability)

IaaS MCDM

Fuzzy Simple
Additive
Weighting

location selection
problem

Subjective and Ob-
jective attributes

Other MCDM

MADMAC
framework

Works on three
decision areas cloud
switch, cloud type

Subjective and Ob-
jective

PaaS,
IaaS,
SaaS

MCDM

Mid-level-
splitting,
Hypothetical
equivalents
and
Inequivalents

The technique com-
pares functionally
equivalent services
based on customer
perception

Accuracy, Response-
time, and Security

SaaS MCDM

trust-
enhanced
similarity
model

This model will com-
bine QoS of the cloud
service, fills all the
missing QoS values,
and rank the ser-
vices.

QoS Parameters PaaS,
IaaS,
SaaS

Trust
Model

44

Chapter 2. Cloud Computing

trust-based
selection
approach

The author talked
about the trust-
based selection in
cloud computing
as the trustworthi-
ness between cloud
providers and cloud
users

trust and reputation PaaS,
IaaS,
SaaS

Trust
Model

reputation the proposed method
is filtering all the
ratings, which are
unfair and unnec-
essary, thereby
increasing overall
performance through
the market mech-
anism, helping the
service providers
and the service con-
sumers go for their
choice

reliability PaaS,
IaaS,
SaaS

Trust
Model

SELCSP
framework

SELCSP for com-
puting the interac-
tion risk between the
cloud provider and
cloud consumer

trustworthiness and
reliability

PaaS,
IaaS,
SaaS

Trust
Model

CINS
approach

(CINS) based on
the time-aware ap-
proach to evaluate
the trustworthiness
in the cloud service
selection

QoS PaaS,
IaaS,
SaaS

Trust
Model

service trust
estimation
method

The author proposed
a trust estimation
method for cloud ser-
vice selection based
on trust.

trust PaaS,
IaaS,
SaaS

Trust
Model

45

Chapter 2. Cloud Computing

Trust Scheme
model

The model divided
the selection into
parts services cho-
sen, and the services
are delivered, mak-
ing sure that trust
decisions are used to
achieve service.

trust PaaS,
IaaS,
SaaS

Trust
Model

TOPSIS
technique

The first step is
identifying the crite-
ria according to the
Service Measurement
Index (SMI); the
second step is the
determination of
assigned weights.

trust PaaS,
IaaS,
SaaS

Fuzzy-
Based

mid-level
splitting
method

The method used in
the technique is the
mid-level splitting
method. The au-
thor in the research
only took subjective
parameters for the
study

trust PaaS,
IaaS,
SaaS

Fuzzy-
Based

QoCS and
cost-based
framework

The framework is
based on trustworthi-
ness and uses fuzzy
logic, which helps the
user in analyzing the
cloud services from
multidimensional
perspectives

trust PaaS,
IaaS,
SaaS

Fuzzy-
Based

fuzzy
decision-
making
framework

The ranking frame-
work is designed
which helps in rank-
ing of the services for
all service models

trust PaaS,
IaaS,
SaaS

Fuzzy-
Based

46

Chapter 2. Cloud Computing

AHP and
Fuzzy

The author consid-
ers a fuzzy-based
approach and ahp
method to assign
weights, and later,
both are integrated
to rank the services.

trust PaaS,
IaaS,
SaaS

Fuzzy-
Based

dynamic
broker

The approach pre-
dicts the behaviour
of user based on re-
linquish probability,
the likelihood that
the user will cease to
use the requested ser-
vices

Multi-criteria PaaS,
IaaS,
SaaS

Broker
Based

Broker based
framework

A Cloud Service Bro-
ker (CSB) framework
is responsible for se-
lecting and providing
the cloud-based ren-
der farm.

QoS PaaS,
IaaS,
SaaS

Broker
Based

Indexing An indexing tech-
nique proposed to
manage extensive in-
formation helpful in
making a decision

QoS PaaS,
IaaS,
SaaS

Broker
Based

QoS based
ranking
Framework

The framework pro-
posed and which
identifies the user
requirements and
finds the solution

QoS PaaS,
IaaS,
SaaS

QoS Based

VIKOR and
AHP

The hybrid approach
using the priority in
the form of weights
and assigns ranks

Response time, secu-
rity, cost, and relia-
bility.

PaaS,
IaaS,
SaaS

QoS Based

AHP The service selec-
tion is made using
the AHP approach
and assists the
user by identifying
requirements.

throughput, avail-
ability, security

PaaS,
IaaS,
SaaS

QoS Based

47

Chapter 2. Cloud Computing

AHP and
SAW

The proposed
method uses an
AHP and SAW form
and identify the pref-
erence of the user in
finding a solution

QoS PaaS,
IaaS,
SaaS

QoS Based

AHP The framework
selects and ranks
services by using
the AHP model and
multi-criteria

cost, response
time, throughput,
availability, and
consistency

PaaS,
IaaS,
SaaS

QoS Based

MOEA/D-
STM

The approach ranks
all the solutions in
the solution list by
using its aggregation
function values.

QoS PaaS,
IaaS,
SaaS

Decomposition
based
MOEA

fuzzy
approach

The weighted based
approach used to
identify the prefer-
ence in the form of
reference points and
compared a pair of
individuals for their
fitness value

QoS PaaS,
IaaS,
SaaS

Weight-
based/
preference-
based
MOEA

Goal
Programming

The strategy is to
modify the optimiza-
tion criteria. The
plan decided should
neither be too high
or too low; otherwise,
the solutions will not
reach the goal.

QoS PaaS,
IaaS,
SaaS

Weight-
based/
preference-
based
MOEA

Hybrid
particle
swarm
optimization

the model considers
the concurrent re-
quest of service from
the user and uses a
genetic algorithm to
find a solution

QoS PaaS,
IaaS,
SaaS

Weight-
based/
preference-
based
MOEA

48

Chapter 2. Cloud Computing

genetic
algorithm

genetic algorithm-
based service com-
position approach.
QoS values and
constraints are con-
sidered to find cloud
services.

QoS PaaS,
IaaS,
SaaS

Weight-
based/
preference-
based
MOEA

MSSOptimiser The process assists
the SaaS developers
to use QoS require-
ments and use them
in achieving various
optimization goals.

QoS PaaS,
IaaS,
SaaS

Weight-
based/
preference-
based
MOEA

M-front The aim of the work
lies in utilizing the
existing information
of the population
used in the domi-
nance relationship

QoS PaaS,
IaaS,
SaaS

Non-
Dominated
Sorting
based
MOEA

ENS ENS’s is considered
efficient due to the
approach used here;
the pre-sorting has
done in which sorted
population put in the
first front, and the
rest of the solutions
are left behind.

QoS PaaS,
IaaS,
SaaS

Non-
Dominated
Sorting
based
MOEA

T-ENS T-ENS uses a tree-
based structure to
find the dominant
relationship between
solutions.

QoS PaaS,
IaaS,
SaaS

Non-
Dominated
Sorting
based
MOEA

Best Order
Sort BOS

The BOS method’s
primary objective
is to differentiate
between meaningful
and un-important
solutions and then
find solutions

QoS PaaS,
IaaS,
SaaS

Non-
Dominated
Sorting
based
MOEA

49

Chapter 2. Cloud Computing

Generalized
binary order
sort GBOS

The GBOS is the
generalized form of
BOS to handle the
limitation of this ap-
proach and reduce
complexity

QoS PaaS,
IaaS,
SaaS

Non-
Dominated
Sorting
based
MOEA

Table 2.2: Summary of Selection Approaches to Cloud Services

2.8.1 Analysis based on Techniques and QoS parameters

The proposed approaches used in service selection are divided into five categories:
the MCDM approach, the Trust approach, the Fuzzy methodology, cloud broker-
age, and QoS parameters for service selection. All techniques are discussed in
detail and summarized in Table 2.2. Figure 2.10 shows that in the MCDM ap-
proach, AHP is the most commonly proposed approach used by the researchers in
their work. In the MOOP, evolutionary algorithms are found efficient and quickly
adopted algorithm by the researchers.

The quality parameters are essential for the service selection process and based
on the current review process. The QoS is considered in all the recent work as
the parameters are significant in deciding for the decision-maker’s service. The
authors have considered specific QoS parameters in their study, but some authors
have taken all the QoS parameters. The section includes the importance of using
different QoS parameters in research is discussed. FIGURE 2.15 shows various QoS
parameters like trust, Throughput, Availability, Uptime, Risk, Efficiency, Reputa-
tion, Security, and Scalability. The frequency of these parameters in the literature
is calculated and plotted in the bar graph to obtain the essential and significant
QoS parameters. The map shows that some of the attributes are treated as more
important than others by most researchers at the time of service selection in a
cloud-like Cost, Response time, and availability. While the parameters, including
Capability, correctness, etc. are not studied much in the literature.

50

Chapter 2. Cloud Computing

Figure 2.15: QoS parameters according to their relevance in Research

Table 2.3: QoS Parameters about their importance in the selection of services.

QoS No of Repetitions in QoS

Scalability 4
Reliability 3
Security 3
Usability 1
Reputation 2
Cost 8
Efficiency 1
Response Time 6
Risk 3
Latency 1
Uptime 1
Capability 1
Availability 5
Accuracy 1
Throughput 1
Correctness 1
Trust 3

51

Chapter 2. Cloud Computing

2.8.2 Identified Research Gaps in Cloud Service Selection

A comprehensive study and examination of the existing literature using different
techniques and algorithms suggested by various authors applied for service selection
are described in detail. The literature survey done in the research paper is through
the existing proposed work and comparing different techniques and parameters
used for service selection. The taxonomy of cloud service selection studied consid-
ering various approaches in this area, such as multi-criteria decision making, trust
models, fuzzy approach, brokerage model, QoS based techniques, Non-dominated
service selection techniques. The existing literature includes both the traditional
and evolutionary methods, and from the study, it is evaluated that the conven-
tional algorithms are well suited in a single-objective problem. In contrast, evolu-
tionary algorithms are considered more efficient in the multi-objective optimization
problem. The current research work discusses various algorithms, frameworks, ap-
proaches proposed in area cloud services. The non-dominated sorting approach
sorts the population by pairwise comparing the available solution and finding an
optimal solution. The efficiency of the evolutionary process depends on the num-
ber of comparisons required for finding the optimal solution. The challenges users
face when selecting the appropriate services according to their requirements are
discussed below.

1. Generic approaches proposed for different cloud service model- SaaS
is the most extensively used service model as compared to other services
models. The existing literature discussed a generalized approach for all cloud
service selection and ranking for all service models. The research shows that
each cloud service model has its own important QoS parameter, which helps
evaluate that service model’s efficiency. Therefore, a generalized approach for
finding optimal service by considering the QoS parameter will not produce
an efficient result.

2. Insufficient approach considering customized requirements in cloud
service selection- The existing literature proposed a generalized approach
for cloud services selection and ranking without considering an individual’s
requirements. Every customer has a different set of requirements for selecting
a service in real life. Therefore a generalized approach will not produce the
customized results.

3. Cloud service selection as multi-objective Optimization Problem-
The literature review shows various techniques proposed in MOOP applied in
diverse application areas. The insufficient approaches are seen in cloud service
selection and ranking as a multi-objective optimization problem. Some of the
techniques developed for cloud service selection use traditional strategies that
are considered efficient for single-objective problems.

52

Chapter 2. Cloud Computing

4. Increased number of services or objectives or both- The optimal solu-
tion is found by comparing the list of available solutions. At the time of the
comparison, there are many redundant comparisons and un-necessary com-
parisons that increase the search space and decrease the search efficiency. An
efficient method should be developed, which selects and ranks the services
and find an optimal solution by reducing the total number of comparisons.

5. Cloud Service Selection and Ranking- The rapid increase in the num-
ber of service providers in the market and the diversity of existing services
challenge identifying the appropriate service to fulfill its customized require-
ments.

2.9 Summary

The chapter discussed the literature review and different approaches and techniques
proposed by various researchers in cloud services. The QoS attributes, framework,
and methodology in the existing work are represented in table 2.2. The detailed
study on the literature helps understand the working and the procedure followed
by authors in the cloud service selection. The generalized service selection model
is conferred in the chapter, and the literature review identifies limitations and is-
sues in the literature and helps recognize the research gaps. Although the industry
has widely adopted cloud computing, still new problems are seen in its industrial
applications. These gaps make the user not very comfortable in the adoption of
the cloud for their business activity. The current study done on the cloud model
identified a few of the challenges which can be used in future research. Identi-
fying limitations and issues in the existing literature is discussed, which laid a
foundation for future research directions. In the future author plans to explore
the multi-objective optimization approaches for service selection as the user has
various objectives at the time of service selection. Therefore, traditional methods
will not be an effective way in the area of service selection. Therefore the research
emphasizes SaaS as the problem domain, leading to challenges in providing a bet-
ter SaaS to meet the demands. The SaaS cloud services’ selecting and ranking
requires an efficient approach to improve efficiency and overcome the weakness of
the existing strategies used in SaaS cloud service selection. Customer confidence
is gained through an efficient cloud service selection is used to select the services
that can meet customized requirements.

53

Chapter 3

Non-Dominated Sorting and
Ranking of Services (NDS-ROS)
Algorithm

This chapter investigates the research issues mentioned in chapter 2 and proposed
a novel approach, a non-dominated sorting algorithm for ranking of services (NDS-
ROS) algorithm to find the feasible service according to the user requirement. The
NDS-ROS considers cloud service selection and ranking as a MOOP and use QoS
attributes to meet the tailored requests of the users. The NDS-ROS architecture
is also discussed in detail, which shows the overall working of the approach. FIG-
URE 3.1 illustrates the architecture, which consists of four stages of the NDS-ROS,
namely (1) filtration, (2) Sorting, (3) ranking, and (4) Dominance comparison. The
NDS-ROS algorithm helps in identifying optimal service as per the user require-
ments. The NDS-ROS specifically designed and developed to make the service
selection for SaaS cloud; also, the QoS parameters considered for finding optimal
service are the SaaS QoS parameters (He et al., 2012). The NDS-ROS architec-
ture is shown in fIGURE 3.1, which covers all the four stages and also different
conditions involved in the whole process. The NDS-ROS algorithm’s illustration is
also demonstrated with a working example to clarify the process flow of the stages
involved in service selection. The assumptions used in NDS-ROS represent the
number of users, objectives, and services. These assumptions were later used for
mathematical modeling of NDS-ROS. The chapter also covers the proposed dom-
inance comparisons rules to reduce the duplicacy in comparing the services. The
fitness function is also given to the non-dominated services to identify the user’s
customized optimal service.

The NDS-ROS algorithm compared with three existing algorithms, including de-
ductive sort, efficient non-dominated sorting algorithm (ENS-SS), and generalized
binary order sort (GBOS-SS), to check the algorithm’s efficiency. The NDS-ROS

54

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

shows improved results on the increased services or objectives size. The NDS-
ROS methodology involves steps that increase the complete performance of the
searching and ranking the cloud services. The filtration step filters out relevant
services from services that are not required by the customer. The sorting technique
used in the algorithm will help sort the cloud services according to the objective
functions. The ranking step will assign a rank to the services. Finally, the domi-
nance comparison will compare the services until an optimal service is identified.
The NDS-ROS algorithm’s objective is to reduce the search space to minimize the
customer’s waiting time.

3.1 Overview of NDS-ROS

The multi-objective evolutionary algorithms rank the population-based solutions
based on their dominance factor, which is received in each iteration process. The
process is considered a costly affair in finding the multi-objective problem (L. Liu
& Zhang, 2015) or when the number of services is vast. The existing algorithms
like NSGA II (Deb, 1999), SPEA2 (Zitzler & Künzli, 2004), NPGA (Erickson et al.,
2002), MOMGA (Zydallis et al., 2001), and others rank the population according to
the dominance principle, which again increases the overall computational complex-
ity. Therefore, efficient non-dominated sorting and ranking of service (NDS-ROS)
is designed and developed, lowering down the complexity of existing algorithms
and is cost-effective by improving the approach’s overall performance and finding
optimal SaaS service cloud model.

The NDS-ROS algorithm finds an optimal service using QoS attributes, the range,
and priority of QoS value taken from the user’s. The NDS-ROS aims:

1. Reduce the procedural gap in the existing work and

2. Increase the performance of the selection procedure involved in the SaaS
cloud.

The NDS-ROS consist of four stages, includes filtration, sorting, ranking, and domi-
nance comparison. The techniques are applied to support the NDS-ROS algorithm.
The QoS range and its priority are taken from the user to filter out the candidate
services. Merge sort will sort the candidate services in objective functions individ-
ually either in ascending or descending order. The ranking is done on the sorted
services for each candidate service, and dominance comparison is made between
the same ranked candidate services taken from the different objective functions.
The dominance comparison will continue unless optimal service is identified. The
NDS-ROS algorithm reduces th comparisons required to find optimal service(s).

55

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Figure 3.1: Architecture of Non-Dominated Sorting and Ranking of Service
(NDS-ROS)

3.2 Architecture of NDS-ROS

The Non-dominated sorting and ranking of services (NDS-ROS) algorithm’s main
objective is to find the optimal results from the diverse list of available services as
per the user requirements. In most of the existing approaches, several unnecessary
or duplicate comparisons raise the overall time. The NDS-ROS algorithm does not
alter the MOOP to an SOP; instead, it finds the optimal service by simultane-
ously considering multiple objectives. The optimal service evaluated considering
the tradeoffs of numerous objectives. NDS-ROS algorithm focus on finding optimal

56

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

service by simultaneously lowering the duplicate or un-necessary comparisons be-
tween the services. The proposed dominance rules applied for comparing services
that improve the searching process faster and the overall search process’s efficiency.

The NDS-ROS architecture in FIGURE 3.1 shows the working of the algorithm.

3.2.1 Candidate Service Filtration

The filtration step takes the preliminary processing of requests from potential cus-
tomers who submit their QoS attributes’ requirements and priorities. When a SaaS
consumer submits a request, the filtration process will filter out the cloud services
that meet its needs. i.e., all the cloud services which fall into the range of user
requirements are filtered out and stored in the candidate service set. E.g., the cus-
tomer requirements are taken in the pre-defined range [90%-100%] for availability,
[200ms- 250ms] for response time for the bi-objective optimization problem. The
objective function’s priority is taken in numeric order, which will later be used to
calculate the fitness function.

There are two cases in Candidate Service Filteration:

1. Case 1: The user requirements do not match the QoS value of the service;
therefore, the filtration step will not filter out any candidate service, i.e., the
candidate set will be empty, then either we can retake the requirements from
the user, or we can include all the available service in the candidate service
set for further process.

2. Case 2: In the filtration step, the candidate service set filter our singleton
service, an optimal service. Therefore no further process or action is required.

3.2.2 Candidate Service Sorting

The candidate services stored in the candidate service set are picked one by one,
and merge sort is applied. The sorting (ascending /descending) order is done
using the QoS values of each candidate service. Once the services are sorted, these
services are stored in each of the objective function set.

3.2.3 Candidate Service Ranking

The sorted candidate services from each objective function set are taken and ranked
in ascending order if the services sorted for minimization objective; otherwise,

57

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

these services ranked in descending order. The ranking process is repeated for all
objective function set and also for all the candidate services.

3.2.4 Dominance Comparison

The same ranked services from different objective functions are taken for pairwise
dominance comparisons. The service which dominates another service in all the
objectives is stored in the optimal solution set. Two services are non-dominated
to each other if one of the services is non-dominating to another service in at least
one of the objectives, and both the services are removed from the comparison list.
There are two cases in Dominance Comparison:

1. Case 1: If only one service is found in the optimal service set after dominance
comparison, then the candidate service will be considered an optimal service.

2. Case 2: If there are two or more than two services in the optimal service
set, then these services are sent again for pairwise dominance comparison,
and the process continues till the optimal service set has a single service.
Suppose in case the optimal service set has two or more non-dominating
services. In that case, the fitness function is calculated using the priority
objective taken from the user in the filtration step. The fitness value for each
non-dominating service is calculated. In the case of minimization objective
function, the service whose fitness value is least is selected as optimal service;
otherwise, the service whose fitness value is highest is the optimal service.

3.3 Illustration of Proposed NDS-ROS approach

through a working example

The population S comprises ten services and a bi-objective minimization function
(Cost and Response Time) shown in TABLE 3.1. The first column shows the
service list and the values of each objective. The following four tables (filtration,
sorting, ranking, and dominance comparison) show the optimal service evaluation.
The following steps previously described in reaching the optimal service are as
follows:

58

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Table 3.1: Illustrative Example of NDS-ROS approach

Available Services Cost (Rs/Hr) Response Time(no of

services request/sec)

S1 52 3.5
S2 60 3
S3 70 2
S4 10 6
S5 25 2
S6 30 1
S7 90 4
S8 110 2
S9 56 3
S10 80 4

TABLE 3.1 shows the list of available services S1, S2.S10, the cost, and
response time offered for each service mentioned here.

Table 3.2: Filtration step for candidate services

Available Services Cost (Rs/Hr) Response Time(no of

services request/sec)

User Requirements Cost [40 – 90] RT [2 – 5]
S1 50 3.5
S2 60 3
S3 70 2
S7 90 4
S9 56 3
S10 80 4

Candidate Service Set | CS| { s1, s2,s3,s7,s9, and s10}

The user requirements are taken, and candidate services are taken out of the table.

Step 1: The user requirements are taken in range, the cost of the service mentioned
by user ranges between [40-90] rs/ hr, and the response time range is between [2-5]
seconds. The provider’s QoS attributes values for the services are matched with
the QoS attributes mentioned by the user. The services which fall into the user-
specified range in all the objective functions are filtered out, and they will go in

59

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

the next round. Therefore the services fall in the range for both the objectives are
stored in the candidate service set { s1, s2,s3,s7,s9, and s10}.

Table 3.3: Sorting for candidate services

Available Services Cost (Rs/Hr) Response Time(no of

services request/sec)

S1 S1(50) S3(2)
S2 S9(56) S2(3)
S3 S2(60) S9(3)
S7 S3(73) S1(3.5)
S9 S10(80) S7(4)
S10 S9(90) S10(4)

Step 2: The services are sorted for cost and later for response time in ascending
order as the objectives are minimization objective function. The sorted services in
objective set 1 are { s1,s9,s2,s3,s10,s9} and the sorted services in objective set 2
are { s3,s2,s9,s1,s7,s10}.

Table 3.4: A ranking step for candidate services

Available Services Cost (Rs/Hr) Response Time(no of

services request/sec)

R1 S1(50) S3(2)
R2 S9(56) S2(3)
R3 S2(60) S9(3)
R4 S3(73) S1(3.5)
R5 S10(80) S7(4)
R6 S9(90) S10(4)

Step 3: The sorted services are ranked in the ascending order in objective set 1 {
r1-s1, r2-s9, r3-s2,r4-s3,r5-s10,r6-s9} and the ranked services in objective set 2 are
{ r1- s3,r2- s2,r3-s9, r4- s1,r5-s7, r6- s10}.

60

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Table 3.5: Non-dominated - Dominance Comparison

Rank Dominance Optimal Service Set

[Candidate Services] Comparison

R1 (S1,S3) Non-Dominated [Ignore both services]
R2 (S9, S2) S9 Dominates [store for future comparison]
R3 (S2, S9) Already compared [Ignore]
R4 (S3,S1) Already compared [Ignore]
R5 (S10, S7) Non-Dominated [Ignore both services]
R6 (S9,S10) S9 Dominates [store for future comparison]

Optimal Service S9 is the
Set | OS | optimal service

Step 4: The same ranked services are compared { s1,s3},{s9,s2},{s7,s10},{s9,s10}
and then optimal service is evaluated using dominance relationship between the
compared service. The dominance rules mentioned in section 4.3 are applied to
do the comparison. The table [1-5] shows that the non-dominated services not
considered for further comparison; therefore, {s1,s2,s3,s7, and s10} are ignored to
be sent in the optimal set, but {s9} is the dominating service. Therefore it is the
optimal service and stored in the optimal service set.

3.4 Assumptions in NDS-ROS algorithm

The NDS-ROS algorithm works on discovering and ranking appropriate services
considering the user’s necessities and finding optimal services from available ser-
vices by considering multiple objectives simultaneously. The proposed approach
aims to maximize the user’s objective and minimize the deviation from the re-
quirement to less essential services. The cloud service ranking is modelled as a
MOOP and ranks cloud services on objective parameters. The assumptions of the
proposed approach NDS-ROS shown in the section. The objective assessments
are modelled in the sub-sections below, based on the service modelling, objective
functions modelling, and QoS values modelling.

The assumptions proposed in NDS-ROS are mentioned here to select and find
optimal quantitative parameters for users to enter the range requirements. The
NDS-ROS algorithm reduces the number of duplicate and un-necessary compar-
isons involved to find optimal service. Cloud service selection and ranking are mod-
elled as a multi-objective optimization problem. The entities involved in NDS-ROS
below include users, cloud service, QoS attributes, and Objective functions.

61

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

3.4.1 Assumptions on Number of Users

The User Set U represents the total number of the user requesting the services.
The process of modelling the users is shown in equation (3.1), (3.2), (3.3), and
(3.4). The modelling process of users is depicted below:

U = {u1, u2, u3, u4, , uj, J} (3.1)

Uj = {Sn, Rj[min−max], Pj} (3.2)

Rj = {Rj1, Rj2, Rj3. , Rjm, , RjM} (3.3)

Pj = {Pj1, Pj2, Pj3. , Pjm, , PjM} (3.4)

U is the set that includes one of the user uj, where j lies between 1 and J if we
have total J users. Rj is an ordered pair, including QoS requirement for the jth
user. Each Rjm has a range from (min Rjm) to (max Rjm). Pj refers to the user’s
priority and showing the mth QoS coefficient of the jth user.

3.4.2 Assumptions on the number of Services

The service set is represented by S, and the total number of services is N, where
Sn, lies between 1 and N. Every service has some pre-defined QoS attributes. The
cloud service modelling is shown in equation (3.5) and (3.6).

S = {s1, s2, s3, u4, , sn, N} (3.5)

Sn = {qn1, qn2, qn3. , qnm, ,M} (3.6)

Each Sn has its own QoS attributes, so Sn represents an ordered pair in which
qnm shows the mth QoS attribute for nth service. If there are total M qualitative
attributes, then it will be represented by M.

Table 3.6: Main Variables in NDS-ROS

N Number of Services CS Candidate services set
M Number of Quality attributes Pjm jth user priority
U Number of Users Rj QoS requirement of jth User
Uj jth User Sn nth Service
qnm mth QoS attribute of nth service K Number of candidate services

62

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

3.4.3 Assumptions on the QoS attributes

The QoS attribute models all the users and services with the quality attributes
defined in previous chapter 2. The QoS methods, description, and units od QoS
for measurement are mentioned in Table 3. The proposed approach was evaluated
on SaaS prominent attributes of QoS shown in figure.

3.5 Mathematical Modeling of NDS-ROS

1. Filtration Step- The user Um requests for the service Sn and enters the
requirements Rm for QoS attributes. The needs are taken in range and then
matched with the list of available services in service set S. Thus, the candidate
services filtered in this step will go in the candidate service set CS[n]. The
candidate service is evaluated using equation (3.7)

CSj[n] = Filtration(F){Rj, Pj, S} (3.7)

Where 1 ≤ n ≤ N, CSj[n] is the obtained candidate services for the jth user.
The input data set includes Rj as the jth user’s requirement, Pj is the priority
taken from the jth user related to QoS attributes, and S is the service set.
The services are filtered based on QoS attributes, where some parameters
are maximized, and some are minimized. Suppose a parameter is maximized
and b parameter to be minimized (a+b = M), as shown in equation (3.8)
and (3.9).

F =
N∑
i=1

(
a∑

m=1

(Rj)) +Ni=1(
b∑

m=1

(Rj)) (3.8)

Rj = Ujqm[min] ≤ qnm ≤ Ujqm[max] (3.9)

2. Sorting- In the candidate service set CS[n], the merge sorting step is applied
if n ≥ 2. Therefore the candidate service set should have at least two ser-
vices before the sorted function is applied on the candidate set. The sorted
candidate service for each objective function evaluated using equation (3.10)

COm[Sn] =
M∑

m=1

(sortcandidateservice(CS[Sn])) (3.10)

For all objectives (1 ≤ m ≤ M), we iteratively sort the candidate services
by each objective m. The candidate objective set of the nth service sn,
in this order, is composed of preceding solutions in the ordering sn.COm=
{s1,s2,. sn−1}.

63

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

3. Ranking- The sorted candidate service for each objective function is evalu-
ated using the following equation (3.11)

RCOm[Sn] =
M∑

m=1

(
N∑

n=1

(R[Sn]) (3.11)

R[Sn] = r + 0.5 ∗ (s− 1) (3.12)

The rank r is initialized to 1 and will go to CS[n], s is also initialized to 1
and will remain one till the time duplicate services are seen in the objective
set.

4. Dominance Comparison- The Pareto dominance relationship is discussed
in this section. The idea of dominance comparison is to find the dominance
relationship among the same ranked services lying in different objective func-
tions. The dominance comparison will lead to optimal service stored in the
optimal set. There are two possibilities in the dominance comparison.

The dominance comparison occurs between two different services having the
same rank and indifferent objective functions.

OS =
M∑

m=1

(rank(si(qm))) ≤ rank(sn(qm)) (3.13)

| OS | = si

The dominance comparison between same ranked service and in the different
objective function

OS =
M∑

m=1

(rank(sn(qm))) ≤ rank(sn(qm)) (3.14)

| OS | = sn

3.5.1 Dominance Comparison Rules

1. Compare services with the same rank in the different objective functions.

2. If the compared service is non-dominated to each other, then both the services
are removed from the comparison set or in further comparison step.

3. If one service dominates another service in dominance comparison, then the
dominating service is included in the optimal service set.

64

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

4. If optimal service has more than one dominating service, then the services
again go for dominance comparison.

5. If two service has already compared in the previous round, then services are
not compared again.

6. The execution of the algorithm will stop in two cases

(a) If the optimal service set has only a single service after dominance com-
parison

(b) If the optimal service set has all the non-dominating service, then the
decision strategy(fitness function) is applied, and the optimal service
is found. In the maximization objective function, the service has the
highest value taken as an optimal value. In the case of minimization
objective function, the service has the lowest value taken as optimal
service.

3.5.2 Fitness Function

The fitness function is the candidate solution which helps in finding the ideal solu-
tion as per the objective function specified by the customer and keep the solution in
the optimal solution set. The NDS-ROS algorithm helps in identifying the optimal
service therefore it will store the optimal service in the optimal service only after
all the dominance comparison among the ranked candidate service is completed.
There are two conditions for optimal service set.

1. The optimal service set has only a single service after dominance compari-
son, and the service is dominating service compared to other services in the
dominance comparison. The service Sn is optimal service, and it fits in user
requirements.

| OS |= sn = 1 (3.15)

2. The optimal service set has more than one service, and these services are
non-dominating to each other. In this scenario, the fitness function for all
the non-dominating services calculated. The fitness function is computed
using each objective’s priority and multiply with the QoS value for that
objective; the value is added to the QoS value and the importance. The
process continues for all the services stored in the objective function. The
service which has the minimum value (in case of minimization problem) is
taken as the optimal solution. Equation (3.16) shows the calculation of the
fitness function.

| OS |= sn > 1 (3.16)

65

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Fitness function

FitnessFunction(ffqn) =
M∑

m=1

[sn(pj ∗ qm) ∗ (pj + 1 ∗ qm+ 1)] (3.17)

Sn represents the nth service with mth quality of service attribute and prior-
itizes the user for attribute m.

3.6 NDS-ROS Algorithm

The NDS-ROS algorithm has four stages in the algorithm, including filtration, sort-
ing, ranking, and dominance comparison. The NDS-ROS inputs include the set
of services, users requesting services, requirements, and priorities, and the result
consists of an optimal service.

The NDS-ROS architecture is shown in section 4 for the steps involved in NDS-
ROS. Algorithm 1 shows the overall stages involved in service selection and finding
optimal service, and algorithm 2, algorithm 3, algorithm 4, and algorithm 5 shows
the respective steps of NDS-ROS.

Algorithm 1 NDS-ROS Algorithm: Non-dominated sorting and ranking services
Input: A service set S, user requirement set Rj, user priority set Pj

Output: Optimal service Sn

Start

Step 1. Filtration(CS[n]) /* select the candidate services from set S */

Step 2. Sorting(COm[CS[n]) /* Sort the candidate services */

Step 3. Ranking(R[CS[n]]) /* rank the candidate services */

Step 4. Dominance comparison(OS[Sn]) /* compare two services */

End

3.6.1 Filtration

The filtration step filters out relevant services as per user requirements and stores
them in the candidate service set. The step works on important objectives: to
understand users’ requirements and minimize not required services. The filtration
step involves the following sub-steps: firstly, the user requirements are taken in
the range [min max]. Secondly, the cloud services Qos values matched with user
requirements. Finally, the filtered services are stored in the candidate service set.

66

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

There are three scenarios involved in this step:

Case 1. if the conditions [range] match, then the service is selected for candidate
service set else service is ignored.
Case 2. if there is only singleton service in the candidate set, then the service is
considered an optimal service.
Case 3. if none of the user requirements is matched, then all the services are
selected, or user requirements are again taken.

Algorithm 2 Filtration step
Input: Service set S, Rj, Pj

Output: Candidate service set CSj[n]
Start

| CS | ← ∅ /* Candidate key is empty */

Filtration | CS | = select services from S such as Sn(minRjm ≤ qjn≤maxRjm)
CS= Sn

if CS= Sn then
OS[n] = Sn /* n=1, optimal service */

end
if CS[n] = 0 then

CS[n] = | S | /* no service fits in range */

end
if CS[n] = N then

CS[n] = sorting(CS[n]) /* where n= 1 to N */

end
End

3.6.2 Sorting

The merge sort technique is applied to all the candidate services. Here, all the
candidate services are sorted for each objective function. The ties are broken using
lexicographical comparisons. The idea behind using merge sorting is its quickest
response time, even for a large dataset, and having low complexity compared to
other techniques. The NDS-ROS becomes efficient in the sorting process due to the
merge sort. The sorting process involves sorting the candidate services from the
first objective and then iteratively sorts the services for the rest of the objective.
The algorithm 3 will take the candidate set CS[n] as an input. The sorting of
candidate services is done in ascending order for each objective.

67

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Algorithm 3 Sorting step

Input: Candidate Services N and Objective M
Output: Sorted set of services in COm
Start

COm ← ∅ /* Objective set is empty */

for n= 1 to N do
COm ← sorting(CS[n]) by mth objective /* Merge sort is used */

COm [Sn] ← CS[Sn]
end
Isranked(COm [Sn]) ← false go to Algorithm 4
return COm [Sn] /* sorted services for each objective */

End

3.6.3 Ranking

The third stage of the NDS-ROS algorithm includes ranking of the candidate ser-
vices which are stored in the objective function set using the algorithm 3. The
candidate services are already sorted here and therefore each of the candidate ser-
vice is assigned a rank. The process of ranking of the candidate service is mentioned
in algorithm 4 where the ranking function will assign ranks to the sorted candidate
services (CS[Sn]). In this step, the sorted services are picked one by one from the
objective set, and services are ranked for each objective function. The ranks are
assigned in the same order in which the candidate services are sorted.

Algorithm 4 Ranking step

Input: Candidate objective set COm [Sn]
Output: Ranked candidate services R(CS[Sn])
Start

if ss ranked(COm [Sn]) ← false then
select Sn from COm /* n = 1 to N */

Lm
R(CS[n]) ← Lm

R(CS[n]) U Sn /* include Sn to Lm
R(S) [N*M]matrix */

end
if ranked(Sn) ← True then

Lm
R(CS[n]) ← Lm

R(CS[n]) U Sn /* s is already ranked */

end
return R(CS[Sn]) /* services ranked in each objective */

End

68

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

3.6.4 Dominance Comparison

The algorithm 5 works on the finding of the Pareto-solution from the list of the
ranked candidate services. The comparison among the candidate service will occur
only through the dominance comparison rules mentioned in 3.5.1. which makes sure
that duplicate comparisons or comparisons which can be avoided should be removed
from the comparison set. The algorithm starts with picking up those services
having the same rank and puts them in the dominance comparison set where the
services are then compared pairwise to find their dominance relationships. Through
the dominance comparison the rules will be followed which will eventually reduce
the comparisons to identify the optimal service and remove duplicate comparisons
from the list.

3.7 Summary

The NDS-ROS approach is summarized in algorithm 1. The candidate services are
stored for each objective function separately and are later used to rank the can-
didate service for each objective function. The complete working of the proposed
algorithm NDS-ROS algorithm works in four different steps. The user requests
collected are converted in the form of objective functions, and then the services
are then filtered from the massive list of accessible services. The filtered services
should meet the QoS attribute value for each objective function mentioned by the
user. The filtered services are stored in the candidate service set. In the second
step, the filtered services sorted using a merge sort for each objective function in
ascending order. When two services have the same parameter value for the same
objective function, any service is considered on top of another service. It will not
affect the complete ranking of the services or in the calculation of the optimal
service. The sorted services for the objective functions are stored in the ascending
order for minimization objective function. In the third step, the sorted services
in the objective function set are ranked for the individual objective function set
and are assigned Pareto fronts to them in the same rank order. The vital thing
to take care of is the number of Pareto fronts is equal to candidate services. The
fourth step involves comparing the services under different objective functions but
has the same rank, and the dominated services are evaluated and stored in a set.
If, in the end, there are two or more services in the dominated service set, then
these services are further compared for dominance cases. If there is a single service
in the dominance comparison set, then that service is considered as an optimal
service required by the user.

69

Chapter 3. Non-Dominated Sorting and Ranking of Services (NDS-ROS)
Algorithm

Algorithm 5 Dominance Comparison
Input: Services si , sn
Output: optimal solution set OS[Sn]
Start

for m.R(CS[sn]) =k. R(CS[si]) do
different objectives /* same ranked services from */

foreach COm (qm) do
if R(CS[Sn]) ⇐ R(CS[Si]) then

OS[Sn] = CS[Sn]
end
else

ignore services (CS[Sn], CS[Sj])
end
Repeat /* different services with same rank */

end

end
if |OS[Sn]|= 1 then

OS[n] = Sn /* optimal service */

end
else

if optimal set OS[n] ≥ 2 then
/* dominating service */

(OS[Sn,Sj])
end
if optimal set OS[n] ≥ 2 then

/* non-dominating service */

FITNESSFUNCTION(ff) [Sn,Sj,Sk]
end

end
/* Calculate Fitness Function */

if ff [Sn] < ff [Sj] then
|OS[n]| = Sn /* optimal service will be stored */

end
else

if fitfun [Sn] < fitfun [Sj] then
(OS[Sn,Sj]) /* Both Services are Optimal */

end

end
End

70

Chapter 4

Experimental Environment

The chapter discusses the experimental environment used in the execution of the
NDS-ROS algorithm. The efficiency of the NDS-ROS algorithm’s along with three
well-known algorithms: deductive sort, ENS-SS, and GBOS-SS. The experiments
were conducted to compare the efficiency that a SaaS service user achieves when
adopted a non-dominated sorting and ranking of services (NDS-ROS) algorithm.
The experiments conducted to analyze the performance of all four algorithms based
on the comparisons and execution time:

4.1 Cloud Dataset

The initial population is taken from the data set on cloud services collected from
Cloud service data set from Kaggle. The data set contains the initial population
with a diversity of services. The NDS-ROS algorithm’s filtration step helps in
filtering necessary services, and these services are called candidate services stored
in the candidate service set. The above four algorithms are compared on two
different performance parameters:

1. In this test, the varying number of candidate services [100-250] and the fixed
number of objectives ranging from [2 to 5].

2. This test fixed the number of candidate services [100-250] and the varying
objectives ranging from [2 to 5].

Execution Time required on Candidate Services K

1. In this test, the varying no candidate services [100-250] and the fixed number
of objectives ranging from [2 to 5].

71

Chapter 4. Experimental Environment

2. This test fixed the number of candidate services [100-250] at an increment of
50 and the varying objectives ranging from [2 to 5].

The simulator used in conducting experiments is JMetal Simulator, and the algo-
rithm implemented in java. The results are evaluated for the proposed NDS-ROS
algorithm with three existing algorithms. The performance parameter used in
the study to calculate the NDS-ROS algorithm’s efficiency includes the number of
comparisons, total execution time is taken, and cyclomatic complexity. The NDS-
ROS algorithm compares with all three algorithms discussed above, i.e., deductive
sort, ENS-SS, and GBOS-SS. The computer and software versions used have the
following features:

1. Windows 10 Standard

2. Intel i5 Processor with 4GHz.

3. 4 GB of RAM Memory

4. Java Version 1.8.0-121.64 bits

5. Simulator - J Metal

4.2 J Metal Simulator

The multi-objective optimization problem has increased attention as there is no
single solution or point that augments all the objective functions simultaneously;
thus, a MOP optimum consists of a set of points known as the Pareto optimal set.
To obtain Pareto front of a MOP is the main objective of multi-objective optimiza-
tion. The JMetal simulator helps solve multi-objective optimization problems and
provides the users with an easy-to-use, flexible, and extensible tool. And also assist
in the overall process of researching with metaheuristics algorithms. JMetal helps
a range of applications, experimentation, and studying metaheuristics for resolv-
ing multi-objective optimization problems. jMetal contains both traditional and
current optimizers and is efficient in managing benchmark problems and quality
indicators to evaluate the algorithms’ performance. The framework supports full
experimental studies by providing complete jMetal’s graphical interface. JMetal
also generates statistical information automatically and execute faster experiments.

72

Chapter 4. Experimental Environment

4.3 Performance Parameter

The most crucial aspect of any algorithm is the performance, which tells the effi-
ciency of that algorithm in carrying out a specific task. The performance parame-
ter includes the algorithm’s output generated in terms of computational resources,
comparisons required, and execution time to find the optimal service. The NDS-
ROS algorithm finds a set of solutions as close as possible to the optimal solutions.
The three performance parameter used in the research to evaluate the performance
of the NDS-ROS described below:

4.3.1 Number of Comparisons

The number of comparisons is the number of times the available candidate services
get compared to give the result. To evaluate the NDS-ROS algorithm’s efficiency
with deductive sort, ENS-SS, and GBOS-SS, the number of comparisons recorded
for the services ranging [100-250]. These comparisons were measured at objective
sizes 2, 3, 4, and 5, respectively, to find the optimal service. The assessment
criteria and the data set used in the experiment are the same for all the four
algorithms. The comparison among the algorithm shows all the four algorithms’
results if the objective functions increase and the services increase. The pairwise
dominance comparison is made on the service having the same rank but is stored
in the different objective sets. The total number of dominance comparisons taken
by each of the algorithms is calculated. The algorithm with the least number of
dominance comparisons is the efficient algorithm, and the NDS-ROS algorithm was
efficient on the criteria.

4.3.2 Execution Time

The execution time also measures the computational efficiency of the proposed al-
gorithm. The lesser the execution time, the faster the customer will get the optimal
service, reducing his waiting time. The execution time is also directly proportional
to the number of comparisons required until the optimal service is found. The
lesser number of comparisons, the lesser execution time, and the algorithm will be
more efficient. The four algorithms executed on the same set of parameters, and
the execution time calculated for all the four algorithms. The result shows that
the NDS-ROS algorithm yields faster results.

73

Chapter 4. Experimental Environment

4.3.3 Computational Complexity

Computational complexity is the classification of the algorithm in terms of resource
usage. A computation problem is solvable by applying some logic. An algorithm’s
complexity measures the amount of time and space taken by an algorithm to input
a given size (n). The study calculates the computational complexity for all the
four algorithms for time and space. The experimental results indicate that the
NDS-ROS algorithm is found efficient in this parameter.

4.4 Computational Complexity

The standard method to judge an approach’s efficiency is to compare an algorithm’s
overall performance and count the number of performance parameters on which an
algorithm is an overall winner. To validate the results received from the algorithm
is done through a sign test. The sign test is used as a statistical test that compares
the NDS-ROS with other algorithms. The difference in performance scores of the
two algorithms on a problem should be significant. The hypothesis testing intends
to formally examine the two opposing conjectures (hypotheses), H0 and HA.

4.4.1 ANOVA

Analysis of variance (ANOVA) is a statistical tool that identifies the mean variances
among the compared experimental groups. ANOVA conduct the empirical study
with one dependent variable and measures the parametric outcomes along with
numerous experimental groups within one or more independent variables. The
independent variables in ANOVA are called factors, and levels are the different
groups in each element. ANOVA computes the partitioning of variance, interac-
tions, factors, a sum of squares, mean squares, F scores, post hoc tests, effect size,
statistical power, etc. The one-way ANOVA matches the means among the groups
and decides whether any of those means are statistically significantly dissimilar
from each other. Specifically, it tests the null hypothesis and shown in equation
(4.1)

H0 : µ1 = µ2 = µ3 = µ4......µk (4.1)

where µ = group mean and k = number of groups.

Suppose the results of one-way ANOVA are statistically significant. In that case,
the alternative hypothesis (Ha) is accepted, which means that group means that
are statically significantly different from each There is also a two-way analysis of
variance to identify the independent variables on one unceasing dependent variable.

74

Chapter 4. Experimental Environment

The ANOVA also checks the impact on the independent variables on a dependent
variable and the expected outcome.

4.5 Summary

The sample data taken from the population is used from the data set on cloud
services from the Kaggle. The four algorithms deductive sort, ENS-SS, GBOS-SS
and NDS-ROS will be compared in the next chapter on the basis of parameter
including, the number of comparisons, total execution time, and computational
complexity. The simulator which will be used for the experimental evaluation is
“Jmetal” which is found to be an efficient simulator in solving multi-objective
optimization problem. Analysis of Variance (ANOVA) a statistical tool will be
used to find the variance in all the four algorithms.

75

Chapter 5

Experimental Results and
Performance Analysis

The chapter discussed a complete analysis to show the NDS-ROS algorithm’s per-
formance by doing a comparative study. The performance analysis’s primary goal
is two-fold (1) to compare the NDS-ROS with deductive sort, ENS-SS, GBOS-SS
approach to define the amount of enhancement in the outcomes (2) to raise the
part of NDS-ROS towards mounting an agreement on the optimal service. The
experiments conducted on the dataset with the candidate services range between
[100-250] and objectives size [2,3,4 and 5]. All the four algorithms are executed in
the Jmetal simulator on windows 10 PC with a 4 GHz Intel i5 processor and 4 GB
of RAM.

5.1 Performance Analysis

The experimental study of the four algorithms [Deductive sort, ENS-SS, and GBOS-
SS and NDS-ROS] compares them on three different performance parameters:

1. Computational complexity:- The computational complexity of GBOS-SS, De-
ductive sort, ENS-SS, and NDS-ROS algorithm is calculated for the worst
case and best case time complexity.

2. Comparisons Required:- The comparisons required among the services to find
the optimal service.

3. Execution Time:- The total time taken by the algorithm in giving the optimal
service

76

Chapter 5. Experimental Results and Performance Analysis

5.2 Computational Complexity

The complexity of any algorithm depends on the methodology involved in finding
the solution. This section briefly explains the deductive sort, ENS-SS, and GBOS-
SS algorithm and their time complexity taken from the existing literature. The
time complexity of the NDS-ROS converses in detail. Best and worst time case
complexity is evaluated for all the four steps, i.e., filtration, sorting, ranking, and
dominance comparison.

5.2.1 Deductive Sort Algorithm

The deductive approach begins with matching solution P1 with other solutions one
by one. The number of comparisons by P1 will continue till the time any other
solution does not dominate P1. As soon as P1 dominates by some other solution in
the list or is dominated by other solutions, then the dominating solution is assigned
to the front F1, and P1 will no longer be involved in further comparing the front
F1. Similarly, solution P2, P3, etc. are compared with each solution in the list.
The dominance comparison will last until all the solutions are allocated fronts. In
deductive sort, there are many unnecessary comparisons, and many of them are
also duplicate comparisons.

5.2.2 ENS-SS Algorithm

ENS-SS approach is different from other approaches in the way comparisons be-
tween the solutions is done. Usually, the other approaches compare the solutions
before assigning it to the front, while the ENS approach matches the solution with
only those assigned to the front. In ENS, the population is sorted first based on the
first objective before the ENS approach is applied. Thus, the solutions included to
the front will not dominate any solution added before, and as a result, ENS can
escape only some of the duplicate comparisons.

5.2.3 GBOS-SS

Generalized Binary Order sequential search (GBOS-SS) is an efficient algorithm
and is an extension of ENS. The approach uses a novel binary order search to
speed up sorting and rapidly explores through the front to check if the solution is
dominated. GBOS-SS can reduce the number of duplicate comparisons only but
can handle large population size and objectives.

77

Chapter 5. Experimental Results and Performance Analysis

5.2.4 NDS-ROS Algorithm

The NDS-ROS algorithm’s computational complexity to find optimal service de-
pends on four steps: filtration, sorting ranking, and dominance comparison. The
best and worst time case complexity is calculated for all four steps separately, and
the full time complexity of the algorithm is calculated. T represents the time com-
plexity, N is the total service list, and M represents the size of the total objective.

1. Filtration Step: In the filtration step, the QoS value of the available
services gets compared with user requirements. As soon as the services are
matched successfully with needs, they are filtered to the candidate set. The
algorithm 2 shows the total number of available services “N,” and all these
services must be searched at least once. Therefore, the worst-time complexity
infiltration algorithm T(n) is O (n). Even if first service gets matched with
user requirements for best-case, the algorithm still checks all the services and
looks for its match. Therefore, the best case time complexity is T(n) is O(n).
There are total M objectives; thus, time complexity becomes O(NM). The
worst and best case time complexity is the same in the filtration step shown in
equation (5.1), (5.2) & (5.3). Since there are total N services n1,n2,.,N,
therefore the total number of matching required are N. Once the service is
matched, it will be removed from the list; therefore, next matching will be
from (N-1) comparisons and so on, as shown in equation (5.2). The number
of objectives is m1, m2,. , M.

Num matched =
M∑

m=1

N (5.1)

Time Complexity [Worst Case/ Best Case]

Timecomplexityworst/best = M.Num compworst/best (5.2)

Timecomplexityworst/best = O(MN) (5.3)

2. Time Complexity: Sorting Step: The merge sort technique is used in
the NDS-ROS algorithm because it is considered more efficient and works
faster than other sorting techniques, even on large datasets. The worst-case
time complexity for sorting maximum N candidate services for each objective
function is O(NlogN). The best-case time complexity for sorting full N candi-
date service is also O(NlogN). Therefore the time complexity for merge sort
comes out to be the same in both the worst and the best case. Thus equation
(5.4) & (5.5) shows the time complexity of sorting steps with M objectives as :

78

Chapter 5. Experimental Results and Performance Analysis

Worst Case/ Best Case Time Complexity

Timecomplexityworst/best = O(MNLogN)+O(M−1)(NLogN)+O(M−2)(NLogN)
(5.4)

Timecomplexityworst/best = O(MNLogN) (5.5)

3. Time Complexity: Ranking Step
The Ranks are assigned to the sorted candidate service stored in each ob-
jective function, and the ranks given to the services in the same order as
these services are sorted. Suppose there are total N candidate services
n1,n2,.N for total M objective function m1,m2.M. Therefore for all
the candidate services at least once be assigned the ranks. In case N services
are in the worst-case time complexity, then the rank is assigned starting from
service [1 to N]; therefore, the time complexity will be O(N). In case there is
only a single service, then the best case complexity will be O(1). Therefore
equations (5.6) and(5.7) shows the time complexity of ranking step.

Worst Time Complexity
Timecomplexityworst = M. Num compworst = M. N

Timecomplexityworst = O(MN) (5.6)

Best Time Complexity
Timecomplexitybest = M. Num compbest = M. (1)

Timecomplexitybest = O(M) (5.7)

4. Time Complexity: Dominance Comparison: The NDS-ROS algorithm
computes pairwise dominance comparison for the same ranked services but
from a different objective set at least once. In Dominance comparison, there
will be two cases :

Case1: If the two different services have the same rank in the different ob-
jective functions. Therefore if there are total N services in the first objective
set and total N services in the second objective set, then in worst-case time
complexity, will have O(N2).

Case 2: If the two same services have the same rank in the different objective
functions. Therefore if there are total N services in the first objective set and
full N services in the second objective set, but as the service is the same,
therefore best time complexity, the order will O(N).

If there are M objectives, the overall time complexity includes the worst, and
best case is shown in equation (5.8) and (5.9)

79

Chapter 5. Experimental Results and Performance Analysis

Worst Time Complexity

Timecomplexityworst = M.Numcompworst = O(MN2) (5.8)

Best Time Complexity

Timecomplexitybest = M.Numcompbest = M.(N) = O(MN) (5.9)

The complexity of an approach is calculated when all the steps of an algo-
rithm are covered; therefore, the total worst-case time complexity is shown
in (5.10) and best case time complexity (5.11) calculated from all the four
steps: filtration, sorting, ranking, and dominance comparison.

The overall worst time complexity

Tworst = Tfiltration + Tsort + Tranked + Tdominancecheck

= O(MN) + O(MNLogN) + O(MN) + O(MN2)

Tworst = O(MN2) (5.10)

The overall best time complexity

Tbest = Tfiltration + Tsort + Tranked + Tdominancecheck

=O(MN) + O(MNLogN) + O(1) + O(MN)

Tbest = O(MNLOGN) (5.11)

TABLE 5.1 displays the computational complexity of different algorithms, the best
and worst time complexity is calculated, and also, the space complexity is evaluated
for all the four algorithms.

Table 5.1: Time and Space complexity Comparisons of all four algorithms

Algorithm Best-time Worst-time Space

complexity complexity complexity

NDS-ROS O(MNlogN) O(MN2) O(MN)
GBOS-SS O(MNlogN) O(MN2) O(MN)
ENS-SS O(MN

√
N) O(MN2) O(1)

Deductive sort O(MN
√
N) O(MN2)) O(N)

80

IMS
Sticky Note
Before this Please add the Space complexity from the document

Chapter 5. Experimental Results and Performance Analysis

5.3 Experimental Outcomes

5.3.1 Number of Comparisons

To evaluate the comparisons required by all the four algorithms, NDS-ROS, Deduc-
tive Sort, ENS-SS, and GBOS-SS. The NDS-ROS’s performance is analyzed from
the experimental results, calculated using windows 10 with intel i5 processor, and
implemented on Jmetal 4.0. The performance of all four algorithms compared to
finding each approach’s efficiency in the first performance parameter is the number
of comparisons. The two experiments were carried out.

1. Fixed objective size from [2, 3,4, and 5] and with varying candidate service
(k) [100 -250] with an increment of 10.

Figure 5.1: Dominance Comparisons at M=2

Figure 5.2: Dominance Comparisons at M=3

81

Chapter 5. Experimental Results and Performance Analysis

Figure 5.3: Dominance Comparisons at M=4

Figure 5.4: Dominance Comparisons at M=5

2. Fixed candidate service (K) between [100 -250] with an increment of 50 and
a varying objective function [2, 3,4, and 5].

Figure 5.5: Dominance Comparisons at K=100

82

Chapter 5. Experimental Results and Performance Analysis

Figure 5.6: Dominance Comparisons at K=150

Figure 5.7: Dominance Comparisons at K=200

Figure 5.8: Dominance Comparisons at K=250

83

Chapter 5. Experimental Results and Performance Analysis

5.3.2 Execution Time

The NDS-ROS algorithm compared with three algorithms deductive Sort, ENS-SS,
and GBOS-SS on the execution time. The NDS-ROS’s performance is analyzed
from the experimental results, calculated using windows 10 with intel i5 processor,
and implemented on Jmetal 4.0. To compare, the algorithms, experiments are
carried out.

1. Fixed objective size from [2, 3,4, and 5] and with varying candidate service
(k) [100 -250] with an increment of 10

Figure 5.9: Execution Time at M=2

Figure 5.10: Execution Time at M=3

84

Chapter 5. Experimental Results and Performance Analysis

Figure 5.11: Execution Time at at M=4

Figure 5.12: Execution Time at at M=5

2. Fixed candidate service (K) between [100 -250] with an increment of 50 and
a varying objective function [2, 3,4, and 5].

Figure 5.13: Execution Time at K=100

85

Chapter 5. Experimental Results and Performance Analysis

Figure 5.14: Execution Time at K=150

Figure 5.15: Execution Time at K=200

Figure 5.16: Execution Time at K=250

86

Chapter 5. Experimental Results and Performance Analysis

5.4 Validation of NDS-ROS

The statistical method will help decide if there is a significant difference among
the average number of comparisons in Deductive Sort, ENS-SS, GBOS-SS, and
NDS-ROS algorithms. The one-way ANOVA is adopted because the algorithms’
mean and variance are unknown. ANOVA test determines if there is any significant
difference among means of two or more independent groups. An ANOVA test is
conducted on the number of comparisons is to find a substantial difference.

5.4.1 One-way analysis of variance (ANOVA)

The one-way ANOVA matches the means among the groups, defines the null hy-
pothesis, and finds the means difference significantly differs. There are two types
of views for a one-way ANOVA, null hypothesis and alternative hypothesis.

Ho : µ1 = µ2 = µ3 = µ4 = µ5.......µk (5.12)

where µ represents the mean of the group, and k represents the group size. The
alternative hypothesis is accepted if the one-way ANOVA results are statistically
significant; else, the alternative hypothesis (Ha) is accepted. The one-way ANOVA
is not efficient in telling about the specific groups which are statistically expressively
different from each other, and consequently, a post hoc test is required. The
Deductive Sort (DS) is represented by “1”, ENS-SS is represented by “2”, GBOS-
SS is represented by “3,” and “4” algorithms represent NDS-ROS are compared
based on one variable. One way ANOVA was conducted with the Dependent
Variable (number of comparisons) and Independent variable (Deductive Sort, ENS-
SS, GBOS-SS, NDS-ROS Algorithms). Homogeneity of variance was checked using
Levene’s test.

87

Chapter 5. Experimental Results and Performance Analysis

A
lg

or
it

h
m

N
M

ea
n

S
ta

n
d
.

D
ev

ia
ti

on
S
ta

n
d
.

E
rr

or
L

ow
er

B
ou

n
d

U
p
p

er
B

ou
n
d

M
in

im
u
m

M
ax

im
u
m

1[
D

S
]

16
70

58
.7

50
12

50
.5

61
9

31
2.

64
05

63
92

.3
73

77
25

.1
27

49
00

.0
88

00
.0

2
(E

N
S
-S

S
)

16
70

58
.7

50
12

50
.5

61
9

31
2.

64
05

63
92

.3
73

77
25

.1
27

49
00

.0
88

00
.0

3(
G

B
O

S
-S

S
)

16
52

15
.3

13
12

96
.4

61
2

32
4.

11
53

45
24

.4
77

59
06

.1
48

35
90

.0
74

50
.0

4(
N

D
S
-R

O
S
)

16
39

97
.5

00
10

62
.5

91
2

26
5.

64
78

34
31

.2
85

45
63

.7
15

24
00

.0
58

00
.0

T
ot

al
64

58
32

.5
78

17
69

.0
20

0
22

1.
12

75
53

90
.6

90
62

74
.4

66
24

00
.0

88
00

.0

T
a
b
l
e
5
.2
:
A
N
O
V
A

T
es
t
at

M
=
2

88

Chapter 5. Experimental Results and Performance Analysis

Levene Statistic df1 df2 Sig.

0.384 3 60 0.765

Table 5.3: Test of Homogeneity of Variances [M=2]

Sum of squares df Mean Square f Sig.

Between Groups 108088376.172 3 36029458.724 24.272 .000
Within Groups 89065823.438 60 1484430.391
Total 197154199.609 63

Table 5.4: ANOVA Analysis at M=2

Sum of squares df Mean Square f Sig.

Between Groups 108088376.172 3 36029458.724 24.272 .000
Within Groups 89065823.438 60 1484430.391
Total 197154199.609 63

Table 5.5: ANOVA Analysis at M=2

(I) (J) Mean fStd.Error Sig. Lower B Uper B

TukeyHSD 1 2 .0000 430.7596 1.000 -1138.291 1138.291
3 1843.4375* 430.7596 .000 705.146 2981.729
4 3061.2500* 430.7596 .000 1922.959 4199.541

TukeyHSD 2 1 .0000 430.7596 1.000 -1138.291 1138.291
3 1843.4375* 430.7596 .000 705.146 2981.729
4 3061.2500* 430.7596 .000 1922.959 4199.541

TukeyHSD 3 1 -1843.4375* 430.7596 .000 -2981.729 -705.146
2 -1843.4375* 430.7596 .000 -2981.729 -705.146
4 1217.8125* 430.7596 .032 79.521 2356.104

TukeyHSD 4 1 -3061.2500* 430.7596 .000 -4199.541 -1922.959
2 -3061.2500* 430.7596 .000 -4199.541 -1922.959
3 -1217.8125* 430.7596 .032 -2356.104 -79.521

Bonferroni 1 2 .0000 430.7596 1.00 -1175.350 1175.350
3 1843.4375* 430.7596 .000 668.088 3018.787
4 3061.2500* 430.7596 .000 1885.900 4236.600

Bonferroni 2 1 .0000 430.7596 1.00 -1175.350 1175.350
3 1843.4375* 430.7596 .000 668.088 3018.787

89

Chapter 5. Experimental Results and Performance Analysis

4 3061.2500* 430.7596 .000 1885.900 4236.600

Bonferroni 3 1 -1843.4375* 430.7596 .000 -3018.787 -668.088
2 -1843.4375* 430.7596 .000 -3018.787 -668.088
4 1217.8125* 430.7596 .038 42.463 2393.162

Bonferroni 4 1 -3061.2500* 430.7596 .000 -4236.600 -1885.900
2 -3061.2500* 430.7596 .000 -4236.600 -1885.900
3 -1217.8125* 430.7596 .038 -2393.162 -42.463

Bonferroni 3 1 -1843.4375* 450.3274 .002 -3068.018 -618.857
2 -1843.4375* 450.3274 .002 -3068.018 -618.857
4 1217.8125* 419.0698 .033 75.786 2359.839

Bonferroni 4 1 -3061.2500* 410.2594 .000 -4178.464 -1944.036
2 -3061.2500* 410.2594 .000 -4178.464 -1944.036
3 -1217.8125* 419.0698 .033 -2359.839 -75.786

Table 5.6: Post Hoc Tests [Multiple Comparisons] at M=2

The output in the abow tables shows the result of Turkey’s test. These results
display subsets of the group with statistically similar means. The first subset con-
tains the NDS-ROS algorithm, the second subset contains ENS-SS and GBOS-SS
algorithm, and the third subset contains GBOS-SS and Deductive sort algorithm.
The results display that ENS and GBOS-SS algorithm has similar means. Also,
the deductive sort algorithm and the GBOS-SS algorithm have identical means.
The only algorithm that has significantly different standards is the NDS-ROS al-
gorithm. The test provides significant value for each subset, which shows that
among the deductive sort, ENS-SS, GBOS-SS, and NDS-ROS algorithm that only
the NDS-ROS algorithm is found to be significantly different (as indicated by the
values of sig. that is less than 0.05)

5.5 Summary

Analysis of the result for Deductive Sort, ENS-SS, GBOS-SS, and NDS-
ROS:

The one-way variance (ANOVA) for all the four algorithms, the Dependent Variable
(number of comparisons) were found to be significantly affected by the Independent
variable (Deductive Sort, ENS-SS, GBOS-SS, NDS-ROS Algorithms). The homo-
geneity of variance for all the four objective function [m=2 to 5] shows the values
as .765, .741, .752,.791. There is no significant result showing that the require-
ment of homogeneity for variance is met, and the ANOVA test can be considered

90

Chapter 5. Experimental Results and Performance Analysis

robust. Then ,F (3,60)= 24.27, p= .000 for M=2. Pairwise comparisons Using
Tukey and Boferron with adjusted p-values showed there are significant differences
in DV between algorithms. The F (3,60)= 18.822, p= .000 for M=3. Pairwise
comparisons Using Tukey and Boferron with adjusted p-values showed there are
significant differences in DV between algorithms. The F (3,60)= 19.842, p= .000
for M=4. Pairwise comparisons Using Tukey and Boferron with adjusted p-values
showed there are significant differences in DV between algorithms. The F (3,60)=
19.318, p= .000 for M=5. Pairwise comparisons Using Tukey and Bonferroni with
adjusted p-values showed that there were significant differences in DV between
algorithms.

91

Chapter 6

Conclusion and Future Work

The chapter converses with the varying demands of users due to the expansion of
technologies. One such technology is cloud computing, which offers a developed
business model on a subscription basis for enabling the service providers to pro-
pose different services having quality attributes. Due to the huge list of services,
discovery an appropriate service according to users’ changing requirements has be-
come a significant task. The service selection and ranking systems support the
users in selecting applicable service considering customized requirements. The ex-
isting literature models the SaaS cloud selection as a multi-objective problem. The
efficient QoS-based SaaS cloud selection approach is the need of an hour. The pro-
posed a non-dominated sorting and ranking of service approach called NDS-ROS
is efficient in (1) removing the research issue in the SaaS selection. (2) achieve
services selection and ranking using QoS perspective; (3) removed the limitations
in existing algorithms used for the multi-objective optimization problem, and (4)
identify the optimal service. The algorithm considers QoS attributes to find the
optimal service and motivates the cloud users and the decision-maker to opt for
more cloud services as their waiting time is reduced. The NDS-ROS algorithm
uses a filtration step to identify the candidate services that fulfil the consumer’s
initial necessities. The algorithm also sorts and then ranks the cloud services for
each objective function. Lastly, all the same, ranked candidate services undergo
pairwise dominance comparison. The fitness function is applied if an optimal set
has more than two non-dominating services.

The non- dominated sorting algorithm NDS-ROS is established and applied to find
optimal service in the SaaS cloud model by considering user’s requirements. The
proposed NDS-ROS algorithm’s basic idea is to use a quick sorting algorithm in
a non-dominated ranking. The comparative result of the deductive sort, ENS-SS,
GBOS-SS, and the NDS-ROS algorithm is evaluated on the parameters, includ-
ing computational complexity, number of comparisons, and execution time. The
NDS-ROS algorithm outperforms the compared algorithms in all the parameters.

92

Chapter 6. Conclusion and Future Work

The experimental study conducted with a varying number of services and objec-
tives shows that the NDS-ROS algorithm is efficient in execution time and com-
parisons. The complexity calculated for the algorithm for four steps – filtration,
sorting, ranking, and dominance comparison has the worst time complexity as T
worst= O(MN2), whereas the best time complexity as (MNlogN). The NDS-ROS
algorithm’s efficiency is improved due to its filtration, which reduces unnecessary
services to a great extent by filtering them in the initial stage, and the dominance
comparison removes all the duplicate comparisons. The execution time is directly
proportional to the total comparisons required. If comparisons increases, then ex-
ecution time increases, and vice versa. The results collected from the experimental
study show that the NDS-ROS algorithm has the least number of comparisons.
Therefore the execution time is also less than the compared algorithms.

A working example illustrates the service selection process using the NDS-ROS
algorithm, which has four stages: filtering, sorting, ranking, and dominance com-
parison. The filtration step lowers the search space in the initial step that signif-
icantly saves DMs’ time and effort. Most existing studies lack the filtration step,
maximizing the threat of selecting complete services. In the sorting, the candidate
services are sorted based on QoS attributes value for each objective function. The
sorted services are ranked so that the best services in that objective lies among
the top numbers. The dominance comparison compares only those services having
the same rank but stored in different objective functions. The dominance rules
applied at the time of dominance comparison reducing duplicate comparison be-
tween services and yielding fast results. The filtration and dominance comparisons
efficiently reduce the search space and remove identical and un-necessary compar-
ison, thereby increasing the overall searching process efficiency. The number of
objectives taken was 2,3,4,5, and QoS values are taken for the study to evaluate
the cloud services. The research combined four varied, SaaS QoS norms. The
filtration stage takes the user requirements for QoS attributes, and the priority is
taken from the user to evaluate the fitness function. Different steps are applied and
comprehensive analysis to appreciate the NDS-ROS approach’s role in developing
an optimal service agreement. In brief, NDS-ROS offers a complete step-by-step
mechanism to evaluate cloud services’ performance from QoS viewpoints.
The NDS-ROS algorithm effectively finds a consensual result in comparison to
other non-dominating approaches.

The NS- ROS algorithm has some advantage over other algorithms, but there is
one drawback: the sorting time is increased with objective size and increases exe-
cution time. Also, qualitative parameters can be considered in future research to
improve trust.

93

Chapter 6. Conclusion and Future Work

Future Work
In the future, the NDS-ROS approach can be extended to include subjective pa-
rameters for SaaS cloud selection. The data science and machine learning can be
applied to improve searching and ranking process in the cloud.

94

Chapter 7

List of Publications

Patents

1. Sirohi, P., Agarwal, A., Maheshwari, P.,Dewangan, B.K., & Choudhury, T.
(2020a). An efficient approach for saas cloud service selection and ranking
[Govt. of India, File No. 202011045036 A]. Indian Patents.

Scopus Indexed Journals

1. Sirohi, Preeti, Amit Agarwal, and Piyush Maheshwari “A framework for
ranking of cloud services using non-dominated sorting” International Journal
of Engineering and Advanced Technology(IJEAT)” ISSN: 2249 – 8958Volume-
8 Issue-5, 2018.

2. Sirohi, Preeti, Amit Agarwal, and Piyush Maheshwari “Systematic Literature
Survey using Quality Parameter for Cloud Computing” International Journal
of Recent Technology and Engineering (IJRTE)” ISSN- 2277-3878 (Online)
Volume 7 issue 6c, 2019.

3. Sirohi, Preeti, Amit Agarwal, and Piyush Maheshwari “A Comparative study
of Cloud Computing Service Selection” International Journal of Engineering
and Advanced Technology(IJEAT)” ISSN: 2249-8958 Volume-8 Issue-5, 2019.

4. Sirohi, P., Agarwal, A., Maheshwari, P.,Dewangan, B. K., & Choudhury, T.
(2020b). Saas-cloudselection by optimizing energy utilization and response
time.Journal of Green Engineering. Volume 10,Issue 9, Pages 6966–6989.

95

List of Publications

Conferences

1. Sirohi, Preeti, Amit Agarwal, and Piyush Maheshwari. ” Systematic Lit-
erature review for Cloud Computing.” International Conference on Future
Computing and Communication Technology ICFCCT, 2018 (MIET , Meerut)

2. Sirohi, Preeti, Amit Agarwal, and Piyush Maheshwari. ”Framework for
Cloud Service Selection and Ranking.” International Conference on Advances
in Engineering Science Management & Technology (ICAESMT)-2019, Ut-
taranchal University, Dehradun, India. 2019.

96

References

Aazam, M., & Huh, E.-N. (2017). Cloud broker service-oriented resource man-
agement model. Transactions on Emerging Telecommunications Technologies ,
28 (2), e2937.

Abbas, A., Pimenov, D. Y., Erdakov, I., Mikolajczyk, T., El Danaf, E., & Taha, M.
(2017). Minimization of turning time for high-strength steel with a given surface
roughness using the edgeworth–pareto optimization method. The International
Journal of Advanced Manufacturing Technology , 93 (5-8), 2375–2392.

Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel
intelligent medical decision support model based on soft computing and iot.
IEEE Internet of Things Journal , 7 (5), 4160–4170.

Achar, R., & Thilagam, P. S. (2014). A broker based approach for cloud provider
selection. In 2014 international conference on advances in computing, commu-
nications and informatics (icacci) (pp. 1252–1257).

Ali, A. S., Ludwig, S. A., & Rana, O. F. (2005). A cognitive trust-based approach
for web service discovery and selection. In Third european conference on web
services (ecows’05) (pp. 12–pp).

Annette, R., & Banu, A. (2015). A service broker model for cloud based render
farm selection. arXiv preprint arXiv:1505.06542 .

Arab, B. S. (2010). Custom windows performance counters monitoring mecha-
nism for measuring quality of service attributes and stability coefficient service-
oriented architecture (Unpublished doctoral dissertation). Universiti Putra
Malaysia.

Ardagna, D., & Pernici, B. (2005). Global and local qos constraints guarantee in
web service selection. In Ieee international conference on web services (icws’05).

Beimborn, D., Miletzki, T., & Wenzel, S. (2011). Platform as a service (paas).
Business & Information Systems Engineering , 3 (6), 381–384.

Benlian, A., Hess, T., & Buxmann, P. (2009). Drivers of saas-adoption–an em-
pirical study of different application types. Business & Information Systems
Engineering , 1 (5), 357.

97

List of Publications

Beume, N., Naujoks, B., & Emmerich, M. (2007). Sms-emoa: Multiobjective
selection based on dominated hypervolume. European Journal of Operational
Research, 181 (3), 1653–1669.

Bhardwaj, S., Jain, L., & Jain, S. (2010). Cloud computing: A study of infrastruc-
ture as a service (iaas). International Journal of engineering and information
Technology , 2 (1), 60–63.

Binnig, C., Kossmann, D., Kraska, T., & Loesing, S. (2009). How is the weather
tomorrow? towards a benchmark for the cloud. In Proceedings of the second
international workshop on testing database systems (pp. 1–6).

Bohn, R. B., Messina, J., Liu, F., Tong, J., & Mao, J. (2011). Nist cloud computing
reference architecture. In 2011 ieee world congress on services (pp. 594–596).

Boutkhoum, O., Hanine, M., Agouti, T., & Tikniouine, A. (2016). Selection
problem of cloud solution for big data accessing: fuzzy ahp-promethee as a
proposed methodology. Journal of Digital Information Management , 14 (6).

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation computer systems , 25 (6), 599–
616.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and experience, 41 (1), 23–50.

Cao, B.-Q., Li, B., & Xia, Q.-M. (2009). A service-oriented qos-assured and multi-
agent cloud computing architecture. In Ieee international conference on cloud
computing (pp. 644–649).

Chan, S.-H. G., & Tobagi, F. (2001). Distributed servers architecture for networked
video services. IEEE/ACM transactions on networking , 9 (2), 125–136.

Chen, C.-T., & Lin, K.-H. (2010). A decision-making method based on interval-
valued fuzzy sets for cloud service evaluation. In 4th international conference on
new trends in information science and service science (pp. 559–564).

Chen, G., Bai, X., Huang, X., Li, M., & Zhou, L. (2011). Evaluating services on
the cloud using ontology qos model. In Proceedings of 2011 ieee 6th international
symposium on service oriented system (sose) (pp. 312–317).

Chen, L., Feng, Y., Wu, J., & Zheng, Z. (2011). An enhanced qos prediction
approach for service selection. In 2011 ieee international conference on services
computing (pp. 727–728).

98

List of Publications

Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weight-
ing system under group decision-making for facility location selection with objec-
tive/subjective attributes. European Journal of Operational Research, 189 (1),
132–145.

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al. (2007). Evolutionary
algorithms for solving multi-objective problems (Vol. 5). Springer.

Cusumano, M. (2010). Cloud computing and saas as new computing platforms.
Communications of the ACM , 53 (4), 27–29.

Deb, K. (1999). Solving goal programming problems using multi-objective genetic
algorithms. In Proceedings of the 1999 congress on evolutionary computation-
cec99 (cat. no. 99th8406) (Vol. 1, pp. 77–84).

De Boer, L., van der Wegen, L., & Telgen, J. (1998). Outranking methods in
support of supplier selection. European Journal of Purchasing & Supply Man-
agement , 4 (2-3), 109–118.

Dhiman, G., & Kumar, V. (2018). Multi-objective spotted hyena optimizer: a
multi-objective optimization algorithm for engineering problems. Knowledge-
Based Systems , 150 , 175–197.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009). Cloud
computing: Distributed internet computing for it and scientific research. IEEE
Internet computing , 13 (5), 10–13.

Ding, S., Xia, C., Wang, C., Wu, D., & Zhang, Y. (2017). Multi-objective opti-
mization based ranking prediction for cloud service recommendation. Decision
Support Systems , 101 , 106–114.

Ding, S., Yang, S., Zhang, Y., Liang, C., & Xia, C. (2014). Combining qos predic-
tion and customer satisfaction estimation to solve cloud service trustworthiness
evaluation problems. Knowledge-Based Systems , 56 , 216–225.

Dong, W. E., Nan, W., & Xu, L. (2013). Qos-oriented monitoring model of cloud
computing resources availability. In 2013 international conference on computa-
tional and information sciences (pp. 1537–1540).

Drozdik, M., Akimoto, Y., Aguirre, H., & Tanaka, K. (2014). Computational cost
reduction of nondominated sorting using the m-front. IEEE Transactions on
Evolutionary Computation, 19 (5), 659–678.

Dubey, A., & Wagle, D. (2007). Delivering software as a service. The McKinsey
Quarterly , 6 (2007), 2007.

Erickson, M., Mayer, A., & Horn, J. (2002). Multi-objective optimal design of
groundwater remediation systems: application of the niched pareto genetic al-
gorithm (npga). Advances in Water Resources , 25 (1), 51–65.

99

List of Publications

Erl, T. (1900). Service-oriented architecture: concepts, technology, and design.
Pearson Education India.

Ferris, J. M., & Riveros, G. E. (2018, May 15). Verifying software license compli-
ance in cloud computing environments. Google Patents. (US Patent 9,971,880)

Figueira, J., Mousseau, V., & Roy, B. (2005). Electre methods. In Multiple criteria
decision analysis: State of the art surveys (pp. 133–153). Springer.

Fletcher, K. K., & Liu, X. F. (2015). A collaborative filtering method for per-
sonalized preference-based service recommendation. In 2015 ieee international
conference on web services (pp. 400–407).

Fonseca, C. M., Fleming, P. J., et al. (1993). Genetic algorithms for multiobjective
optimization: Formulationdiscussion and generalization. In Icga (Vol. 93, pp.
416–423).

Gabbani, D., & Magazine, M. (1986). An interactive heuristic approach for multi-
objective integer-programming problems. Journal of the Operational Research
Society , 37 (3), 285–291.

Gao, J., Pattabhiraman, P., Bai, X., & Tsai, W.-T. (2011). Saas performance and
scalability evaluation in clouds. In Proceedings of 2011 ieee 6th international
symposium on service oriented system (sose) (pp. 61–71).

Garg, S. K., Versteeg, S., & Buyya, R. (2011). Smicloud: A framework for com-
paring and ranking cloud services. In 2011 fourth ieee international conference
on utility and cloud computing (pp. 210–218).

Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud
computing services. Future Generation Computer Systems , 29 (4), 1012–1023.

Gates III, W. H., Flake, G. W., Bolosky, W. J., Dani, N. V., Glasser, D. S.,
Gounares, A. G., . . . Meijer, H. J. M. (2011, September 6). Hardware architecture
for cloud services. Google Patents. (US Patent 8,014,308)

Ghosh, N., Ghosh, S. K., & Das, S. K. (2014). Selcsp: A framework to facilitate
selection of cloud service providers. IEEE transactions on cloud computing , 3 (1),
66–79.

Gibson, J., Rondeau, R., Eveleigh, D., & Tan, Q. (2012). Benefits and challenges
of three cloud computing service models. In 2012 fourth international conference
on computational aspects of social networks (cason) (pp. 198–205).

Godse, M., & Mulik, S. (2009). An approach for selecting software-as-a-service
(saas) product. In 2009 ieee international conference on cloud computing (pp.
155–158).

100

List of Publications

Golden, B. L., Wasil, E. A., & Harker, P. T. (1989). The analytic hierarchy process.
Applications and Studies, Berlin, Heidelberg .

Gonçalves Junior, R., Rolim, T., Sampaio, A., & Mendonça, N. C. (2015). A
multi-criteria approach for assessing cloud deployment options based on non-
functional requirements. In Proceedings of the 30th annual acm symposium on
applied computing (pp. 1383–1389).

Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z. (2010). The characteristics
of cloud computing. In 2010 39th international conference on parallel processing
workshops (pp. 275–279).

Görener, A. (2012). Comparing ahp and anp: an application of strategic decisions
making in a manufacturing company. International Journal of Business and
Social Science, 3 (11).

Goyal, N., Pandey, A. K., Gupta, S. K., & Pandey, R. (2019). Suppleness of
multi-tenancy in cloud computing: Advantages, privacy issues and risk factors.
In Proceedings of international conference on sustainable computing in science,
technology and management (suscom), amity university rajasthan, jaipur-india.

Guzek, M., Gniewek, A., Bouvry, P., Musial, J., & Blazewicz, J. (2015). Cloud
brokering: Current practices and upcoming challenges. IEEE Cloud Computing ,
2 (2), 40–47.

Hao, Y., Zhang, Y., & Cao, J. (2010). Web services discovery and rank: An in-
formation retrieval approach. Future generation computer systems , 26 (8), 1053–
1062.

He, Q., Han, J., Yang, Y., Grundy, J., & Jin, H. (2012). Qos-driven service
selection for multi-tenant saas. In 2012 ieee fifth international conference on
cloud computing (pp. 566–573).

Hernández Gómez, R., & Coello Coello, C. A. (2015). Improved metaheuristic
based on the r2 indicator for many-objective optimization. In Proceedings of the
2015 annual conference on genetic and evolutionary computation (pp. 679–686).

Hey, T., & Trefethen, A. (2003). Grid computing: Making the global infrastructure
a reality. In The data deluge: An e-science perspective. Wiley.

Hiessl, H., Duckstein, I., & Plate, E. (1985). Multiobjective q-analysis with concor-
dance and discordance concepts. Applied Mathematics and Computation, 17 (2),
107–122.

Hong, D. H., & Choi, C.-H. (2000). Multicriteria fuzzy decision-making problems
based on vague set theory. Fuzzy sets and systems , 114 (1), 103–113.

Huang, A. F., Lan, C.-W., & Yang, S. J. (2009). An optimal qos-based web service
selection scheme. Information Sciences , 179 (19), 3309–3322.

101

List of Publications

Hussain, A., Chun, J., & Khan, M. (2020). A novel framework towards viable
cloud service selection as a service (cssaas) under a fuzzy environment. Future
Generation Computer Systems , 104 , 74–91.

Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making.
In Multiple attribute decision making (pp. 58–191). Springer.

Ibrahim, S., He, B., & Jin, H. (2011). Towards pay-as-you-consume cloud comput-
ing. In 2011 ieee international conference on services computing (pp. 370–377).

Jahani, A., Derakhshan, F., & Khanli, L. M. (2017). Arank: A multi-agent based
approach for ranking of cloud computing services. Scalable Computing: Practice
and Experience, 18 (2), 105–116.

Jahani, A., Khanli, L. M., & Razavi, S. N. (2014). W sr: A qos based ranking
approach for cloud computing service. Computer Engineering and Applications
Journal , 3 (2), 55–62.

Jannat, S., Khaled, A., & Paul, S. K. (2010). Optimal solution for multi-objective
facility layout problem using genetic algorithm. In Proc. 2010 intl. conference
on industrial engineering and operations management.

Jensen, M. T. (2003). Reducing the run-time complexity of multiobjective eas: The
nsga-ii and other algorithms. IEEE Transactions on Evolutionary Computation,
7 (5), 503–515.

Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems
for online service provision. Decision support systems , 43 (2), 618–644.

Kanagasabai, R., et al. (2012). Owl-s based semantic cloud service broker. In 2012
ieee 19th international conference on web services (pp. 560–567).

Karim, R., Ding, C., & Miri, A. (2013). An end-to-end qos mapping approach
for cloud service selection. In 2013 ieee ninth world congress on services (pp.
341–348).

Kavis, M. J. (2014). Architecting the cloud: design decisions for cloud computing
service models (saas, paas, and iaas). John Wiley & Sons.

Keller, A., & Ludwig, H. (2003). The wsla framework: Specifying and monitor-
ing service level agreements for web services. Journal of Network and Systems
Management , 11 (1), 57–81.

Khezrian, M., Kadir, W. M. W., Ibrahim, S., Kalantari, A., et al. (2012). A hy-
brid approach for web service selection. International Journal of Computational
Engineering Research, 2 (1), 190–198.

102

List of Publications

Khowfa, W., & Silasai, O. (2017). The integration of association rules and ahp in
cloud service selection. International Journal of Applied Engineering Research,
12 (24), 15814–15820.

Knowles, J. D., Watson, R. A., & Corne, D. W. (2001). Reducing local optima in
single-objective problems by multi-objectivization. In International conference
on evolutionary multi-criterion optimization (pp. 269–283).

Kukkonen, S., & Deb, K. (2006). A fast and effective method for pruning of non-
dominated solutions in many-objective problems. In Parallel problem solving
from nature-ppsn ix (pp. 553–562). Springer.

Kumar, N., & Agarwal, S. (2014). Qos based cloud service provider selection
framework. Research Journal of Recent Sciences , 2277 , 2502.

Kumar, R. D., & Zayaraz, G. (2011). A qos aware quantitative web service
selection model. International Journal on Computer Science and Engineering ,
3 (4), 1534–1538.

Kumar, R. R., Mishra, S., & Kumar, C. (2017). Prioritizing the solution of cloud
service selection using integrated mcdm methods under fuzzy environment. The
Journal of Supercomputing , 73 (11), 4652–4682.

Lai, Y.-J., Liu, T.-Y., & Hwang, C.-L. (1994). Topsis for modm. European journal
of operational research, 76 (3), 486–500.

Latif, R., Abbas, H., Assar, S., & Ali, Q. (2014). Cloud computing risk assessment:
a systematic literature review. In Future information technology (pp. 285–295).
Springer.

Lewis, G. (2010). Basics about cloud computing. Software engineering institute
carniege mellon university, Pittsburgh.

Li, K., Zhang, Q., Kwong, S., Li, M., & Wang, R. (2013). Stable matching-based
selection in evolutionary multiobjective optimization. IEEE Transactions on
Evolutionary Computation, 18 (6), 909–923.

Li, X., Liang, H., & Zhang, X. (2016). Trust based service selection in cloud
computing environment. International Journal of Smart Home, 10 (11), 39–50.

Lin, H. Y., Doong, J.-G., & Hsieh, M.-Y. (2015). Building a prototype of middle-
ware using windows communication foundations. In Environmental science and
information application technology: Proceedings of the 2014 5th international
conference on environmental science and information application technology (es-
iat 2014), hong kong, november 7-8, 2014 (p. 157).

Lin, H.-Y., Hsu, P.-Y., & Sheen, G.-J. (2007). A fuzzy-based decision-making
procedure for data warehouse system selection. Expert systems with applications ,
32 (3), 939–953.

103

List of Publications

Liu, L., & Zhang, M. (2015). Multi-objective optimization model with ahp decision-
making for cloud service composition. KSII Transactions on Internet & Infor-
mation Systems , 9 (9).

Liu, M., Ding, W., Park, D. H., Fang, Y., Yan, R., & Hu, X. (2017). Which
used product is more sellable? a time-aware approach. Information Retrieval
Journal , 20 (2), 81–108.

Lo, C.-C., Chen, D.-Y., Tsai, C.-F., & Chao, K.-M. (2010). Service selection based
on fuzzy topsis method. In 2010 ieee 24th international conference on advanced
information networking and applications workshops (pp. 367–372).

Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for cloud computing.
Journal of network and computer applications , 34 (4), 1113–1122.

Lucas-Simarro, J. L., Aniceto, I. S., Moreno-Vozmediano, R., Montero, R. S., &
Llorente, I. M. (2013). A cloud broker architecture for multicloud environments.
Large Scale Network-Centric Distributed Systems , 359–376.

Luo, J.-Z., Jin, J.-H., Song, A.-b., & Dong, F. (2011). Cloud computing: archi-
tecture and key technologies. Journal of China Institute of Communications ,
32 (7), 3–21.

Mabrouk, N. B., Beauche, S., Kuznetsova, E., Georgantas, N., & Issarny, V. (2009).
Qos-aware service composition in dynamic service oriented environments. In
Acm/ifip/usenix international conference on distributed systems platforms and
open distributed processing (pp. 123–142).

Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., & Zaeri, M. (2007). Project
selection by using fuzzy ahp and topsis technique. World Academy of Science,
Engineering and Technology , 30 , 333–338.

Malathi, M. (2011). Cloud computing concepts. In 2011 3rd international confer-
ence on electronics computer technology (Vol. 6, pp. 236–239).

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective
optimization: new insights. Structural and multidisciplinary optimization, 41 (6),
853–862.

Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

Menchaca-Mendez, A., & Coello, C. A. C. (2015). Gde-moea: a new moea based
on the generational distance indicator and ε-dominance. In 2015 ieee congress
on evolutionary computation (cec) (pp. 947–955).

Menzel, M., & Ranjan, R. (2012). Cloudgenius: decision support for web server
cloud migration. In Proceedings of the 21st international conference on world
wide web (pp. 979–988).

104

List of Publications

Menzel, M., Schönherr, M., & Tai, S. (2013). (mc2) 2: criteria, requirements and
a software prototype for cloud infrastructure decisions. Software: Practice and
experience, 43 (11), 1283–1297.

Milan, A., Rezatofighi, S. H., Garg, R., Dick, A., & Reid, I. (2017). Data-driven
approximations to np-hard problems. In Thirty-first aaai conference on artificial
intelligence.

Mishra, S., Mondal, S., Saha, S., & Coello, C. A. C. (2018). Gbos: Generalized
best order sort algorithm for non-dominated sorting. Swarm and Evolutionary
Computation, 43 , 244–264.

Mohammadshahi, Y. (2013). A state-of-art survey on tqm applications using mcdm
techniques. Decision Science Letters , 2 (3), 125–134.

Moscato, F., Aversa, R., Di Martino, B., Fortiş, T.-F., & Munteanu, V. (2011).
An analysis of mosaic ontology for cloud resources annotation. In 2011 federated
conference on computer science and information systems (fedcsis) (pp. 973–980).

Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive mcdm-
based approach using topsis, copras and dea as an auxiliary tool for material
selection problems. Materials & Design, 121 , 237–253.

Mousseau, V., & Slowinski, R. (1998). Inferring an electre tri model from assign-
ment examples. Journal of global optimization, 12 (2), 157–174.

Nickolov, P., Armijo, B., & Miloushev, V. (2013, April 23). Globally distributed
utility computing cloud. Google Patents. (US Patent 8,429,630)

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D.
(2009). A performance analysis of ec2 cloud computing services for scientific
computing. In International conference on cloud computing (pp. 115–131).

Özlen, M., & Azizoğlu, M. (2009). Multi-objective integer programming: A gen-
eral approach for generating all non-dominated solutions. European Journal of
Operational Research, 199 (1), 25–35.

Pan, Y., Ding, S., Fan, W., Li, J., & Yang, S. (2015). Trust-enhanced cloud service
selection model based on qos analysis. PloS one, 10 (11), e0143448.

Pandey, S., & Daniel, A. (2017). Qocs and cost based cloud service selection
framework. Int. J. Eng. Trends Technol.(IJETT), 48 (3), 167–172.

Pawar, P. S., Rajarajan, M., Nair, S. K., & Zisman, A. (2012). Trust model for
optimized cloud services. In Ifip international conference on trust management
(pp. 97–112).

105

List of Publications

Peng, C., Sun, H., & Guo, J. (2010). Multi-objective optimal pmu placement using
a non-dominated sorting differential evolution algorithm. International Journal
of Electrical Power & Energy Systems , 32 (8), 886–892.

Phelps, S., & Köksalan, M. (2003). An interactive evolutionary metaheuristic
for multiobjective combinatorial optimization. Management Science, 49 (12),
1726–1738.

Pilat, M., & Neruda, R. (2015). Incorporating user preferences in moea/d through
the coevolution of weights. In Proceedings of the 2015 annual conference on
genetic and evolutionary computation (pp. 727–734).

Prasad, G. V., Prasad, A. S., & Rao, S. (2016). A combinatorial auction mechanism
for multiple resource procurement in cloud computing. IEEE Transactions on
Cloud Computing , 6 (4), 904–914.

Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., & Wu, J. (2014). Moea/d with adaptive
weight adjustment. Evolutionary computation, 22 (2), 231–264.

Rai, D., & Kumar, P. (2016). Instance based multi criteria decision model for
cloud service selection using topsis and vikor. International Journal of Computer
Engineering and Technology , 7 (1), 78–87.

Raj, J. R., & Sasipraba, T. (2012). web service discovery based on computation of
semantic similarity distance and qos normalization. Indian journal of computer
science and engineering , 3 (2), 235–239.

Rani, D., & Ranjan, R. K. (2014). A comparative study of saas, paas and iaas
in cloud computing. International Journal of Advanced Research in Computer
Science and Software Engineering , 4 (6).

Roy, P. C., Islam, M. M., & Deb, K. (2016). Best order sort: a new algorithm to
non-dominated sorting for evolutionary multi-objective optimization. In Proceed-
ings of the 2016 on genetic and evolutionary computation conference companion
(pp. 1113–1120).

Saaty, T. L. (1988). What is the analytic hierarchy process? In Mathematical
models for decision support (pp. 109–121). Springer.

Saaty, T. L., & Vargas, L. G. (2013). The analytic network process. In Decision
making with the analytic network process (pp. 1–40). Springer.

Sakawa, M., Kato, K., & Nishizaki, I. (2003). An interactive fuzzy satisficing
method for multiobjective stochastic linear programming problems through an
expectation model. European journal of operational research, 145 (3), 665–672.

Salama, M., Shawish, A., & Zeid, A. (2013). A generic framework for modeling
and simulation of cloud computing services. International Journal of Computer
Applications , 77 (17).

106

List of Publications

Sardinas, R. Q., Santana, M. R., & Brindis, E. A. (2006). Genetic algorithm-
based multi-objective optimization of cutting parameters in turning processes.
Engineering Applications of Artificial Intelligence, 19 (2), 127–133.

Saripalli, P., & Pingali, G. (2011). Madmac: Multiple attribute decision method-
ology for adoption of clouds. In 2011 ieee 4th international conference on cloud
computing (pp. 316–323).

Sasikaladevi, N. (2016). Trust based cloud service composition framework. Inter-
national Journal of Grid and Distributed Computing , 9 (1), 99–104.

Savu, L. (2011). Cloud computing: Deployment models, delivery models, risks and
research challenges. In 2011 international conference on computer and manage-
ment (caman) (pp. 1–4).

Seethamraju, R. (2015). Adoption of software as a service (saas) enterprise re-
source planning (erp) systems in small and medium sized enterprises (smes).
Information systems frontiers , 17 (3), 475–492.

Sevkli, M. (2010). An application of the fuzzy electre method for supplier selection.
International Journal of Production Research, 48 (12), 3393–3405.

Shawky, D. M., & Ali, A. F. (2012). Defining a measure of cloud computing
elasticity. In 2012 1st international conference on systems and computer science
(icscs) (pp. 1–5).

Siegel, J., & Perdue, J. (2012). Cloud services measures for global use: the service
measurement index (smi). In 2012 annual srii global conference (pp. 411–415).

Silas, S., Rajsingh, E. B., & Ezra, K. (2012). Efficient service selection middle-
ware using electre methodology for cloud environments. Information Technology
Journal , 11 (7), 868.

Smith, J., & Nair, R. (2005). Virtual machines: versatile platforms for systems
and processes. Elsevier.

Srivastava, A., & Sorenson, P. G. (2010). Service selection based on customer
rating of quality of service attributes. In 2010 ieee international conference on
web services (pp. 1–8).

Stienhans, F., & Klimentiev, M. (2011, August 9). Systems and methods for
dynamically provisioning cloud computing resources. Google Patents. (US Patent
7,996,525)

Stojanovic, M. D., Rakas, S. V. B., & Acimovic-Raspopovic, V. S. (2010). End-
to-end quality of service specification and mapping: The third party approach.
Computer Communications , 33 (11), 1354–1368.

107

List of Publications

Sun, L., Ma, J., Zhang, Y., Dong, H., & Hussain, F. K. (2016). Cloud-fuser: Fuzzy
ontology and mcdm based cloud service selection. Future Generation Computer
Systems , 57 , 42–55.

Sundareswaran, S., Squicciarini, A., & Lin, D. (2012). A brokerage-based approach
for cloud service selection. In 2012 ieee fifth international conference on cloud
computing (pp. 558–565).

Supriya, M., Sangeeta, K., & Patra, G. (2016). Trustworthy cloud service provider
selection using multi criteria decision making methods. Engineering Letters ,
24 (1).

Tajvidi, M., Ranjan, R., Kolodziej, J., & Wang, L. (2014). Fuzzy cloud service se-
lection framework. In 2014 ieee 3rd international conference on cloud networking
(cloudnet) (pp. 443–448).

Talja, S. (1999). Analyzing qualitative interview data: The discourse analytic
method. Library & information science research, 21 (4), 459–477.

Tho, Q. T., Hui, S. C., Fong, A. C. M., & Cao, T. H. (2006). Automatic fuzzy
ontology generation for semantic web. IEEE transactions on knowledge and data
engineering , 18 (6), 842–856.

Tsai, W.-T., & Sun, X. (2013). Saas multi-tenant application customization. In
2013 ieee seventh international symposium on service-oriented system engineer-
ing (pp. 1–12).

Upadhyay, N. (2017). Managing cloud service evaluation and selection. Procedia
computer science, 122 , 1061–1068.

Urena, R., Kou, G., Dong, Y., Chiclana, F., & Herrera-Viedma, E. (2019). A
review on trust propagation and opinion dynamics in social networks and group
decision making frameworks. Information Sciences , 478 , 461–475.

Van Veldhuizen, D. A., & Lamont, G. B. (2000). On measuring multiobjective
evolutionary algorithm performance. In Proceedings of the 2000 congress on
evolutionary computation. cec00 (cat. no. 00th8512) (Vol. 1, pp. 204–211).

Varia, J. (2008). Cloud architectures. White Paper of Amazon, jineshvaria. s3.
amazonaws. com/public/cloudarchitectures-varia. pdf , 16 .

Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud computing, a practical ap-
proach. McGraw-Hill, Inc.

Wanchun, D., Chao, L., Xuyun, Z., & Chen, J. (2011). A qos-aware service
evaluation method for co-selecting a shared service. In 2011 ieee international
conference on web services (pp. 145–152).

108

List of Publications

Wang, L., Zhan, J., Shi, W., & Liang, Y. (2011). In cloud, can scientific commu-
nities benefit from the economies of scale? IEEE Transactions on Parallel and
Distributed Systems , 23 (2), 296–303.

Wei-Wen, W. (2011). Developing an explorative model for saas adoption. Expert
systems with applications , 38 (12), 15057–15064.

Wischik, D., Handley, M., & Braun, M. B. (2008). The resource pooling principle.
ACM SIGCOMM Computer Communication Review , 38 (5), 47–52.

Wu, Q., Zhu, Q., Jian, X., & Ishikawa, F. (2014). Broker-based sla-aware composite
service provisioning. Journal of Systems and Software, 96 , 194–201.

Xing, Y., & Zhan, Y. (2012). Virtualization and cloud computing. In Future
wireless networks and information systems (pp. 305–312). Springer.

Yadav, N., Singh, V., & Kumari, M. (2014). Generalized reliability model for cloud
computing. International Journal of Computer Applications , 88 (14).

Yang, W., Zhang, C., Shao, Y., Shi, Y., Li, H., Khan, M., . . . others (2014). A
hybrid particle swarm optimization algorithm for service selection problem in
the cloud. Int J Grid Distrib Comput , 7 (4), 1–10.

Yazdani-Chamzini, A., Yakhchali, S. H., & Mahmoodian, M. (2013). Risk ranking
of tunnel construction projects by using the electre technique under a fuzzy
environment. International Journal of Management Science and Engineering
Management , 8 (1), 1–14.

Ye, Z., Zhou, X., & Bouguettaya, A. (2011). Genetic algorithm based qos-aware
service compositions in cloud computing. In International conference on database
systems for advanced applications (pp. 321–334).

Zahariev, A. (2009). Google app engine. Helsinki University of Technology , 1–5.

Zavadskas, E. K., Zakarevicius, A., & Antucheviciene, J. (2006). Evaluation of
ranking accuracy in multi-criteria decisions. Informatica, 17 (4), 601–618.

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J., & Chang, H.
(2004). Qos-aware middleware for web services composition. IEEE Transactions
on software engineering , 30 (5), 311–327.

Zhang, M., Ranjan, R., Nepal, S., Menzel, M., & Haller, A. (2012). A declarative
recommender system for cloud infrastructure services selection. In International
conference on grid economics and business models (pp. 102–113).

Zhang, Q., & Li, H. (2007). Moea/d: A multiobjective evolutionary algo-
rithm based on decomposition. IEEE Transactions on evolutionary computation,
11 (6), 712–731.

109

List of Publications

Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2016). Empirical analysis of a tree-
based efficient non-dominated sorting approach for many-objective optimization.
In 2016 ieee symposium series on computational intelligence (ssci) (pp. 1–8).

Zheng, Z., Wu, X., Zhang, Y., Lyu, M. R., & Wang, J. (2012). Qos ranking predic-
tion for cloud services. IEEE transactions on parallel and distributed systems ,
24 (6), 1213–1222.

Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search.
In International conference on parallel problem solving from nature (pp. 832–
842).

Zydallis, J. B., Van Veldhuizen, D. A., & Lamont, G. B. (2001). A statistical
comparison of multiobjective evolutionary algorithms including the momga-ii. In
International conference on evolutionary multi-criterion optimization (pp. 226–
240).

110

List of Publications

111

List of Publications

112

List of Publications

113

List of Publications

114

List of Publications

115

List of Publications

116

List of Publications

117

	Declaration
	Thesis Completion Certificate
	Thesis Completion Certificate from External
	Abstract
	Acknowledgment
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background of the Research
	1.2 Problem Statement
	1.3 Research Objectives
	1.3.1 Sub-Objectives

	1.4 Contribution of the Thesis
	1.5 Road Map of the Thesis

	2 Cloud Computing
	2.1 Cloud Components
	2.1.1 Characteristics of Cloud Computing

	2.2 Cloud Deployment Models
	2.3 Cloud Service Models
	2.4 Quality of Service
	2.4.1 QoS Parameters
	2.4.2 QoS Monitoring
	2.4.3 QoS Normalization

	2.5 Cloud Service Selection
	2.5.1 Generalized Process Involved Cloud Service Selection

	2.6 Traditional Techniques of Cloud Service Selection
	2.6.1 MCDM approach for service selection
	2.6.2 Trust Model for Cloud Service Selection
	2.6.3 Fuzzy- Based Service Selection
	2.6.4 Broker-Based Service Selection
	2.6.5 QoS Attributes for Service Selection

	2.7 Cloud Service Selection and Ranking using Evolutionary Algorithm
	2.7.1 Optimization Problem
	2.7.1.1 Constrained Vs. Unconstrained Optimization
	2.7.1.2 Single objective optimization
	2.7.1.3 Multi-objective optimization

	2.7.2 Cloud Service Selection as MOOP
	2.7.3 Multi-Objective Optimisation using Evolutionary Algorithm
	2.7.3.1 Decomposition based MOEA

	2.7.4 Weight based MOEA
	2.7.4.1 Indicators based MOEA
	2.7.4.2 Non-Dominated Sorting based MOEA
	2.7.4.3 Pareto Solutions and Pareto Front
	2.7.4.4 Non- Dominated Sorting for Cloud Service Selection and Ranking

	2.8 Comparative analysis and Research Issues in Cloud Service Selection Technique
	2.8.1 Analysis based on Techniques and QoS parameters
	2.8.2 Identified Research Gaps in Cloud Service Selection

	2.9 Summary

	3 Non-Dominated Sorting and Ranking of Services (NDS-ROS) Algorithm
	3.1 Overview of NDS-ROS
	3.2 Architecture of NDS-ROS
	3.2.1 Candidate Service Filtration
	3.2.2 Candidate Service Sorting
	3.2.3 Candidate Service Ranking
	3.2.4 Dominance Comparison

	3.3 Illustration of Proposed NDS-ROS approach through a working example
	3.4 Assumptions in NDS-ROS algorithm
	3.4.1 Assumptions on Number of Users
	3.4.2 Assumptions on the number of Services
	3.4.3 Assumptions on the QoS attributes

	3.5 Mathematical Modeling of NDS-ROS
	3.5.1 Dominance Comparison Rules
	3.5.2 Fitness Function

	3.6 NDS-ROS Algorithm
	3.6.1 Filtration
	3.6.2 Sorting
	3.6.3 Ranking
	3.6.4 Dominance Comparison

	3.7 Summary

	4 Experimental Environment
	4.1 Cloud Dataset
	4.2 J Metal Simulator
	4.3 Performance Parameter
	4.3.1 Number of Comparisons
	4.3.2 Execution Time
	4.3.3 Computational Complexity

	4.4 Computational Complexity
	4.4.1 ANOVA

	4.5 Summary

	5 Experimental Results and Performance Analysis
	5.1 Performance Analysis
	5.2 Computational Complexity
	5.2.1 Deductive Sort Algorithm
	5.2.2 ENS-SS Algorithm
	5.2.3 GBOS-SS
	5.2.4 NDS-ROS Algorithm

	5.3 Experimental Outcomes
	5.3.1 Number of Comparisons
	5.3.2 Execution Time

	5.4 Validation of NDS-ROS
	5.4.1 One-way analysis of variance (ANOVA)

	5.5 Summary

	6 Conclusion and Future Work
	7 List of Publications
	References

