
SMART: SELF-MANAGEMENT AWARE AUTONOMIC

RESOURCE MANAGEMENT TECHNIQUE IN CLOUD

A thesis submitted to the

University of Petroleum and Energy Studies

For the Award of

Doctor of Philosophy

in

Computer Science and Engineering

by

Bhupesh Kumar Dewangan

JULY 2020

Supervisor(s)

Dr. Amit Agarwal

Dr. Tanupriya Choudhury

Dr. Ashutosh Pasricha

School of Computer Science

University of Petroleum and Energy Studies

Dehradun, Uttarakhand-248007, India

SMART: SELF-MANAGEMENT AWARE AUTONOMIC

RESOURCE MANAGEMENT TECHNIQUE IN CLOUD

A thesis submitted to the

University of Petroleum and Energy Studies

For the Award of

Doctor of Philosophy

in

Computer Science and Engineering

by

Bhupesh Kumar Dewangan

(SAP ID 500042351)

JULY 2020

Internal Supervisor

Dr. Amit Agarwal

Professor (On Leave), SoCS, UPES, Dehradun

Internal Co-Supervisor

Dr. Tanupriya Choudhury

Associate Professor, SoCS, UPES, Dehradun

External Supervisor

Dr. Ashutosh Pasricha

OFS Director,Schlumberger Asia Services Ltd., India

School of Computer Science

University of Petroleum and Energy Studies

Dehradun, Uttarakhand-248007, India

.

I dedicate my Ph.D. Thesis to

My loving Parents, In-Laws, and my Supervisors

Dr. Amit Agarwal,

Dr. Tanupriya Choudhury and

Dr. Ashutosh Pasricha

for their endless support, blessings and guidance.

i

DECLARATION

I declare that this thesis, which I submit to University of Petroleum and Energy

Studies, Dehradun, for examination in consideration of the award of a higher degree

Doctor of Philosophy in Computer Science and Engineering is my own personal

effort. Where any of the content presented is the result of input or data from

a related collaborative research programme this is duly acknowledged in the text

such that it is possible to ascertain how much of the work is my own. Furthermore,

I took reasonable care to ensure that the work is original, and, to the best of my

knowledge, does not breach copyright law, and has not been taken from other

sources except where such work has been cited and acknowledged within the text.

Signature of the Candidate

SAP ID: 500042351

Date:09 / 07 / 2020

ii

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis entitled ”SMART: Self-Management Aware

Autonomic Resource Management Technique in Cloud” by Bhupesh Ku-

mar Dewangan, (SAP ID: 500042351) in partial completion of the require-

ments for the award of the Degree of Doctor of Philosophy in Computer Science

and Engineering is an original work carried out by him under our joint supervision

and guidance. It is certified that the work has not been submitted anywhere else

for the award of any other diploma or degree of this or any other University.

Dr. Amit Agarwal

Internal Supervisor

Professor, SoCS, UPES.

Dr. Tanupriya Choudhury

Internal Co-Supervisor

Associate Professor, SoCS, UPES.

iii

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis entitled ”SMART: Self-Management Aware

Autonomic Resource Management Technique in Cloud” by Bhupesh Ku-

mar Dewangan, (SAP ID: 500042351) in partial completion of the require-

ments for the award of the Degree of Doctor of Philosophy in Computer Science

and Engineering is an original work carried out by him under our joint supervision

and guidance. It is certified that the work has not been submitted anywhere else

for the award of any other diploma or degree of this or any other University.

Dr. Ashutosh Pasricha

External Supervisor

Schlumberger Asia Service Ltd., Gurgaon, India

iv

Abstract

Cloud computing plays the biggest role in modern Information Technology for

the growth of the business. It is responsible to make the availability of numer-

ous services like hardware, software, network, servers, etc. Resource management

technique is one of the important methods to ensure to schedule these services to

cloud users. For efficient resource management, and optimal resource to compute

the required task is very important. Resource optimization is directly related to

service level agreement SLA and associated hardware-software cost in the cloud.

The effectiveness of any load-balancing algorithm is directly related to the utiliza-

tion of infrastructure. The efficient utilization of resources will turn in satisfaction

of service level agreement as well as profit for the service providers. In the cloud

environment, the satisfaction of SLA is a prime objective. It can be achieved by

providing services in a minimum time in an efficient manner at the lowest cost

by efficiently utilizing the resources. This will create a win-win situation for both

consumers and service providers.

In this thesis, a novel resource management technique self-management aware au-

tonomic resource management technique in cloud SMART is proposed, which focus

to optimize and maximize resource utilization, while maintaining lower execution

time and cost. The objective of this work is to design a resource management

system to improve the fault tolerance mechanism, self-adaptability, and maximize

resource utilization in cloud computing. To achieve this, a new resource man-

agement algorithm named SMART is proposed by picking the best features from

Antlion optimizers. Based on the availability of resources and workloads on a vir-

tual machine, a fitness value is assigned to all virtual machines. A newly arrived

task is mapped with the fittest virtual machine. Whenever a new task is mapped

or left the system, the fitness value of the virtual machine is updated. In this man-

ner, the system achieves the satisfaction of service level agreement, the balance of

workload, and efficient utilization of resources. To test the proposed approach, the

v

Cloudsim 3.0 simulator has been used, and then it is validated in the real-time

cloud environment (Amazon web services) as well. Through experimental results,

it can be concluded that the proposed resource management approach SMART has

outperformed other resource management approach based on relevant parameters.

vi

Acknowledgement

I bow my head humbly to pay heart felt regards to Almighty God for giving me

the strengths and blessing in completing this thesis.

There are quite a few people that have helped me in one way or another to the

completion of this work. It is with great pleasure, I would like to thank all of you

from very deep inside.

Foremost, I would like to express my sincere gratitude to my thesis advisors Dr.

Amit Agarwal, Dr. Tanupriya Choudhury and Dr. Ashutosh Pasricha, for picking

me up as a student at the critical stage of my career and the continuous support

of my Ph.D study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and writing

of this thesis.

It is absolutely difficult to succeed in the process of finding and developing an idea

without the help of a specialist in the domain. I found in my advisors not only

the source of wonderful ideas to develop, but also the support that a Ph.D student

needs. I could not have imagined having a better advisor and mentor for my Ph.D

study.

Besides my advisors, I would like to thank Chancellor Dr. S. J. Chopra, Vice

chancellor Dr. Sunil Rai and Dean SoCS Dr. Manish Prateek, Dean SoCS R&D

Dr. Kiran Kumar Ravulakollu at the University of Petroleum and Energy Studies

for their encouragement, suggestions and valuable support for my research work.

I would like to express my special thanks to Dr. J K Pandey, R&D, Director and

Dr. Rakhi Ruhal, Program Manager-Ph.D, University of Petroleum and Energy

Studies, for his assistance during my research work. I am grateful to the University

vii

of Petroleum and Energy Studies, for giving me an opportunity to pursue my

research and for providing all facilities in School of Computer Science.

I would like to thank all the Heads of School of Computer Science Departments,

doctoral students for their feedback, cooperation, and of course friendship. In

addition I would like to express my gratitude to all colleagues in the university.

I cannot begin to express my gratitude to my family for all of the love, support,

encouragement, and prayers they have sent my way along this journey. I am eter-

nally indebted to my loving parents and in-laws for all the sacrifices they have

made on my behalf. I would like to express sincere gratitude to my beloved wife

Sanjana Dewangan who believed in me and provided encouragement during chal-

lenging times. Your unconditional love and support in the moments when there

was no one to answer my queries has helped me immensely. To my son Shaurya

and daughter Sanvi, who are the inspiration for me to complete this journey and

also for the sacrifices made along the way. To all my friends thank you for your

support and constant encouragement.

Contents

Declaration i

Thesis Completion Certificate ii

Thesis Completion Certificate from External iii

Abstract iv

Acknowledgment vi

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Introduction to Cloud Computing 1

1.2 Evolution of Cloud Computing . 2

1.2.1 Cluster . 2

1.2.2 Distributed Computing . 3

1.2.3 High Performance Computing (HPC) 3

1.2.4 Application Service Provider (APA) 3

1.3 Cloud computing Service Models 5

1.3.1 Infrastructure-as-a-Service (IaaS) 5

viii

CONTENTS ix

1.3.2 Platform-as-a-Service (PaaS) 6

1.3.3 Software-as-a-Service (PaaS) 7

1.4 Deployment-Models . 7

1.4.1 The Public Cloud . 8

1.4.2 The Private Cloud . 8

1.4.3 The Community Cloud . 8

1.4.4 The Hybrid Cloud . 8

1.5 Technology behind the Cloud Computing 9

1.5.1 Virtualization . 9

1.5.2 Hypervisors . 9

1.5.3 Multi-Tenancy . 10

1.6 Cloud Computing Challenges . 10

1.7 Resource Management . 10

1.7.1 Resource Management in Cloud 10

1.7.2 Evolution of Resource Management 11

1.7.3 Why Resource Management? 12

1.8 Autonomic Resource-Management in Cloud 13

1.8.1 Self-management . 13

1.8.2 Self-Configuration . 14

1.8.3 Self-Healing . 15

1.8.4 Self-Protection . 15

1.8.5 Self-Optimization . 16

1.9 Research Gaps . 17

1.10 Metrics for Resource Management in Cloud 17

1.11 Research Motivation . 19

1.12 Research Objective . 19

1.12.1 Sub-Objectives . 19

1.13 Organization of Thesis . 19

CONTENTS x

1.14 Summary . 21

2 Literature Review 22

2.1 Auction-Based Resource Management System (RMS) 23

2.2 Energy-Based RMS . 25

2.3 Fault-Tolerant Based RMS . 26

2.3.1 Reactive Frameworks . 27

2.3.2 Proactive Frameworks . 27

2.3.3 Frameworks by Industries 28

2.4 Nature and Bio Inspired RMS . 29

2.5 Optimization-Based RMS . 31

2.6 Cost-Based RMS . 32

2.7 Profit-Based RMS . 36

2.8 QoS-based RMS . 37

2.9 Autonomic Cloud Resource Management 39

2.10 SLA-Based RMS . 41

2.11 Research Challenges . 44

2.12 Evaluvation Parameters . 45

2.13 Objective of the thesis . 46

2.14 Summary . 46

3 Methodology 48

3.1 The Proposed Research Methodology 48

3.2 Workload-Filter . 50

3.2.1 Workload Dataset . 50

3.2.2 Algorithm . 50

3.2.3 User-Priority based on Execution Time 51

3.3 Self-optimization . 51

3.4 Fault-tolerant . 52

CONTENTS xi

3.5 Resource Management . 52

3.6 Performance Analysis . 52

3.7 SMART-Architecture . 52

3.8 Simulation & Test Environment . 54

3.8.1 Simulation Environments . 54

3.8.2 Cloudsim Simulation Toolkit 54

3.8.3 Amazon Web Services Environment 56

3.9 Summary . 56

4 Self-optimization and Fault-tolerant Mechanism 58

4.1 Self-optimization . 58

4.1.1 Formal Optimization Model 59

4.1.2 Modified ALO based Self-optimization 59

4.1.3 Modified ALO Operators . 60

4.1.4 Random walk of ant (initial population/ solution) 61

4.1.5 Building Trap (Fitness Value) 62

4.1.6 Entrapment of ant in trap 64

4.1.7 Catching preys and rebuilding trap 65

4.1.8 Algorithm . 65

4.2 Fault-tolerant Mechanism . 66

4.2.1 Fault Detection Procedure 66

4.2.2 Threshold . 67

4.2.3 Algorithm . 68

4.3 Summary . 69

5 Resource Management 70

5.1 Scheduling . 70

5.2 Algorithm . 71

5.2.1 Time Complexity . 71

CONTENTS xii

5.3 Results and Analysis . 71

5.3.1 Performance Metrics . 71

5.3.2 Validation of SMART . 73

5.3.2.1 SOCCER . 73

5.3.2.2 CHOPPER . 73

5.3.3 Performance Analysis . 74

5.3.3.1 Resource Utilization by Workload 74

5.3.3.2 Execution Time . 74

5.3.3.3 SLA Violation Rate 74

5.3.3.4 Energy Consumption Rate 75

5.3.4 Execution Cost . 75

5.3.5 Resource Cost . 75

5.3.6 SLA Cost . 76

5.3.7 Resource Utilization . 76

5.3.8 Execution Time . 77

5.3.9 Energy Consumption Rate 78

5.3.10 SLA Violation Rate Analysis 79

5.3.11 Cost . 80

5.3.11.1 Execution Cost . 80

5.3.11.2 Resource Cost . 81

5.3.11.3 SLA Cost . 82

5.3.12 Analysis . 83

5.3.13 Implementation in AWS . 84

5.4 Summary . 87

6 Conclusions and Future Work 89

References 94

List of Figures

1.1 Formal Cloud Computing model (OutrightSystems, 2019) 2

1.2 Evolution of Cloud Computing . 3

1.3 Architecture of IaaS . 5

1.4 Architecture of PaaS . 6

1.5 Architecture of SaaS . 7

1.6 Various categories of Resource Management in Cloud 12

1.7 Formal model of Self-Configuration for Cloud Resource Management 14

1.8 Formal model for Self-healing . 15

1.9 Formal mode of Self-Protection for Cloud Computing 16

1.10 Formal model of Self-optimization for Cloud Computing 17

2.1 Usage rate of multi-objective functions under auction-based RMS . 24

2.2 Usage rate of multi-objective functions under energy-based RMS . . 26

2.3 Usage rate of multi-objective functions under fault-tolerant-based

RMS . 29

2.4 Usage rate of multi-objective functions under Nature-Bio-Inspired

RMS . 30

2.5 Usage rate of multi-objective functions under optimization-based RMS 32

2.6 Usage rate of multi-objective functions under cost-based RMS . . . 35

2.7 Usage rate of multi-objective functions under profit-based RMS . . 37

2.8 Usage rate of multi-objective functions under QoS-based RMS . . . 38

2.9 Usage rate of multi-objective functions under autonomic-based RMS 41

xiii

LIST OF FIGURES xiv

2.10 Distribution of various objective functions utilized in SLA-Based

resource management in cloud computing 43

2.11 Evaluvation Parameters Distribution cumulative 45

2.12 Evaluvation Parameters Distribution for indivitual resource man-

agemnt techniques . 46

3.1 SMART Methodology . 49

3.2 Architecture of proposed research work SMART 53

4.1 Formal Optimization Model . 59

4.2 Roulette wheel method (Mirjalili, 2015) 62

4.3 Fault VM computation. 67

5.1 Resource utilization based on workloads 76

5.2 Execution Time analysis based on number of workloads. 77

5.3 Energy Consumption Rate & Analysis based on Resources (VM). . 78

5.4 SLA Violation Rate & Analysis based on workloads. 79

5.5 Execution Cost & Analysis based on workloads. 81

5.6 Resource Cost & Analysis based on workloads. 82

5.7 SLA Cost & Analysis based on workloads. 83

5.8 EC2 Dashboard . 84

5.9 ALOscheduler EC2 Instance . 84

5.10 Client application EC2 Instance . 85

5.11 ALOscheduler, Client, and Worker EC2 Instance 85

5.12 Execution of workloads . 86

5.13 Execution of workloads . 86

5.14 Execution Time Analysis in AWS environment 87

List of Tables

2.1 Differentiation of Auction-based RMS by evaluation parameters. . . 23

2.2 Differentiation of Energy-based RMS by evaluation parameters. . . 25

2.3 Differentiation of fault-tolerant-based RMS by evaluation parameters. 28

2.4 Differentiation of nature and bio inspired RMS by evaluation pa-

rameters. 30

2.5 Differentiation of optimized RMS by evaluation parameters. 31

2.6 Comparative study of Cost-based Resource Management in Cloud

Computing. 33

2.7 Differentiation of profit-based RMS by evaluation parameters. . . . 36

2.8 Differentiation of QoS-based RMS by evaluation parameters. 38

2.9 Differentiation of autonomic cloud RMS by evaluation parameters. . 40

2.10 Differentiation of SLA-based RMS by evaluation parameters. 43

3.1 Dataset (Singh et al., 2016) (Gill et al., 2017) 50

3.2 Physical system configuration in which simulator installed. 55

3.3 Simulation environment details. 55

3.4 Configuration of simulation environment for CPU, RAM, and Bamd-

width for PMmax and VMmax. 56

3.5 Description EC2 Instance . 57

5.1 Analysis . 83

xv

Chapter 1

Introduction

Overview

This chapter is all about the introduction to cloud computing, history, and evolu-
tion, the models and technologies which are utilizing in the cloud, various services
offered by the cloud, cloud deployment models, and the issues and challenges are
discussed. This research work aims to produce an efficient autonomic resource man-
agement technique in cloud computing, so besides, different resource management
techniques, categories, evolution, motivation to opt research and the challenges are
presenting with the research objectives of this work.

1.1 Introduction to Cloud Computing

Cloud computing is a platform where cloud users can access the resources (storage,
servers, networks, application programs, etc.) over the Internet, either free of cost
or on a rent basis which depends upon the service model that users opted by their
own choice. Cloud users do not have control of underlying hardware infrastructure
because they are owned and managed by the service provider (Jayaswal & Shah,
2015). As per NIST (Mell & Grance, 2011), there are five silent qualities of the
cloud are:

1. On-Demand Self-Service,

2. Broad-Network Access,

3. Resource-Pooling,

4. Rapid-Elasticity, and

1

Chapter 1. Introduction

5. Measured-Service.

The formal cloud computing model is presented in FIGURE 1.1.

Figure 1.1: Formal Cloud Computing model (OutrightSystems, 2019)

1.2 Evolution of Cloud Computing

It is started by mainframe in the early 1960’s, and the year-wise progress is shown
in FIGURE 1.2. The mainframe was very expensive, even for large, profitable orga-
nizations. Hence, mainframe manufacturers provided a form of utility computing
called time-sharing, where they offered database storage and compute power to
banks and other large organizations for a fee.

1.2.1 Cluster

It is a group of networked systems sharing the same set of resources, where all the
nodes are actively working or some nodes are in the standby mode, waiting to take
over after the failure of an active node.

2

Chapter 1. Introduction

1.2.2 Distributed Computing

This is an implementation technique where different roles or tasks distributed
among separate nodes in the network. Grid computing, peer-to-peer architecture,
and client-server architecture are some forms of distributed computing.

1.2.3 High Performance Computing (HPC)

This technique divides a task into pieces and uses parallel processing algorithms
to execute each piece on different processors on the same node or multiple nodes
in the network.

1.2.4 Application Service Provider (APA)

An ASP in 1966 defined as an organization that hosts and manages one or more
applications and its underlying infrastructure. Customers could use these applica-
tions over the internet and have to pay for their utilization.

Figure 1.2: Evolution of Cloud Computing

In 1966, a firm named Computer Software System (CSS) started a time-sharing
idea which is based on the control program/console monitoring system (CP/CMS).

3

Chapter 1. Introduction

In 1968, the concept of networked applications to support communities who could
collaborate without regard to location introduces (Licklider & Taylor, 1968). The
mainframe application is one of the examples of this concept.

In the 1970s and 80s, Digital Equipment Corporation (DEC) built and marketed
one of the earliest time-sharing systems. During the 1990s and early 2000s, the
internet used by application service providers for services that led to SaaS. Yahoo,
Salesforce.com, and other internet pioneers provided cloud services several years
before it named cloud computing.

In 1989, Tim Berner-Lee, a British computer scientist and MIT professor, created
many web tools technical proposals that have today become the fundamental struc-
ture of the World-Wide-Web.

In 1990, with the help of Robert Cailliau and a student, carried out the first suc-
cessful web-based communication over the internet between Hypertext Transfer
Protocol (HTTP) server and client.

In the 1990s, utility computing re-surfaced, and in 1997, a company called InsynQ
launched on-demand applications and desktop hosting services by using HP equip-
ment. The following year, HP setup the Utility Computing Division in Mountain
View, California and, launched its Utility Datacenter; marketing it as a service
called IP-Billing-On-Tap.

In 2005, a company called Alexa launched the Alexa Web Search Platform, a web-
based search-building tool with utility-type billing.

Since the 2000s, the primary form of cloud computing, namely, IaaS, PaaS, and
SaaS, formalized.

In 2001, SIIA invented the acronym SaaS for a service that was the adoption of
the Application Service Provider. The following year, Amazon started offering its
infrastructure for web services for a pay-for-what-you-use model.

In 2006, 3tera launched its Applogic service, and later that summer, Amazon
launched Amazon Elastic Compute Cloud (EC2) based on virtualized Linux and
Windows servers. Both offered server and storage resources on a utility-based pay-
ment.

4

Chapter 1. Introduction

In November 2010, 11 companies, including Microsoft, Verizon, EMC, NetApp,
Rackspace, Telenor, and Cisco Systems joined hands to form the Asia Cloud Com-
puting Association. The global cloud computing market estimated to cross 70
billion US dollars by 2015.

1.3 Cloud computing Service Models

It provides three types of services:

1.3.1 Infrastructure-as-a-Service (IaaS)

In IaaS, a cloud user asks to pay for the resources stored at the service provider’s
infrastructure or wherever the provider keeps its hardware. The provider owns
the equipment and maintains it at a level specified in the previously agreed upon
Service Level Agreement (SLA). As a customer, they need to do is to pay for the
part of resources dedicated permanently to customer account or resources that
customer provision temporarily to meet the short term need. Rackspace-Servers,
Amazon-EC2, Amazon-S3 are some vendors of IaaS.

Figure 1.3: Architecture of IaaS

FIGURE 1.3, shows how a virtual appliance is constructed for as IaaS natural
environment, uploaded, and configured and then established inside the environ-
ment. IaaS has two actors, that is, the service provider and an end-user. Software

5

Chapter 1. Introduction

programmer values virtual appliance and it is uploaded and configured to use the
accessible storage. Software programmer also has command over virtual applica-
tion automation where they are established and started. End-user submits a job or
task to the virtual appliances, wherein the balancer splits up the task into a sub-
task, submits it to the virtual applications, and obtains the results. The outcome
is dispatched back to the end-user.

1.3.2 Platform-as-a-Service (PaaS)

In PaaS, a cloud user gets the set of applications and development environments like
product development tools that are hosted on the service provider’s hardware. In
this, the user is allowed to write, compile, and deploy the code without installation
of any tools on his computer. Users do not need to manage, control, upgrade
those applications used by him. FIGURE 1.4 displays a PaaS model. PaaS has
two actors, that is, developers and users. Developers evolve a stage comprising
of IDE, security, supervising of application, and hardware infrastructure to evolve
an application. End-user use the stage and establish their enterprise applications
herein. Google-App-Engine, Microsoft-Azure, and Salesforce.com are comes in this
category.

Figure 1.4: Architecture of PaaS

6

Chapter 1. Introduction

1.3.3 Software-as-a-Service (PaaS)

In SaaS, the application softwares intalled in cloud infrastructure is easy avail-
able to access by cloud user. User do not need to install the softwares in their
computers. FIGURE 1.5, displays the diverse components accessible in SaaS. The
components encompass metadata services, security services, and direct services. Se-
curity services are used for commanding access to end-user and back-end programs.
Metadata services are used to organize application configuration for every tenant.
Services and intelligence purchaser combine with the metadata services to get data
that recounts configurations and additions that are apt for every tenant. FIGURE
1.5, displays the diverse components accessible in SaaS. The components encom-
pass metadata services, security services, and direct services. Security services
are used for commanding access to end-user and back-end programs. Metadata
services are used to organize application configuration for every tenant. Services
and intelligence purchaser combine with the metadata services to get data that
recounts configurations and additions that are apt for every tenant.

Figure 1.5: Architecture of SaaS

1.4 Deployment-Models

It is classified into four types as follows:

7

Chapter 1. Introduction

1.4.1 The Public Cloud

The clouds, accessed or used by general means and hosted, are maintained as
well as managed by service providers. In this type of cloud, the service providers
charge the companies according to their usage. Due to this, an initially small
organization can start using cloud services and then can expand by acquiring more
resources according to their requirements. During expansions, there is no need
for the organization to invest in the infrastructure and can pay just according to
usage. In the public cloud, there is no need for organizations to control or manage
the resources; instead, they are being administered by a third party.

1.4.2 The Private Cloud

The cloud infrastructure is designed for a specific purpose or organization and it
sharing with other organizations. As compared to a public cloud, private clouds are
more costly as well as secure. A private cloud either can be on-premises or hosted
externally. In the case of on-premise private clouds, the service is exclusively
used and hosted by a single organization. However, the private clouds that are
hosted externally are used by a single organization and are not shared with other
organizations. Moreover, a third party that specializes in cloud infrastructure hosts
cloud services.

1.4.3 The Community Cloud

In this, sharing is done between various organizations with usual tie. This type of
cloud is generally managed by a third party offering the cloud service and can be
made available on-premises or off-premises. To make the concept of community
cloud clear and to explain when community clouds can be designed. In any state
or country, the community cloud can be provided so that almost all government
organizations of that state can share resources available on the cloud.

1.4.4 The Hybrid Cloud

The cloud environment in which various internal or external service providers pro-
vide services to many organizations is known as a hybrid cloud. Generally, it is
observed that as organization host applications, which require a high level of se-
curity and are critical, on a private cloud. It is also possible that the applications
requiring less of concern can be hosted on the public cloud. In hybrid clouds, an
organization can use both types of cloud, i.e., public and private together. Such
types of cloud are generally used in situations called as cloud bursting. In the

8

Chapter 1. Introduction

case of cloud bursting, an organization generally uses its computing infrastructure;
however, in high load requirements, the organization can access clouds. In other
words, the organization using a hybrid cloud can manage an internal private cloud
for general usage and migrate the entire or a part of an application to the public
cloud during the peak periods.

1.5 Technology behind the Cloud Computing

Virtualization, Hypervisors, and Multi-tenancy are the technology, which is used
behind the cloud.

1.5.1 Virtualization

Virtualization is not a new idea for researchers. Memory was the first among
the PC parts to be virtualized. Memory was a costly piece of the first comput-
ers, so virtual memory ideas were produced in the 1970s (AlJahdali et al., 2014).
Virtualization technology separates the primary functions of computers, i.e., com-
puting and technology implementation, from the physical infrastructure and the
hardware resources with the help of a technology called virtual machine mentor
(VMM). Virtualization changes the way businesses make their payments for us-
ing certain services, while risks associated with costs and payments for businesses
are handled by it. The benefits associated with virtualization can be maximizing
resources, reducing hardware costs, minimizing maintenance requirements, taking
advantage of OS services, usage of multiple systems, and increasing the security of
the system.

1.5.2 Hypervisors

Virtualized situations are typically imposed with the utilization of a Hypervisor,
and it rest between the physical equipment and the Virtual Machines (VMs). Hy-
pervisor responsible for furnishing each VM with the misconception of being kept
running its equipment, which is finished by uncovering an arrangement of virtual
hardware devices whose assignments are then planned on the genuine physical
equipment. These administrations include some major disadvantages: Hypervisors
are expansive bits of programming, with 100,000 lines of code or more (Perez Botero
et al., 2013).

9

Chapter 1. Introduction

1.5.3 Multi-Tenancy

Multi-Tenancy is the naturalism of trying to attain the capital advantages in cloud
computing by adopting virtualization technology via resource utilization (Jansen,
2011) and (Saripalli & Walters, 2010). Multi-Tenancy implies that at least two
clients use a similar administration or application given by the CSP paying little
mind to the fundamental assets resources. Multi-Tenancy happens when at least
two virtual machines (VMs) having a place with various clients share the same
physical machine (PM) (AlJahdali et al., 2014).

1.6 Cloud Computing Challenges

The broad area of issues of cloud computing is security, resource management, user
trust gain, load balancing, costing model, and service level agreement (Dillon et
al., 2010). Each broad area has its relative dimensions of areas, which are likely
opted to resolve by the researchers. In this work, the resource-scheduling area is
focused on including a multi-objective function to enhance resource utilization.

1.7 Resource Management

Resources are managed through its proper scheduling. Scheduling can be stated
that an event to take place at a particular time. There are many types of schedul-
ing algorithms available in distributed computing for resource scheduling. Many
algorithms are to be utilized in the distributed system by appropriate authentica-
tion. The purpose of the scheduling algorithm is to achieve maximum throughput.
For a cloud environment, the regular approaches are unable to attain the desired
efficiency (Tanenbaum, 2009).

1.7.1 Resource Management in Cloud

Cloud computing classified the scheduling algorithms into the following categories;
Batch/sequential and online/random mode. In batch/sequential mode, all the
resources are standing in the chain and formed a set when it arrives at the system.
In this, the algorithm will turn on in the fixed time interval. Cloud computing
is an online technology and heterogeneous too so the speed of the processors can
be made varied into less period, that’s why the online mode of scheduling is more
effective and suitable for the cloud (Dewangan et al., 2018).

10

Chapter 1. Introduction

1.7.2 Evolution of Resource Management

The evolution of resource planning parameters quality of service that are planned
Resource-Scheduling-Algorithms (RSA) through the backstory of the cloud are
described. any exceptional quality of service parameters (QoS) and focus of study
(FOS) of resource planning for the evolution of the cloud in different years as
outlined square in the evolution of resource planning as the next paragraph. As
the cloud progresses with time and the introduction of innovative ways, so existing
ASR within the cloud further progress. This study covers issues associated with
the RSA support Quality of Service (QoS) and focus of study (FOS). Most work
RSA cloud rising by reducing execution time, price and different quality of service
parameters.

In 2009, (Sotomayor et al., 2009) and (Buyya et al., 2009) planned required virtual
infrastructure hybrid formula mostly market and cloud-based bound based resource
planning jointly, latency and execution time is taken into account as FoS QoS
parameter is the virtual infrastructure and multiple distributed resources.

In 2010, (Liu et al., 2010), (Kamal & Kemafor, 2010), (Lee et al., 2010), and
(Pandey et al., 2010) workflow provided bound compromised price and time based
mainly point given time duration based mostly based service organization linked
mainly load equalization linked primarily based VM advancement and application
linked to nature and bio impressed formula jointly planning resources. Runtime,
the profit rate, latency and resource utilization is considered as a parameter of
quality of service and Fos is the cluster, and MapReduce exchange method.

In 2011, (Yang et al., 2011) and (Linlin et al., 2011) price mainly planned and
based resource SLA algorithmic programming program jointly during which the
parameters of quality of service are considered as violation of SLA, range, price
and manageability resource. The aim of the study is the lack of uniformity of VM
and user satisfaction.

In 2012, (Bing et al., 2012), (Qiang, 2012), and (Changtian & Jiong, 2012) conferred
distributed QoS environment back home based primarily, optimizing return home
to chance and DVS (Voltage scaling dynamic) based resource allocation particu-
larly energy conscious solidarity algorithmic program. Time, resource utilization,
energy consumption and utility system square measure thought about how quality
of service parameters and Fos is the network performance, SLA, and consolidating
workloads.

In 2013, (Sotomayor et al., 2009) planned consolidation priority back home mostly
resources program programming algorithmic, during which measure square range
and variety of migrations thought of as parameters of quality of service and Fos is
workloads parallel.

11

Chapter 1. Introduction

In 2014, (Weiwei et al., 2014) and (Um et al., 2014) information back to severable
task home awarded based mostly resource and CDN (Content Delivery Network)
program algorithmic programming severally, in which the execution time, the price
of resources, price transition is taken into account as quality of service parameters
and Fos is separable programming tasks, resource consumption pattern and SLA.

1.7.3 Why Resource Management?

The main objective of resource management is to identify appropriate resources
for planning workloads appropriate time and to extend the efficiency of resource
utilization. In other words, the number of resources should be minimal for work
to care for a necessary level of service quality, or reduce to the minimum the
total time workload (or maximize performance) of a work. For greater resource
planning, better allocation of labor resources needed. The second objective of
resource planning is to identify the right job and appropriate supporting planning
multiple workloads, they are able to meet diverse needs of service quality, such as
using the hardware of the computer, manageability, reliability, safety, etc., for the
cloud workload. Therefore, resource planning considers the execution time of each
individual work, but most importantly, performance is also supported type of work
that is, with totally different needs for quality of service (loads of heterogeneous
work) and QoS requirements similar (homogeneous work loads).

Figure 1.6: Various categories of Resource Management in Cloud

12

Chapter 1. Introduction

The above-mentioned resource management systems are presenting in FIGURE
1.6. The focus of this research is all about autonomic cloud resource management
and dicussed in next section.

1.8 Autonomic Resource-Management in Cloud

It 1 is self-managing characteristics of distributed computing resources that oper-
ates through policies. These systems are capable of self-healing, self-configuration
of their resources, self-protection from malware, and attacks. An autonomic com-
puting system maintains comprehensive knowledge of its components and the op-
erating environment (self-knowledge) so that it can self-react to external inputs
(self-adaption).To react automatically, these systems have built-in sensors that
monitor the environmental conditions and external inputs to determine and ex-
ecute the appropriate response actions (Thomas et al., 2013). The Autonomic
Computing Initiative (ACI), which produced by IBM, exhibits, and backers orga-
nizing PC frameworks that do not include a considerable measure of human inter-
cession other than characterizing input rules. The ACI got from the autonomic
sensory system of the human body. Four territories of the scheduled is character-
ized by IBM through incorporate , self-healing, self-protection, self-configuration
and self-optimization. Qualities that each autonomous processing framework must
have automation, adaptively, and awareness. The various features of autonomic
resources management in the cloud is discussed as follows:

1.8.1 Self-management

The fragrance of autonomic processing frameworks is self-management, an auto-
nomic frameworks will keep up and modify their task despite evolving parts, out-
standing burdens, requests, and outer conditions and notwithstanding equipment
or programming disappointments, both guiltless and malevolent. The autonomic
framework may persistently screen its very own utilization, and check for segment
updates, for instance. On the off chance that it esteems the publicized highlights
of the updates beneficial, the framework will introduce them, reconfigure itself as
important, and run a relapse test to ensure everything is great. When it recognizes
blunders, the framework will return to the more established adaptation while its
programmed issue assurance calculations attempt to separate the wellspring of the
mistake. IBM as often as possible refers to four parts of self-administration; early
autonomic frameworks may regard these viewpoints as unmistakable, with various

1 Autonomic Cloud Resource Management. Fifth IEEE international Conference on Parallel,
Distributed and Grid Computing(PDGC). PP: 138-143. 2018. DOI: https://ieeexplore.ieee
.org/document/8745977 DOI: 10.1109/PDGC.2018.8745977.Scopus Indexed.

13

https://ieeexplore.ieee.org/document/8745977
https://ieeexplore.ieee.org/document/8745977
10.1109/PDGC.2018.8745977

Chapter 1. Introduction

item groups making arrangements that location every one independently. Eventu-
ally, these viewpoints will be new properties of a general design, and refinements
will obscure into a more broad idea of self-upkeep. The voyage toward completely
autonomic figuring will take numerous years; however, there are a few vital and
profitable points of reference along the way. At first, computerized capacities will
just gather and total data to help choices by human executives. Afterward, they
will fill in as consultants, recommending conceivable strategies for people to con-
sider. As robotization advances enhance, and our confidence in them develops, we
will depend on autonomic frameworks with making and following up on lower-level
choices. After some time, people should make moderately less regular overwhelm-
ingly larger amount choices, which the framework will complete naturally through
increasingly various, bring down level choices and activities.

At last, framework directors and end clients will underestimate the advantages
of autonomic registering. Self-managing frameworks and gadgets will appear to
be normal and unremarkable, as will computerize programming and middleware
updates. The definite movement examples of uses or information will be as un-
interesting to us as the subtle elements of directing a telephone call through the
phone organize.

Self-manage technique includes the following capabilities:

1.8.2 Self-Configuration

Figure 1.7: Formal model of Self-Configuration for Cloud Resource Manage-
ment

Ability to accommodate varying and possibly unpredictable conditions. Intro-
ducing, designing, and incorporating expansive, complex frameworks is testing,
tedious, and blunder inclined notwithstanding for specialists. Most huge Web-
sites and corporate server farms are indiscriminate gradual additions of servers,
switches, databases, and different advances on various stages from various sellers.
It can take groups of master software engineers’ a very long time to combine two

14

Chapter 1. Introduction

frameworks or to introduce a noteworthy online business application, for example,
SAP. Autonomic frameworks will arrange themselves consequently as per abnor-
mal state approaches speaking to business-level destinations, for instance - that
determine what wanted, not how it is to be proficient (Omer et al., 2011). The
formal model of self-configuration is presented in FIGURE 1.7.

1.8.3 Self-Healing

Ability to remain functioning when problems arise. IBM and other IT sellers have
substantial divisions committed to recognizing, following, what is more, deciding
the main driver of disappointments in complex processing frameworks. Genuine
client issues can take groups of developers half a month to analyze and settle, and
in some cases, the issue vanishes affectingly without any acceptable finding. Auto-
nomic registering framework will recognize, analyze, what’s more, limited improve-
ment came about because of a bug problems or disappointments in programming
and equipment, possibly through the analysis of relapse. Utilizing information
about the design of the framework, is part of the problem determination (in light
of the Bayesian system, for example) will examine the data from the log records,
conceivably enhanced with information from the extra screen that has been re-
quested. This framework will then match findings against known programming
Repair (or alarm a software engineer humans if not present), introduced the match
fixing, and retest. The formal model of self-healing is presented in FIGURE 1.8.

Figure 1.8: Formal model for Self-healing

1.8.4 Self-Protection

Ability to detect threats and take appropriate actions. Notwithstanding the pres-
ence of firewalls and interruption recognition apparatuses, people should at present

15

Chapter 1. Introduction

how to shield frameworks from pernicious assaults and coincidental falling disap-
pointments. Autonomic frameworks will act naturally ensuring in two detects.
They will protect the overall framework of the large-scale, related issues arise from
malicious attacks or falls disappointment living corrected without any steps to re-
cover the other. They will also envisage a problem depending on the initial reports
of censorship and find ways to avoid them. The formal model of self-protection is
presented in FIGURE 1.9.

Figure 1.9: Formal mode of Self-Protection for Cloud Computing

1.8.5 Self-Optimization

Constant monitoring for optimal operation. Complex middleware, for example,
Web Sphere, or database frameworks, Oracle or DB2, may have many tunable pa-
rameters that must be set effectively for the framework to perform ideally, yet few
individuals know how to tune them. Such frameworks are frequently coordinated
with other, similarly complex frameworks. Thus, execution tuning one substan-
tial subsystem can affect the whole framework. Autonomous framework will be
consistent looking approach to improving their duties, differentiate and seize the
opportunity to make itself more effective in execution or fees. Similarly, as more
grounded wind muscle through exercise, and brain adjust the hardware in the mid-
dle of learning, autonomous framework will display, explore different paths on and
tune their parameters and will seek ways to settle on an appropriate decision about
keeping capacity or distribute them. They will proactively look to remodel their
capacity to seek, justify and apply the latest updates.

The formal method of self-optimization is presented in FIGURE 1.9.

16

Chapter 1. Introduction

Figure 1.10: Formal model of Self-optimization for Cloud Computing

1.9 Research Gaps

Resource management plays a big role to minimize operating costs and maximize
the efficiency of the system. Some of the following gaps identified in this research
field:

1. SLA-violation-rate is high, which leads to less user trust,
2. Scheduling-time can be minimized,
3. Resource utilization is low,
4. Energy-consumption rate can be minimized,
5. Fault-tolerant for identifying fault virtual machines (VM’s),
6. Resource cost can be optimized,
7. Response time is high,
8. Malicious workload identification is required,
9. Memory utilization rate is high,

10. More human interventions/ non-autonomic.

In this research, some of the above observations have been considered to make
resource management efficient.

1.10 Metrics for Resource Management in Cloud

The following metrics used to measure resource management to evaluate the effi-
ciency of the system:

17

Chapter 1. Introduction

1. Resource Utilization: The resource utilization (Gill et al., 2017) can be
computed through following equation:

RU =
m∑
i=1

RC(i) − ET (i)

RC(i)
(1.1)

Where RU is resource utilization by each workloads in ms, m is number of
workloads, RC(i) is resource completion request, and ET is execution time.

2. Execution Time: The execution time for each workload is obtain through
following equation which is used in Chopper (Gill et al., 2017):

ET =
n∑

i=1

RC(i) −RS(i)

n
(1.2)

Where RC(i) is request for workload completion time and RS(i) is the workload
submission time, and n is number of workloads.

3. Energy Consumption: The energy consumption rate can be obtained
through following equation, which is used in Soccer (Singh et al., 2016).

EnC = (EnCmax − EnCmin) ∗ UVMi + EnCmin (1.3)

Where EnC is energy consumption rate, EnCmax is the energy consumption
at the peak load (or 100% utilization), and EnCmin is the minimum energy
consumption in the active/idle mode (or as low as 1% utilization). In this
research, EnCmax is 1 kWh and EnCmin is 0 < EnCmin < 0.05

4. SLA Violation rate: SLA violation rate is obtain through following equa-
tion:

SV R = failure rate ∗
n∑

i=1

W i (1.4)

The above equations are used in CHOPPER (Gill et al., 2017) where, Wi is
the weight of each workload.

5. Average Cost: The average cost can be computed through Execution cost,
SLA cost and Resource cost, which is multiple of the cost and the above
mentioned parameters.

18

Chapter 1. Introduction

1.11 Research Motivation

The use of cloud computing is increasing and becomes commercialized in small and
big industries. Result in, more data centers and servers are installed and this pro-
cess is never stoping process. As per the study conducted by (Anuj Kumar Yadav
& Ritika, 2017) the energy consumption by servers are recorded as 53% which is
highest as compared to power and cooling systems intalled in different data centers.
The more servers, more electric power needs to running it continues. More power
consumption results in more CO2 emission, which leads to affect our environment.
In addition to this, the large number of requests and its process needs an intelligent
system to maximize efficiency while minimizing the power consumption, which can
be opted by minimizing the execution time of resource provisioning and maximize
its utilization.

1.12 Research Objective

To design a resource management system to improve the fault tolerance mechanism,
self-adaptability, and maximize resource utilization in cloud computing.

1.12.1 Sub-Objectives

1. To attain the better system by incorporating an efficient and intelligent re-
source management algorithm,

2. To maximize resource-utilization through self-optimization,

3. To design Resource-Management-System (RMS) in cloud improves perfor-
mance in terms of execution-time and average-cost through fault-tolerance
by reducing the impact of failures on execution.

1.13 Organization of Thesis

The thesis is organizing in six chapters as follows:

Chapter 1
This chapter is all about the introduction to the research area from broad to nar-
row down to the research problem. It describes the various deployment and service
models with issues and challenges. It describes the resource management and its
issues, and the motivation to start work in this area. Based on the above study

19

Chapter 1. Introduction

the research objective defined and mentioned in this chapter, and at last, the or-
ganization of the thesis has discussed.

Chapter 2
The second chapter is all about the literature review. In this chapter, various cloud
resource management is presenting with comparative study and outcomes of each
literature. More than 200 articles from various reputed journals are access and
near about 150 articles have been referred to this research.

Chapter 3
This chapter provides a brief idea about the various module of proposed research
SMART. In this chapter, the research methodology has been discussed through
research direction, and SMART architecture. The first module of SMART is the
workload filter, which is described in detail. An algorithm is presented, which input
is a list of normal workloads, and the output is filtered workloads, which assured
to remove the redundant requests from cloud users.

Chapter 4
The second module of the proposed research work is self-optimization, which is
presented in this chapter. The objective of this module is to find the optimal
resource by adapting a modified antlion optimizer. The modified resource opti-
mization technique has been proposed and presented through a multi-objective
optimization algorithm. In continue to this, Fault-tolerant technique is also dis-
cussed in this chapter. The objective Fault-tolerant module is to identify the fault
VM’s based on the VM parameters (CPU, RAM, and Bandwidth) utilization. The
fault-tolerant algorithm is discussed with its input and output. The inputi of the
algorithm is list of VM’s, and the out is list of best VM’s.

Chapter 5
The resource management algorithm is devised in this chapter. The objective of
this chapter is to propose a scheduling algorithm bu incorporation workload filter,
self-optimization, and fault-tolerant technique. The input of the algorithm is a
list of workloads and a list of VM’s. This algorithm can schedule the workloads
to best VM’s, in minimum time without execution failure. SMART is simulated
in CloudSim 3.0 and AWS EC2 instances. The proposed work is analyzed by the
evaluation parameters, which are discussed in chapter 1 and chapter 2. And it is
observed that SMART performs utmost as a comparison with existing works.

20

Chapter 1. Introduction

Chapter 6
This chapter the proposed research work SMART is concluded based on its area of
research, challenges, methodologies used to overcome the research gaps with results
and analysis. The limitations of SMART is discussed with future work.

Appendix A
This is Appendix A, the list of publications are included which is the outcome of
this study.

1.14 Summary

In this chapter, cloud computing is introduced with its services and deployment
models. The evolution is also discussed various technology used in the cloud.
It also briefly described various challenges and issues in the cloud. The biggest
challenge in the cloud is resource management is described and narrow down to
the specific area of research is autonomic computing is focused and in continuous
to this research gap is presented. Moreover, to overcome this research gap, the
research objective has been designed, and to evaluate the results of this research
work, the parameters are identified and discussed. The proposed research work
SMART is also simulated in CloudSim 3.0 and also validated in a real-time cloud
environment in AWS. The literature review of this research work is discussed in
next chapter.

21

Chapter 2

Literature Review

Overview

In this, the well organized study of resource management strategies is explained.
This study device RMS into different categories based on various parameters. In
this investigation, approx. 250 articles from reputed journals/conference proceed-
ings have been considered and out of these approx. 125 articles are reviewed and
used. The considered research articles give an idea for testing of most significant
RMS. The outcome of this study is based on the various parameters that are dis-
cussed through comparative tables and graphs. The different categories of Resource
Management Systems RMS are identified as follows:

1. Auction-based

2. Energy-based

3. Fault-tolerant based

4. Nature and Bio Inspired

5. Optimization-based

6. Cost-based

7. Profit-based

8. QoS-based

9. Autonomic-based

10. SLA-based

The details discussion of the above mentioned categories of RMS are presented as
follows:

22

Chapter 2. Literature Review

2.1 Auction-Based Resource Management Sys-

tem (RMS)

Author Lin (Lin et al., 2010) addressed the peak or off-peak issues of resource
allocation in the cloud and overcome it through the auction mechanism. The limit
of this research is to develop a dynamic adapting technique which can overcome
this problem more efficiently. Where author Salehi and Buyya (Salehi & Buyya,
2010) worked on the policies for resource allocation which increases the computa-
tional task of the local resource by adapting the resources from the cloud. The
limit of this work is the absence of prior notification of application/workloads/task
execution time. Author An B. discussed (An et al., 2010) about the dynamic nego-
tiation mechanism, where service providers and end-user can negotiate the services
through agents. This research has a delay in decision making and responsive ser-
vice. Continue to this author Prodan (Prodan et al., 2011) proposed RMS, which
is applied in scientific software in a distributed platform.

Table 2.1: Differentiation of Auction-based RMS by evaluation parameters.

Frameworks SLA. RU. DuD. Co. ET.

(Lin et al., 2010) X × × X ×
(Salehi & Buyya, 2010) × X X X X
(An et al., 2010) × X X X ×
(Prodan et al., 2011) × × × X X
(Zhangjun et al., 2013) × × × X X
(Son & Jun, 2013) X × × × X
(Xuejun et al., 2016) × × × X X
(Ding et al., 2016) × X × × ×
(Hong et al., 2016) × X × X ×
(Kong et al., 2016) × X X X ×
(Xie et al., 2017) × X × × X
(Wang et al., 2017) × × × X ×
(Tafsiri & Yousefi, 2018) × X X × ×
(Jixian et al., 2018) × X × × X
(Jin et al., 2018) × × X X ×

Abbreviation: ET= Executione-Time, SLA= Service Level Agreement Rate, Co=Cost,
RU= Resource-Utilization, DuD= DueDate.

Author Zhangjun (Zhangjun et al., 2013) presented novel technique Task-To-VM
which is based on a hybrid optimization algorithm, but not sure for a global op-
timal solution for Task-To-VM scheduling, where author Son (Son & Jun, 2013)

23

Chapter 2. Literature Review

presented RMS which increases the SLA rate, throughput while minimizing failure
rate. Author Xeujun (Xuejun et al., 2016) presented a research which is limited over
response time, reliability, and user trust over the service provider. Authors (Ding
et al., 2016) presented ABACUS RMS, author Hong (Hong et al., 2016) invent a
novel technique COCA (Incentive-Compatible-Online-Cloud-Auction), which en-
sured user’s online demand based on user trust, moreover author Kong (Kong et
al., 2016) discussed how auction RMS can be used for network transmission.

Author Xie (Xie et al., 2017) demonstrate that their proposed system accomplishes
promising outcomes for virtual resource allotment, meanwhile Wang (Wang et al.,
2017) and Tafsiri (Tafsiri & Yousefi, 2018) Presented RMS for distributed situa-
tions, where author Jixian (Jixian et al., 2018) proposed a heuristic-algorithm and
authors Jin (Jin et al., 2018) propose an incentive-compatible-auction-mechanism
which is used in resource replacements between the cloudlets and cell phones. The
outcome of this study is compared based on evaluation parameters and presented
in TABLE 2.1.

The results of the auction-based literature are shown in FIGURE 2.1. Where the
cost objective function usage is 29.3%, which is the maximum usage of in auction-
based literature in cloud resource management under cloud computing.

Figure 2.1: Usage rate of multi-objective functions under auction-based RMS

24

Chapter 2. Literature Review

2.2 Energy-Based RMS

Author Tao (Tao et al., 2014) presented a makespan model to optimize the en-
ergy utilization based on hybrid optimization algorithm to consider as one of the
streamlining goals from both financial and environmental points of view, where
author L. X. Fang (L. X. Fang et al., 2014) proposed a nature-inspired algorithm
to handle the virtual-machine placement VMP issues. A model for energy-aware
resource usage procedure (Kansal & Chana, 2015) has been proposed to proficiently
supervise cloud resources and upgrade their use, where author S. Guo (S. Guo et
al., 2016) energy-based RMS to reduce power usage and compilation time.

Table 2.2: Differentiation of Energy-based RMS by evaluation parameters.

Frameworks DuD Cost RU Opt PoC QoS ET
(Tao et al., 2014) × × X X × × X
(L. X. Fang et al., 2014) × × X X × X ×
(Kansal & Chana, 2015) × × X × × × X
(S. Guo et al., 2016) X × × × X × ×
(Gai et al., 2016) X × X × × X ×
(Singh & Chana, 2016) × × X × × X ×
(Zhou et al., 2016) X × × × × X ×
(Su et al., 2013) × × × × X X ×
(Zhipiao et al., 2013) × × X × × × ×
(Gang, 2014) × × X × × X ×
(Marzband et al., 2017) × X × X × × X
(Yibin et al., 2017) X × X × X × ×
(Nir et al., 2018) × X X X × × ×
(Tang et al., 2018) X X X × × × ×
(Wen & Chang, 2018) X X X × × × ×
(Alsadie et al., 2018) × × X X X × ×

Where DuD=Due Date, RU=Resource Utilization, Opt=Optimization,
PoC=Power consumption, QoS= Quality of Service, ET=Execution time.

The fundamental commitments of author Gai (Gai et al., 2016) are twofold. Ini-
tially, this paper is the principal investigation in taking care of energy squander
issues inside the dynamic systems administration condition, where author Singh
(Singh & Chana, 2016) presents energy-aware RMS which is based on fuzzy. Au-
thor Zhou (Zhou et al., 2016) presented energy-based RMS to increase QoS, where
author Marzband (Marzband et al., 2017) is executed for load balancing offers.
Another research by Yibin (Yibin et al., 2017), presented dynamic workloads al-
location method to lower the power usage of mobile phones, where a new model

25

Chapter 2. Literature Review

presented by Nir (Nir et al., 2018) demonstrated an optimal task allocation prob-
lem which is solved through by lowering power usage. Tang (Tang et al., 2018)
proposed an energy-based RMS algorithm while considering information transmis-
sion. Continue to this, fair demand response with electric vehicles F-DREVs (Wen
& Chang, 2018) presented a scheduling problem for cloud-based electrical vehi-
cles arrangements, where Alsadie (Alsadie et al., 2018) presented a power usage
based algorithm for Google cloud which decreases power consumption by 8.42%.
The outcome of the study of energy-based RMS is compared based on evaluation
parameters and presented in TABLE 2.2.

The results of the energy-based literature are shown in FIGURE 2.2. Where the
resource utilization objective function usage is 30%, which is the maximum usage of
in energy-based literature in cloud resource management under cloud computing.

Figure 2.2: Usage rate of multi-objective functions under energy-based RMS

2.3 Fault-Tolerant Based RMS

Fault tolerance techniques can be further divide into two categories, Reactive and
Proactive. Reactive can be further categorize into checkpoint restart, job migration

26

Chapter 2. Literature Review

and replication as well as proactive also divided into preemptive migration, system
rejuvenation as discussed in the following sub-sections:

2.3.1 Reactive Frameworks

Process Lever Redundancy (PLR) (Egwutuoha et al., 2012) presented a novel
method for internal failure which leads to performance degradation in cloud com-
puting, this method provides a fault-tolerant mechanism based on checkpoint/restart.
Another research Fault-Tolerant-Mechanism (FTM) (Jhawar et al., 2012) presents
an imaginative point of view on making and overseeing the adaptation of internal-
failure. Continue to this, Latiff (Latiff et al., 2017) also presents a fault-tolerant
model to handle the non-critical issue in a distributed computing environment.
Malik (Malik & Huet, 2011) plan is profoundly to blame tolerant. The expla-
nation for versatile unwavering quality is that the plan can exploit the dynamic
adaptability of the cloud framework. Another side Multi-factor-monitoring-fault-
tolerant (MRMFT) by Y. Fang (Y. Fang et al., 2018) worked for non-critical issues
for Graphic Processing Unit GPU. In Deng’s work (Deng et al., 2010) the research
adaptation to non-critical failure and dependability issues in a more extensive scope
of calculations. The issue of security assurance of the customer’s information and
results will be considered too. According to the survey by Nachiappan (Nachiappan
et al., 2017) authors categorized various causes of failures like hardware, network,
and software. A Low-latency-fault-tolerance (LLFT) (Wenbing et al., 2010) protect
the system from various fault causes. Where Jayadivya (Jayadivya et al., 2012)
and Poola (Poola et al., 2014) discuss the checkpoint/restart fault-tolerant model
which lowering the cost and execution time as well while consideration of due date.

2.3.2 Proactive Frameworks

Shampio (Sampaio & Barbosa, 2018) gives a survey on adjustment to internal fail-
ures, specifically, proactive adjustment to internal failures, where Malik (Malik &
Huet, 2011) works on the real-time virtualized model in which faults are identi-
fied proactively while maintaining the system reliability, where Zhang proposed
FTCloud (Zheng et al., 2010) which identify faults automatically. Author Sun
presented Fault-tolerant deadline-guaranteed (Sun et al., 2017) model which com-
prises four working parameters like a storm, diagram, equipment, and client space.
Where Jing (Jing et al., 2015) offers a proactive model to avoid internal failures.

27

Chapter 2. Literature Review

2.3.3 Frameworks by Industries

Google app engine throws the fault to the server automatically by app engine crone
service where Giga spaces use the cluster techniques to divide the fault according
to its type and that becomes a fault-tolerant cluster.

Table 2.3: Differentiation of fault-tolerant-based RMS by evaluation parame-
ters.

Frameworks SVR QoS ET Cost Eff R PoC
(Egwutuoha et al., 2012) × × X × × × ×
(Jhawar et al., 2012) × X × × X × ×
(Latiff et al., 2017) × × X × × × ×
(Malik & Huet, 2011) × X × × X × ×
(Zheng et al., 2010) X × X X × × X
(Sun et al., 2017) × × X X X X ×
(Jing et al., 2015) X × × × × X ×
(Rimal et al., 2009) × × × × X X ×
(Y. Fang et al., 2018) × × X × × × ×
(Deng et al., 2010) × X × × X × ×
(Nachiappan et al., 2017) × × X × × × ×
(Wenbing et al., 2010) × X × × X × ×
(Jayadivya et al., 2012) X × X X × × X
(Poola et al., 2014) × × X X X X ×
(Sampaio & Barbosa, 2018) X × × × × X ×

Where SVR= SLA violation rate, QoS= Quality of Service, ET=Execution time,
Eff= Efficiency, R= Reliability, PoC= Power consumption.

Microsoft Azure used load-balancing technique according to its availability if any
fault arises then the standardized query language (SQL), data service active au-
tomatically to resolve the issue by using another replica of the container, which
is a reactive method. Another service provider Right Scale handle failure rate by
advance architecture using elastic internet protocols (IP’s), and force.com using
self-management and self-healing techniques to solve the failure rate (Rimal et al.,
2009) and that is type of proactive fault tolerance method. It identifies the faulty
resources automatically through threshold value and the resources below this value,
are separate from the resource pool and available resources are assign to workload
according to user priority. The outcome of the study of fault-tolerant-based RMS
is compared based on evaluation parameters and presented in TABLE 2.3.

28

Chapter 2. Literature Review

Figure 2.3: Usage rate of multi-objective functions under fault-tolerant-based
RMS

The results of the fault-tolerant-based literature are shown in FIGURE 2.3. Where
the resource utilization and execution time objective function usage is 21.05%,
which is the maximum usage of in fault-tolerant-based literature in cloud resource
management under cloud computing.

2.4 Nature and Bio Inspired RMS

Author Navimipour presented a novel algorithm, (Navimipour, 2015) to plan the
errands in Cloud registering and Abdullahi (Abdullahi et al., 2016) discuss Symbi-
otic algorithm for cloud resources in a static environment. Author Kaur and Mehta
(Kaur & Mehta, 2017) proposed Frog Leaping based method for resource provision-
ing in IaaS. Author Midya (Midya et al., 2018) presented a three-tier architecture,
which uses vehicular-cloud, roadside-cloudlet, and unified-cloud while maintaining
the QoS. Once again Mehta and Kaur (Mehta & Kaur, 2019) presented Nature-
Inspired-Algorithms which is hybrid of Particle-Swarm-Optimization, Grey-Wolf-
Optimization Algorithm and Shuffled-Frog-Leaping-Algorithm for cloud resource
allocation. The results of the nature-bio-inspired literature are shown in FIGURE
2.4. Where the execution time and optimization objective function usage is 33.33%,
which is the maximum usage of in nature-bio-inspired literature in cloud resource
management under cloud computing.

29

Chapter 2. Literature Review

Figure 2.4: Usage rate of multi-objective functions under Nature-Bio-Inspired
RMS

The outcome of the study of nature and bio inspired RMS is compared based on
evaluation parameters and presented in TABLE 2.4.

Table 2.4: Differentiation of nature and bio inspired RMS by evaluation pa-
rameters.

Frameworks DuD Cost RU Opt ET
(Navimipour, 2015) × × × X X
(Abdullahi et al., 2016) × × X X X
(Kaur & Mehta, 2017) X × × × X
(Midya et al., 2018) × × X X X
(Mehta & Kaur, 2019) X X X × ×

Where DuD= Due date, RU= Resource utilization, Opt= Optimization,
ET=Execution time.

30

Chapter 2. Literature Review

2.5 Optimization-Based RMS

Particle-Swarm Optimization-Algorithm (C. Guo & Yu, 2005) is proposed by C.
Guo, which is a self adaptive model by using of swarms properties, where Genetic-
Algorithm (Sivanandam & Deepa, 2008) works for a critical framework. GA
is commonly known for easy handling of cloud resource allocation issues. The
nature-inspired optimization algorithm like Ant-Colony-Optimization-Algorithm
(Al Salami, 2009) proposed by Al Salami, which uses a random selection technique,
Continue to this a hyper-heuristic model (Das et al., 2009) is investigated by Das.
Another algorithm based on GA is CCGA proposed by Yusoh (Yusoh & Tang,
2012) in 2012, which is an alternative solution for GA. Author Chaisiri (Chaisiri
et al., 2012) investigated novel heuristic algorithm for reservation of the closest
neighbor’s to connect the resource demand. In advance Coutinho (Coutinho et al.,
2013) control the memory and processor usage of servers. Author Banu and Sara-
vanan proposed Short-Term-Planning-Algorithm (Banu & Saravanan, 2014) which
optimizes cost and subscription policy. Authors Choi and Lim presented Auction-
Based-Resource-Co-Allocation Algorithm (Choi & Lim, 2016) which maximizes
resource cost and utilization , where Soccer (Singh et al., 2016) is an algorithm to
focused on QoS. Author Qiu presented RPE Optimization-Technique (Qiu et al.,
2017) which is used to load balancing for physical servers. Author Alex (Alex et
al., 2017) lowering the power consumption. The outcome of the study of optimized
RMS is compared based on evaluation parameters and presented in TABLE 2.5.

Table 2.5: Differentiation of optimized RMS by evaluation parameters.

Frameworks SVR QoS ET Cost Enrg PoC CO2
(C. Guo & Yu, 2005) × × X X × × ×
(Sivanandam & Deepa, 2008) × X × × X × ×
(Al Salami, 2009) × X × × × × ×
(Das et al., 2009) × × X y × × ×
(Yusoh & Tang, 2012) × × × X × × ×
(Chaisiri et al., 2012) × × × X × × ×
(Coutinho et al., 2013) × × y X X × ×
(Banu & Saravanan, 2014) × X × × X × ×
(Choi & Lim, 2016) X X X X × × ×
(Singh et al., 2016) X X X X X × ×
(Alex et al., 2017) × × × X X X X
(Qiu et al., 2017) × × × × × X ×

Where SVR= SLA violation rate, QoS= Quality of Service, ET=Execution time,
Enrg= Energy, PoC= Power consumption.

31

Chapter 2. Literature Review

The results of the optimization-based literature are shown in FIGURE 2.5. Where
the cost objective function usage is 33.33%, which is the maximum usage of in
optimization-based literature in cloud resource management under cloud comput-
ing.

Figure 2.5: Usage rate of multi-objective functions under optimization-based
RMS

2.6 Cost-Based RMS

We have surveyed of different resource management technique in terms of cost as
(Teng & Magoules, 2010) proposed resource planning procedures for estimating
costs on the balance of assets prospects without knowing the competitor’s next
victim Nash equilibrium data and tasks so far obtainedby customers and meet
deadlines and cost constraints by simulating in CloudSim. (Liu et al., 2010) Rec-
ommended time bid cost of the asset based on reservations and take time execution
and cost QoS parameters. This methodology meets the client planned maturity
date and achieve lower the burden of all instances of work processes while but
does not consider heterogeneous. (Oprescu & Kielmann, 2010) Proposes spending
calculation imperative asset for booking assignments bag in which the company is
chosen to light first come, first be served technique. This instrument limit cost,
time and performance improves processor performance however; because of the
problem of hunger, this system is not convincing. (Van den Bossche et al., 2010)
discussed the problem of improving conditions such as execution of the work force

32

Chapter 2. Literature Review

is not preemptible date and as required under conditions of cross breed cloud mul-
tivendor light of the needs of information transfer, memory and CPU load remains
migrateable completed. (Moschakis & Karatza, 2011) Published VM resource-
based strategic planning to evaluate the total cost of the reservation Gang care-
fully hunger and relocation decision and execution of elite business applications.
To manage hunger in the booking system, organized lines used to find the needs
of each application in the light of their maturity date and other coveted.

Table 2.6: Comparative study of Cost-based Resource Management in Cloud
Computing.

Frameworks SVR QoS RU Opt DuD ET
(Liu et al., 2010) × y × × × X
(Teng & Magoules, 2010) × × X × × ×
(Van den Bossche et al., 2010) × × × × X ×
(Oprescu & Kielmann, 2010) × × × × × X
(Bittencourt & Madeira, 2011) × X X X × X
(Moschakis & Karatza, 2011) × × X × × X
(Iyer & Veeravalli, 2011) × × × × X X
(Zhipiao et al., 2013) X × × × × ×
(Su et al., 2013) × × × × X X
(Altmann & Kashef, 2014) × × X × × ×
(Gang, 2014) × × X × × X
(Kang et al., 2014) X × y × X ×
(Bansal et al., 2015) × X × × × ×
(Malawski et al., 2015) × × X × X X
(Hoenisch et al., 2015) × × X × × ×
(Gan et al., 2015) × × X × × X
(Meena et al., 2016) × × X × X X
(Zhongjin et al., 2016) × × × X X X
(Koch et al., 2016) × × X × × ×
(Convolbo & Chou, 2016) X × × × × ×
(Zuo et al., 2017) × × X X X X
(Ghasemi et al., 2017) × × × X × X
(Alkhanak & Lee, 2018) × × × × × X
(Sahni & Vidyarthi, 2018) × × × × X X

Where QoS= Quality of Service, SVR=SLA violation rate, Opt=Optimization,
DuD=DueDate, RU=Resource Utilization, ET=Execution time, and C=Cost.

(Bittencourt & Madeira, 2011) Optimization techniques presented charges based
planning hybrid system to take care of the need for active execute work process

33

Chapter 2. Literature Review

within the spending plans and dynamic display performance using virtual ma-
chines to improve research on assets (with finding sufficient assets to light precon-
ditions QoS). (Iyer & Veeravalli, 2011) Presented evaluate asset calculations on the
reservations, two indisputable dealing engineering work processes free. Bargaining
techniques can handle continuous occupation affirmation and elements of work de-
spite assurances texts appropriate bargaining fairness. (Su et al., 2013) proposed
a heuristic algorithm, with low costs production margin. This proceedure focuses
on expending for non-business-related to the primary application.

(Zhipiao et al., 2013) SLA proposes hereditary calculation based component book-
ings conscious asset is satisfactory by the virtual machine to produce the outer
runway on the lease. Author (Gang, 2014) propose a change in the light of the cal-
culation of the PSO to take over business problems booking in situations of cloud
computing. In particular through the conscious inclusion of health costs ability
to measure the cost of resource utilization, in addition to health work for the cost
of time, the strategy author can achieve the goal of limiting both prepare time
and resources are being used, and in this way achieve that ideal all over the world
results. In this paper, authors (Altmann & Kashef, 2014) propose a model for the
kind of broad-based cost of the cloud, be certain hybrid clouds. The author shows
how the calculation of the cost module and administrative situation in a private
cloud situation. Their results show that the algorithm administrative situation
with the cost of the event to limit spending for computing services.

Author Kang (Kang et al., 2014)propose a Heuristic workflow plan based pro-
gramming model considering cloud-judge in this document. Its plan consists of
two stages: pressing and VM (multiple resource requests Single) MRSR stage.
Author Malawski (Malawski et al., 2015) checking, creating and evaluating new
algorithms in light of static and dynamic techniques for schedules and purchases.
their results show that the strategy of discernment in the light of the structure of
the work process and gauges of business altogether run-time can improve the set-
ting properties. In (Bansal et al., 2015), the cost is included computing tasks of the
quality of service based and contrast planning and resource scheduling algorithms
in the cloud environment. The test results in the light cloudsim3.0 toolbox with
NetBeans IDE8.0 shows that the finish quality-oriented high-performance service
in the cost parameters. (Gan et al., 2015) Propose a dynamic destination technique
is also offered to provide a genetic algorithm GA chance to center around improving
execution time of order to meet the deadline is important when arranging brands
feels not received.

Authors (Hoenisch et al., 2015) proposes eBPMS is to enhance the productivity of
process institution, specifically with respect to adaptability and cost-proficiency.
In (Zhongjin et al., 2016) proposed an technique depends on the meta-heuristic
optimization methods, PSO, coding techniques have been designed to minimize
implementation costs of overall work process while respecting the dates and the
level of risk because of the imperative. Authors (Meena et al., 2016) proposed a

34

Chapter 2. Literature Review

profitable meta-heuristic genetic algorithm that limits the cost of implementing
work processes while fulfilling the due date on a distributed computing environ-
ment. Make a new plan for encoding, initialization of the population, crossover
and mutation operator of the genetic algorithm. Authors (Convolbo & Chou,
2016) Target to propose and take over the costs for programming progress DAG
on cloud IaaS stage where planning tasks must adapt to the procurement of assets
to achieve the ideal setting. In this paper, they propose both ideal and calculation
heuristic reservations, and rated them more DAGs utilizing various display value of
EC2. Writer (Koch et al., 2016) presents techniques based on maximum likelihood
estimates assume heterogeneous IT framework with the ultimate goal of design-
ing resource allocation design that extends the use of the stage for the situation
instructive.

Figure 2.6: Usage rate of multi-objective functions under cost-based RMS

(Ghasemi et al., 2017) based approach to resource Proposed new procurement
study completed certification of cost-reduction in demand. Commitment provision
(ORP) Optimized Resource approach us. Writer (Zuo et al., 2017) propose a model
that focuses Multi-Objective scheduling in the light of nature content optimization
algorithm in distributed condition of computation as shown by the due date and
the imperative of cost.

This work (Sahni & Vidyarthi, 2018) propose cost-effective deadline-constrained
dynamic heuristic calculation to logically plan work processes in the open cloud.
(Alkhanak & Lee, 2018) Propose completion time of hyper-heuristic driven method-
ology for the cost of progress. Provide a broad foundation in the planning process

35

Chapter 2. Literature Review

of logical work to the cloud. The proposed approach helps in saving cost and time
of cloud specialist organizations. The comparison made of various related research
which is shown in TABLE 2.6.

The results of the cost-based literature are shown in FIGURE 2.6. Where the
execution time objective function usage is 32.56%, which is the maximum usage of
in cost-based literature in cloud resource management under cloud computing.

2.7 Profit-Based RMS

Writer Mei (Mei et al., 2017) presented a model which is focused on consumer
loyalty. Consumer loyalty affect the interests of co-ops specialists in many ways.
First, affect cloud design administrative nature, which is an important factor affect-
ing consumer loyalty. Second, in entry-levelthe loyalty affect. This paper (Reddy
et al., 2017) defines bookings pleasant floral problems vitality showcase of wind
and sun by Independent Power Producers (IPP) on both traditional substances
and Renewable Energy Technologies rets as distinguished. Writer Gao (Gao et
al., 2017) proposed system enhancements stochastic two-timescale to strengthen
administrative purposes while achieving prerequisite execution together with the
provision of resources and tasks allocation. The writer Yuan (Yuan et al., 2017)
proposed Hybrid Heuristic Optimization Algorithm, reproduced Particle Swarm
Optimization (PSO), explained the sub-problems in each cycle of PMA , Addition-
ally, PSO contrast and benchmark existing calculations.The comparative study of
profit-based approach is shown in TABLE 2.7.

Table 2.7: Differentiation of profit-based RMS by evaluation parameters.

Frameworks Enrg Cost RU Opt
(Gao et al., 2017) × X X ×
(Mei et al., 2017) X X × ×
(Yuan et al., 2017) X X × X
(Reddy et al., 2017) X X X ×

Where Enrg= Enrgy, RU= Resource utilization, Opt= Optimization.

The results of the profit-based literature are shown in FIGURE 2.7. Where the cost
objective function usage is 40%, which is the maximum usage of in profit-based
literature in cloud resource management under cloud computing.

36

Chapter 2. Literature Review

Figure 2.7: Usage rate of multi-objective functions under profit-based RMS

2.8 QoS-based RMS

Author Delimitrou (Delimitrou & Kozyrakis, 2014) present Quasar, administrative
framework that extends the resource group to use when giving a high reliability ap-
plication execution. In this paper the authors Dai (Dai et al., 2015) gifts, novel task-
GAACs MQoS calculation reservations with the proposed multi-QoS constraints,
given the boring, use, safety and reliability in planning procedures. This calcu-
lation incorporates the calculation of ACO and GA, where the author Sandholm
(Sandholm et al., 2015) offers Other means QoS level as far as time fulfilling their
work and present another offering component-based QoS to the work group in the
group OpenStack multi-residents. Author Singh (Singh & Chana, 2015) reward
system administration tasks cloud productive left where cloud incredible load has
been recognized, damaged and broken through the K-means based on the weight
lifted and QoS they need, where authors Dou (Dou et al., 2017) propose VM dy-
namic scheduling techniques to improve QoS energy conscious in the fog on a huge
update to address the above test.

37

Chapter 2. Literature Review

Table 2.8: Differentiation of QoS-based RMS by evaluation parameters.

Frameworks Enrg Cost RU Opt ET
(Delimitrou & Kozyrakis, 2014) X X × × ×
(Dai et al., 2015) × X X × ×
(Sandholm et al., 2015) × × X × X
(Singh & Chana, 2015) X X X X ×
(Dou et al., 2017) × × X × ×
(Jala & Ramchand, 2019) × × X × X

Where Enrg= Energy, RU= Resource utilization, Opt= Optimization, ET= Exe-
cution time.

Figure 2.8: Usage rate of multi-objective functions under QoS-based RMS

Author Jala (Jala & Ramchand, 2019) strategy proposed in the task requires ad-
ministrative viably resources with less strong depending on the accessibility of
resources and oversee successful; survival depends on the effort and the high use
of resources. The comparative study of QoS-based approach is shown in TABLE
2.8. The results of the QoS-based literature are shown in FIGURE 2.8. Where the
resource utilization objective function usage is 40%, which is the maximum usage
of in QoS-based literature in cloud resource management under cloud computing.

38

Chapter 2. Literature Review

2.9 Autonomic Cloud Resource Management

This paper (Van et al., 2009) proposes an autonomous resource managers to con-
trol the virtual condition, which decouples the provision of resources from the
dynamic arrangement of the virtual machine. Research point (Addis et al., 2010)
is to manage resource allocation strategy for cloud virtualization condition ready
to acknowledge the implementation and the off-exchange energy, providing certifi-
cation prior accessibility of the cloud to the end-client. Author Xu (Xu et al., 2012)
gifts brought together to support the learning approach, being a specific URL, for
robotize virtual machine setup procedures and apparatus running in virtual ma-
chines. suitable methodology of continuous use automatic configuration clouds.
This paper (Casalicchio et al., 2013) considers the problem where the cloud sup-
pliers need to increase revenue, subject to a limit, the accessibility of the SLA, and
VM movement imperative. The paper shows the heuristic settings, Near Optimal
(nopt), with a NP-hard problem and check for side effects of exploration votes in
correlation with the technique most suitable tasks (BF). Author Fargo (Fargo et
al., 2014) presents the autonomous power and administration techniques execution
framework for cloud considering the ultimate goal of a strong coordinating prereq-
uisite applications with ”just enough” source framework at runtime that a decrease
in the strength of large, fast and also meet the nature of the administrative needs
of cloud apps , This paper citepjamshidi2014autonomic exploit fuzzy reasoning
to empower subjective details of the flexibility rule for cloud-based programming.
Likewise, this paper discusses the methodology controls hypothetical utilize type-2
fuzzy framework for reasons of flexibility under the vulnerability.

Author Sedaghat (Sedaghat et al., 2014) proposed (P2P) structure resource admin-
istration Peer-to-Peer, including a wide variety of specialists, overlaid as without
scale set, in which the author Ssheikhalishahi (Sheikhalishahi et al., 2015) initially
characterize and indicate a resource conflict metric for processing superior incredi-
ble burden as execution metrics in allocation algorithms and frameworks for most
abnormal pile resource administration to address the fundamental problem in find-
ing a skeleton. Author Viswanathan (Viswanathan et al., 2015) proposed job based
on resource supply system provided with autonomous capabilities, in particular,
self-association, self-improvement, and self-recover. Author Bruneo (Bruneo et al.,
2015) proposed procedure, the right to assess the execution of measurement in the
ground state as make sense as an instrument for the skeleton outline of IaaS clouds.

Author Elster (Elster et al., 2016) proposes administration clouds novel and design
of conveyance in light of the standard self-association and self-administration of
moving exertion send and enhancement of the shopper to stack the products that
run on top of the cloud base, in which the author Jamshidi (Jamshidi et al., 2016)
control-theory proposed methodologies relating to the implementation of cloud
situation as a dynamic framework. In this paper (Singh et al., 2016), the effective
energy autonomous cloud framework proposed for reservations energy productive

39

Chapter 2. Literature Review

assets in the cloud server farm. The proposed work to think about energy as
Quality of Service (QoS) parameters and consequently increase the ability of cloud
assets by reducing the utilization of vitality.

Table 2.9: Differentiation of autonomic cloud RMS by evaluation parameters.

Frameworks SVR Cost QoS RU Opt Enrg ET
Van et al. (2009) X X × × × × ×
(Addis et al., 2010) × × × × × X X
(Xu et al., 2012) X X × × × × ×
(Casalicchio et al., 2013) y X X × X × ×
(Fargo et al., 2014) × × × × × X ×
(Jamshidi et al., 2014) × × × X × × ×
(Sedaghat et al., 2014) × × × X × × X
(Sheikhalishahi et al., 2015) × × × X × × X
(Viswanathan et al., 2015) × X × X × × ×
(Bruneo et al., 2015) × X × × × × X
(Elster et al., 2016) × × × X × × ×
(Jamshidi et al., 2016) × X × X × × ×
(Singh et al., 2016) × X X × X X ×
(Ghobaei Arani et al., 2016) X X × × × × ×
(Tesfatsion et al., 2016) × × × × × X X
(Gill et al., 2017) X X × × X X X
(Ghobaei Arani et al., 2018) × X × X × × ×
(Vashistha et al., 2018) × × × X × × ×

Where SVR= SLA violation rate, QoS= Quality of Service, RU= Resource utiliza-
tion, Opt= Optimization, Enrg= Energy, ET=Execution time, and y=Yes.

In this paper, (Ghobaei Arani et al., 2016) authore provide resources change the
provision of the benefits of the cloud with the proposed sources of autonomous
procurement approach that depends on the idea monitor control-Analyze-Plan-
Execute (MAPE) loop, and they described the resource supply system for cloud
environments.

Author Tesfatsion (Tesfatsion et al., 2016) online plan execution and the power
estimator event that captures the intricate connection between the server appli-
cation execution and control (separately), and the use of resources. Given this
model, they designed two systems downsizing to decide the most advanced elec-
trical design. Paper (Gill et al., 2017) offers self-design usability and resources,
self recuperate by taking care of disappointment suddenly, the confidence to se-
curity attacks and self-downsizing to use the greatest resource, where the author
(Ghobaei Arani et al., 2018) proposed approach Resource Provisioning for the
benefits of hybrid cloud depends on the mix of ideas and Reinforcement Learning

40

Chapter 2. Literature Review

autonomous register (RL). Likewise, they present a system for autonomous power
source procurement, which is reused by the cloud layer model.

In (Vashistha et al., 2018) paper describes the utilization of self-adaptive methodol-
ogy to streamline resource planning in the cloud. Moreover, this situation presents
paper key which gives a view on the increasing difficulties in the administration
of cloud resources. The comparative study of autonomic approaches is presented
in TABLE 2.9. The results of the autonomic-based literature are shown in FIG-
URE 2.9. Where the cost objective function usage is 40%, which is the maximum
usage of in autonomic-based literature in cloud resource management under cloud
computing.

Figure 2.9: Usage rate of multi-objective functions under autonomic-based
RMS

2.10 SLA-Based RMS

Author Wu (Wu et al., 2014) proposed client driven asset based SLA provision cal-
culation for the cost limit to limit the resources and penalty costs and improve CSL
by limiting SLA violations, in which the author Garg (Garg et al., 2014) address
the issue of allotment of resources in the datacenter which runs sorts of peculiar
use of the remaining load, especially non-smart applications and value-based. They
propose a confirmation control and planning components, which reinforce the use
of resources and benefits, and the guarantee that QoS to meet client needs as shown

41

Chapter 2. Literature Review

in the SLA. Writer (Yali et al., 2015) propose confirmation control and resource
planning calculations, which not only meet the QoS requirements of an application
as determined in Service Level Agreements (SLAs), but also extend benefits for
AAAS suppliers by offering financially savvy asset booking arrangements. This
study (Kohne et al., 2016) examine the planning system VM-aware SLAs for cloud
server farms. Interest levels are considered administrative resource utilization and
accessibility.

The research objective (Mosa & Paton, 2016) is to build an advanced vitality
and SLA-aware Virtual Machine (VM) methodology which allots more VMS sit-
uation for Physical Machines (PMS) in cloud server farms. These co-regulatory
system utilization and progress of the vitality of Service Level Agreement (SLA)
violations. Author Antonescu (Antonescu & Braun, 2016) present two calculation
VM-new scale concentrating on Deis framework, which should ideally identify the
condition scale most appropriate use the model application execution Convey get
from assignment amazingly consistent in the benchmark hand, together with the
imperative execution SLA determined, in which the author (Serrano et al., 2016)
give specific permission dialect space to describe the SLA in cloud administration.
They present the general methodology of control theory to supervise SLAs benefits
of the cloud. They apply our methodology on MapReduce, locking, and internet
business administration.

(Beloglazov & Buyya, 2016) Increase the use of physical resources and reduction
of energy use in agriculture combines cloud server provides the majority of vir-
tual machines in the data center cloud. Writer (Singh et al., 2017) SLA-Aware
present-resource-autonomous administration strategy, called STAR, which mostly
center on reducing the level of violations of the SLA to transport administration
proficient clouds. (Cai et al., 2017) Propose a plan for the vitality of advanced
booking SLA-aware, which allocates appropriately sized asset for MapReduce ap-
plications with design YARN. In this scheduling strategy, the authors consider the
data information area to forgive MapReduce organize the movement, in which the
author Panda (Panda & Jana, 2017) re-enact the proposed calculation utilizing
benchmarks and datasets produced. The results clearly show that the proposed
calculation legitimate balance between administrative costs and profits makespan
in the examination with a different calculation. The comparative study of SLA-
based approach is shown in TABLE 2.10.

42

Chapter 2. Literature Review

Table 2.10: Differentiation of SLA-based RMS by evaluation parameters.

Frameworks Cost QoS RU Enrg ET
(Wu et al., 2014) X × X × ×
(Garg et al., 2014) × X X × ×
(Yali et al., 2015) X X × ×
(Kohne et al., 2016) X × X × ×
(Mosa & Paton, 2016) × × X × ×
(Antonescu & Braun, 2016) X × X × X
(Serrano et al., 2016) × X × × ×
(Beloglazov & Buyya, 2016) × × X X ×
(Singh et al., 2017) × X × × ×
(Cai et al., 2017) × × X X ×
(Panda & Jana, 2017) × × X × X

Where QoS= Quality of Service, RU= Resource utilization, Enrg= Energy, ET=
Execution time, and y=Yes.

Figure 2.10: Distribution of various objective functions utilized in SLA-Based
resource management in cloud computing

The results of the SLA-based literature are shown in FIGURE 2.10. Where the
resource utilization objective function usage is 40%, which is the maximum usage
of in SLA-based literature in cloud resource management under cloud computing.

43

Chapter 2. Literature Review

2.11 Research Challenges

Challenges in resource management systems are categorized into the following:

1. SLA Violation: SLA means that it is an agreement between service providers
and end users to meet QoS. While this QoS parameters does not meet the
users requirement as per agreement, it known as SLA violation. SLA and
QoS, these two parameters need to be improve to ensure the service-level
garantee (Wu et al., 2014).

2. Scheduling time need to be minimized so that the resources will be able to
compute the task in less time.

3. Resource utilization: The use of resources is one of the difficult issues
in the cloud, proper utilization of available resources the directly affect the
organizations profit (Liu et al., 2010).

4. Enegy consumption rate is very high due to large number of servers are
used. It also affect the environment by releasing CO2 (Arianyan et al., 2015).

5. Fault-tolerant: To avoid execution failure at run time, fault-tolerant mech-
anism should be improve and monitor as well, so that execution time can be
minimize Egwutuoha et al. (2012).

6. Resource cost resource management is need to be developed as self-service
and pay per use concepts are popular in current senaio (Sampaio & Barbosa,
2018) (Convolbo & Chou, 2016).

7. Response Time: While request submitted by the cloud user, the waiting
time is high, due to this, users distraction is increasing.

8. User trust: User trust can be improve by ensuring to meet high QoS, low
SLA violation rate, and more secured compute environment. item Malicious
Workload Identification: The identification approach of duplicate request
is required to avoid multiple execution of same workload (Garg et al., 2014).

9. VM Migration: When available virtual machine is not sufficient to compute
the task submitted by end user, VM migration techniques come to the picture,
through this, serivce provider can use VM’s from other service provider to
compute remaining task (L. X. Fang et al., 2014).

10. Autonomic Management: It manages resource through autonomic char-
acteristics. Any one or combination of Some of characteristics can be used
to improve the resource management technique (Singh & Chana, 2016).

Some of the above issues are targeted in this research and the following evaluvation
parameters are the outcomes of this study to evaluate the proposed research.

44

Chapter 2. Literature Review

2.12 Evaluvation Parameters

The outcome of the parameter based literature is presented in FIGURE 2.1. It
presented that the distribution of parameters used to evaluate the research studied
in this literature.

Figure 2.11: Evaluvation Parameters Distribution cumulative

Based on the results of this study, the most popular parameters used to assess the
effectiveness of resource management are: rate of energy consumption, execution
time, cost, SLA violation rate and use of resources.

The least used evaluvation parameters are presented in FIGURE 2.2 in percent
wise. This anaysis shows that QoS, CO2, optimization, and due date are least
used parameters.

45

Chapter 2. Literature Review

Figure 2.12: Evaluvation Parameters Distribution for indivitual resource man-
agemnt techniques

The proposed research work SMART used the novel hybrid resource management
technique based on modified antlion optimzer (Mirjalili, 2015) to minimize execu-
tion time, cost, energy consumption rate and maximize resource utilization.

2.13 Objective of the thesis

The above mentioned research challenges are the outcome of this extensive liter-
ature on resource management techniques in cloud computing. To make efficient
RMS, some of the above challenges are considered in this research work. So, the
objective of this thsisi is to maximize the resource utilization while minimizing
energy consumption rate, execution time, cost and SLA violation rate.

2.14 Summary

In this chapter, more than 250 articles from reputed journals carried out to have in
depth knowledge of resource management frameworks in cloud computing. Near
about 150 articles used to provide the study of this literature and results produced
in tables and graph. In this study, we have identified evaluvation parameters,

46

Chapter 2. Literature Review

objective functions that should be achive to improve the efficiency, which has been
incorporated in next chapter.

47

Chapter 3

Methodology

Overview

Resource Management in cloud computing is one of the most essential feature
to responsible for proper utilization of available resources to compute the work-
load request by the cloud users. This research introduces a new resource manage-
ment method named SMART, which is further devided into Workload-filter, Self-
optimization, Fault-tolerant, and Resource Management modules. In this chapter,
Workload-filter module is discussed in details. In continue to this, the architec-
ture of SMART and the simulation/implementation enviroment is presented with
system configuration.

3.1 The Proposed Research Methodology

The flow of proposed research work is presented in FIGURE 3.1. SMART is having
the following modules:

1. Workload-Filter,

2. Self-optimization,

3. Fault-tolerant,

4. Resource Management, and

5. Performance Analysis.

48

Chapter 3. Methodology

Figure 3.1: SMART Methodology

49

Chapter 3. Methodology

3.2 Workload-Filter

This module basically identifies the duplicate workload request, and separate it
from the container. Then the workload execution priority of each workload is con-
sidered and sort the workloads according to the priority based on execution time
and send to the resource management module for scheduling.

3.2.1 Workload Dataset

The workload, which is to be submit to the cloud for resource request is created
and presenting to the following TABLE 3.1.

Table 3.1: Dataset (Singh et al., 2016) (Gill et al., 2017)

Cloud Workload Quality of Service
Web Services Reliable Storage, High Network Bandwidth,

High Availability, Technological Computing

E-Com Internet Accessibility, Reliability

Software Project Development High Availability, High Network Bandwidth,

Visibility

Graphics Oriented Persistence, Serviceability

Endeavor Software Data Backup, Testing Time

Storage And Backup Services Visibility, Integrity, Testing Time

Critical Internet Applications Customizability, Reliability

Productivity Applications Testing Time, Integrity, Customer Confidence

Level

Performance Testing Time, Cost, Energy, Resource Utiliza-

tion And SLA Violation

Online Transaction Processing, Security, High Availability, Inter-

net Accessibility, Usability

Central Finance Service Security, High Availability, Changeability, Us-

ability

Mobile Computing Services High Availability, Reliability

3.2.2 Algorithm

The following algorithm is degned for finding the redundant workload.

50

Chapter 3. Methodology

Algorithm 1 Workload Filtration

Input: worloads list
Output: Filtered workloads (No duplicate workload)
Start

/* Initialize Workloads */

W ← W1,W2,W3......Wn while i < n do
if (Wfrequancy= 1) then

assign to Filtered worklods;
end
else

identifiy as duplicate worklod and
seperate from workload list;

end

end
Return Filtered workloads
End

Here n = Workload size (Number of Workloads)
W1 means workload with id = 1.
Wfrequancy is frequency of workload.

3.2.3 User-Priority based on Execution Time

User priority is based on excetion time tken in this research. The execution time
for each workload is obtain through following equation which is used in Chopper
(Gill et al., 2017):

ET =
n∑

i=1

RC(i) −RS(i)

n
(3.1)

Where RC(i) is request for workload completion time and RS(i) is the workload
submission time, and n is number of workloads.

3.3 Self-optimization

This module is responsible to find the optimal resource from the resource pool.
In this research, in the case of CloudSim 3.0, resource means virtual machine VM
and in the case of amazon web service AWS, resource means EC2 instances. This
module is working on Antlion Optimizer (Mirjalili, 2015), and produce the optimal
resource for scheduling. The detailed description of self-optimization technique is
discussed in chapter 4.

51

Chapter 3. Methodology

3.4 Fault-tolerant

This module identifies the fault resource based on the fitness value of each resource.
If the resource is capable enough to execute the workloads submitted by cloud users,
then only it will be allowed to process the resources for scheduling. This module is
responsible to avoid the execution failure which improves the system performance
and reduces the execution time. The detailed description of fault-tolerant technique
is discussed in chapter 4.

3.5 Resource Management

This module is responsible for workload scheduling with optimal resources. It
takes inputs from Workload-Filter and Fault-tolerant module and executes the
scheduling algorithm. The detailed description of Resource Management technique
is discussed in chapter 5.

3.6 Performance Analysis

To evaluate the performance of proposed research work SMART, the following per-
formance analysis parameters are taken into consideration which is also mentioned
in Introduction section 1.10.

1. Resource Utilization,
2. Execution Time,
3. Energy Consumption,
4. SLA Violation rate,
5. Average Cost,

The performance analysis is conducted for proposed work SMART, SOCCER, and
CHOPPER, which is presented in chapter 5.

3.7 SMART-Architecture

SMART aims to provide efficient autonomic resource management through work-
load filter (protection), self-optimization, and fault-tolerant. The proposed re-
search is simulated SMART algorithms in CloudSim 3.0 and tested in AWS EC2

52

Chapter 3. Methodology

Instance.

The objective of SMART is

“To attain the better system by incorporating an efficient and intelligent resource
scheduling algorithm in cloud computing”.

The architecture of the proposed research work SMART is presented in FIGURE
3.2.

Figure 3.2: Architecture of proposed research work SMART

53

Chapter 3. Methodology

3.8 Simulation & Test Environment

The proposed research work is simulated and tested in CloudSim 3.0, and also
validate in AWS EC2 environment. The configuration of both the environments
are discussed in next sub section.

3.8.1 Simulation Environments

In R&D, it is not always possible to have the actual cloud infrastructure for per-
forming experiments. For any research scholar, academician or scientist, it is not
feasible to hire cloud services every time and then execute their algorithms or im-
plementations. For the purpose of research, development and testing, open source
libraries are available, which give the feel of cloud services. Nowadays, in the
research market, cloud simulators are widely used by research scholars and prac-
titioners, without the need to pay any amount to a cloud service provider. Many
open source cloud simulators are available, we simulates our proposed work in
CloudSim 3.0 (Calheiros et al., 2011) toolkit.

3.8.2 Cloudsim Simulation Toolkit

CloudSim is a famous simulator for cloud parameters developed in the CLOUDS
Laboratory, at the Computer Science and Software Engineering Department of the
University of Melbourne.The Cloudsim library is used for the following operations:

1. Large scale cloud computing at data centres

2. Virtualised server hosts with customisable policies

3. Support for modelling and simulation of large scale cloud computing data
centres

4. Support for modelling and simulation of virtualised server hosts, with cus-
tomisable policies for provisioning host resources to VMs

5. Support for modelling and simulation of energy-aware computational re-
sources

6. Support for modelling and simulation of data centre network topologies and
message-passing applications

7. Support for modelling and simulation of federated clouds

54

Chapter 3. Methodology

8. Support for dynamic insertion of simulation elements, as well as stopping and
resuming simulation

9. Support for user-defned policies to allot hosts to VMs, and policies for allot-
ting host resources to VMs

10. User-defned policies for allocation of hosts to virtual machines

The major limitation of CloudSim3.0 is the lack of a graphical user interface (GUI).
But despite this, CloudSim is still used in universities and the industry for the sim-
ulation of cloud-based algorithms.

System Configuration

The proposed work is simulated in CloudSim 3.0. The system configuration in
which the simulator installed is presenting in TABLE 3.2.

Table 3.2: Physical system configuration in which simulator installed.

Name of PM Configuration Specifications System Type Operating System

HP 240 G5 Intel(R) 4.00 GB RAM 64 bit OS Windows 10

Core(TM) i3 1 TB HDD

2.0 GHz

The configuration of the simulation background is presenting in TABLE 3.3.

Table 3.3: Simulation environment details.

Number of PM Number of VM Number of Host

10 20 10

The initialization of maximum limit of CPU, RAM, and Bandwidth for PM and
VM in simulator are presenting in TABLE 3.4.

55

Chapter 3. Methodology

Table 3.4: Configuration of simulation environment for CPU, RAM, and
Bamdwidth for PMmax and VMmax.

Machine CPU RAM Bandwidth Cost

PMmax 1000 mips 16384 mbps 10000 bps $600
VMmax 50 mips 512 mbps 1000 bps $30

3.8.3 Amazon Web Services Environment

Amazon Web Services (AWS) is the market leader in IaaS (Infrastructure-as-a-
Service) and PaaS (Platform-as-a-Service) for cloud ecosystems, which can be com-
bined to create a scalable cloud application without worrying about delays related
to infrastructure provisioning (compute, storage, and network) and management.

With AWS user can select the specific solutions as per need, and only pay for
exactly what they use, resulting in lower capital expenditure and faster time to
value without sacrificing application performance or user experience. Amazon of-
fers many services for application development and analytics. Here are some key
building blocks in the AWS environment againts user needs are EC2: Server con-
figuration and hosting, Amazon S3: Data storage and movement, Elastic Load
Balancing, Elastic Block Store (EBS) etc.

The proposed research SMART is deployed in amazon web services AWS with
compute service elastic cloud computing EC2 instance. The description of EC2
instance is presented in TABLE 3.5:

3.9 Summary

In this chapter, the different module of SMART is discussed in brief. The research
methodology is explained and the SMART-architecture is presented. The proposed
research work SMART is simulated in CloudSim 3.0 and also validated in a real-
time cloud environment in AWS EC2 and discussed in this chapter. The next
chapter is all about how the self-optimization technique is modeled with modified
Antlion optimizer and how the fault-tolerant technique is applied in SMART.

56

Chapter 3. Methodology

Table 3.5: Description EC2 Instance

Instance ID i-0a067eaf356b357b7 (ALO scheduler)
Instance state running
Instance type t2.micro
Elastic IPs 1
Availability zone us-east-1c
Security groups launch-wizard-3. view inbound rules. view outbound rules.
Scheduled events No scheduled events
AMI ID ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-

server-20200112(ami-07ebfd5b3428b6f4d)
Platform Linux/UNIX
IAM role -
Key pair name scheduler
Owner 564005883562
Launch time Jan 15, 2020 at 2:28:24 PM UTC+5:30 (575 hours)
Termination protection False
Lifecycle normal
Monitoring basic
Alarm status None
Kernel ID -
RAM disk ID -
Placement group -
Partition number -
Virtualization hvm
Reservation r-02b5a3693f5a44f91
AMI launch index 0
Tenancy default
Host ID -
State transition reason -
State transition reason message -
Stop - Hibernation behavior Disabled
Number of vCPUs -
Public DNS (IPv4) ec2-172-31-83-149.compute-1.amazonaws.com
IPv4 Public IP 172.31.83.149
IPv6 IPs -
Private DNS ip-172-31-83-149.ec2.internal
Private IPs 172.31.83.149
Secondary private IPs -
VPC ID vpc-1313f378
Subnet ID subnet-0380294f
Network interfaces eth0
Source/dest. check True
T2/T3 Unlimited Disabled
EBS-optimized False
Root device type ebs
Root device /dev/sda1
Block devices /dev/sda1
Capacity Reservation Settings Open 57

Chapter 4

Self-optimization and
Fault-tolerant Mechanism

Overview

This chapter is decribed the modules of SMART, which are Self-optimization, and
Fault-tolerant. The goal of self-optimization is to maximize the resource utilization
and minimize the energy consumption and cost. Minimizing the energy consump-
tion has a momentous outcome on the total productivity, reliability and availability
of the system. Therefore, minimizing this energy consumption does not only re-
duce the huge cost and improves system reliability, but also helps in protecting the
natural environment. The cloud workloads sent by cloud users are executed only
the above constraints. Self-optimization allocate resources optimally. In continue
to this, Fault-tolerant mechanism is responsible to identify the duplicate workload
request by cloud user, to manage workloads in an efficient way.

4.1 Self-optimization

The objective of this module is

To maximize the resource utilization through self-optimization.

58

Chapter 5. Self-optimization and Fault-tolerant Mechanism

4.1.1 Formal Optimization Model

Figure 4.1: Formal Optimization Model

The flow of formal optimization model is representing through FIGURE 4.1. In
general, to obtain the optimal solution, population and fitness values has to be
calculated. On the basis of these values if the method meets the optimization
criteria then it will stop to search the solution and resources will be sent to the
pool else the process need to be regenerate the population and calculate the fitness
values. In this work, we proposed modified Antlion Optimizer (Mirjalili, 2015).

4.1.2 Modified ALO based Self-optimization

In this research work, we used antlion optimizer (ALO)(Mirjalili, 2015) for the
fittest VM selection. According to this, The antlion algorithm mimics interaction
between antlions and ants in the trap. To model such interactions, ants are required
to move over the search space, and antlions are allowed to hunt them and become
fitter using traps. Since ants move stochastically in nature when searching for food,
a random walk is chosen for modelling ants’ movement.

During optimization, the following conditions are applied:

1. Ants (VM) move around the search space using different random walks.

2. Random walks are applied to all the dimension of ants (VM).

3. Random walks are affected by the traps of antlions (Best VM).

4. Antlions (Best VM) can build pits proportional to their fitness (the higher
fitness, the larger pit).

5. Antlions (Best VM) with larger pits have the higher probability to catch ants
(VM).

6. Each ant (VM) can be caught by an antlion (Best VM) in each iteration and
the elite (fittest antlion).

59

Chapter 5. Self-optimization and Fault-tolerant Mechanism

7. The range of random walk is decreased adaptively to simulate sliding ants
towards antlions.

8. If an ant becomes fitter than an antlion, this means that it is caught and
pulled under the sand by the antlion.

9. An antlion repositions itself to the latest caught prey and builds a pit to
improve its change of catching another prey after each hunt

4.1.3 Modified ALO Operators

In this research for best VM selection we used antlion optimizer (ALO) (Mirjalili,
2015). After the centroid positions are finalized in the clustering process, consider
the nodes which are at the nearest distance and also the next nearest distance
from the centroid by using ALO optimization. In this method, the initialization is
done by using randomly selection of antlions and ants (VM). After that the multi
objectives (resource utilization, energy and cost) is calculated between each VMs,
from that the fitness value of ant and antlion is calculated and antlion fitness value
sorted to find the best antlion is named as elite antlion (best VM). The following
optimization equation is used to store the position of ants:

MAnt =

A11 A12 A13 . . . A1d

A21 A22 A23 . . . A2d

. .
An1 An2 An3 . . . And

 (4.1)

Where MAnt is the position of each ant store in the matrix. Ai,j shows the value of
the jth variable (dimension) of ith ant, n is the number of ants, and d is the number
of variables.For evaluating each ant, a fitness (objective) function is utilized during
optimization and the following matrix stores the fitness value of all ants:

MOA =

f([A11 A12 A13 . . . A1d])
f([A21 A22 A23 . . . A2d])
. .
f([An1 An2 An3 . . . And])

 (4.2)

where MOA is the matrix for saving the fitness of each ant, Ai,j shows the value of
jth dimension of ith ant, n is the number of ants, and f is the objective function. In
addition to ants, we assume the antlions are also hiding somewhere in the search
space. In order save their positions and fitness values, the following matrices are
utilized:

MAntlion =

AL11 AL12 A13 . . . AL1d

AL21 AL22 A23 . . . AL2d

. .
ALn1 ALn2 An3 . . . ALnd

 (4.3)

60

Chapter 5. Self-optimization and Fault-tolerant Mechanism

where MAntlion is the matrix for saving the position of each antlion, ALi,j shows
the jth dimension’s value of ith antlion, n is the number of antlions, and d is the
number of variables (dimension).

MOAL =

f([AL11 AL12 AL13 . . . AL1n])
f([AL21 AL22 AL23 . . . AL2n])
. .
f([ALn1 ALd2 ALd3 . . . ALnm])

 (4.4)

where MOAL is the matrix for saving the fitness of each antlion, ALi,j shows the jth

dimension’s value of ith antlion, n is the number of antlions, and f is the objective
function.

4.1.4 Random walk of ant (initial population/ solution)

Ant’s (VMs) are move at randomly to search for their food. Random walk is used
to model their movements using cumulative sum function and a random function
applied for a different iteration. The random walk of ant can be calculated by Equ.
4.5 :

X(t) = [0, cumsum(2r(t1)−1), cumsum(2r(t2)−1),cumsum(2r(tn)−1)] (4.5)

where cumsum calculates the cumulative sum, n is the maximum number of it-
eration, t shows the step of random walk (iteration in this study), and r(t) is a
stochastic function defined as follows:

r(t) =

{
1 if rand > 0.5

0 if rand < 0.5
(4.6)

where t shows the step of random walk (iteration in this study) and rand is a
random number generated with uniform distribution in the interval of [0, 1].

To keep ant (VM) random walks inside the search space to update their position
with respect to selected antlion used minmax normalization. Calculate the minmax
normalization by using Equ. 4.7 :

X t
i =

(X t
i − ai) ∗ (di − cti)

(dti − ai)
+ ci (4.7)

61

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Figure 4.2: Roulette wheel method (Mirjalili, 2015)

where ai is the minimum of random walk of ith variable, di is the maximum of
random walk in ith variable, cti is the minimum of ith variable at tth iteration, and
dti indicates the maximum of i-th variable at t-th iteration. Equ. 4.7 should be
applied in each iteration to guarantee the occurrence of random walks inside the
search space.

4.1.5 Building Trap (Fitness Value)

Consider that the ants are trapped in any one of the randomly selected antlion.
The roulette wheel (as shown in FIGURE 4.2) is used to select a best antlion from
its population based on fi tness calculation. This highly fit antlion to catch the
ants with high probability. The resource utilization is find out by using the below
equations:

CPU Utilization

The CPU utilization of any VM can be calculate by CPU value of current VM
divide by maximum allocated CPU value for VM. The CPU utilization by each
VM is calculated by Equ. 4.8.

UCPU
VMi =

m∑
i=1

VMCPU
i

VMCPU
max

(4.8)

62

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Where UCPU
VMi is CPU utilization by ith VM, VMCPU

i is initial CPU value of ith

VM, VMCPU
max = 50 mips, is maximum CPU that any VM can utilize (as stated in

TABLE 3.3),

The range of CPU utilization will be 0< UCPU
VMi<1.

RAM Utilization

The RAM utilization of any VM can be calculate by RAM value of VM divide by
maximum allocated RAM utilization for VM. The RAM utilization by each VM is
calculation by Equ. 4.9.

URAM
VMi =

m∑
i=1

VMRAM
i

VMRAM
max

(4.9)

Where URAM
VMi is RAM utilization by ith VM, VMRAM

i is initial RAM value of ith

VM, VMRAM
max = 512 mb, is maximum RAM that any VM can utilize (as stated in

TABLE 3.3),

The range of RAM utilization will be 0< URAM
VMi <1.

Bandwidth Utilization

The bandwidth(BW) utilization of any VM can be calculate by bandwidth value of
VM divide by maximum allocated bandwidth for VM. The bandwidth utilization
by each VM is calculation by Equ. 4.10.

UBW
VMi =

m∑
i=1

VMBW
i

VMBW
max

(4.10)

Where UBW
VMi is Bandwidth utilization by ith VM, VMBW

i is initial Bandwidth value
of ith VM, VMBW

max= 1000 kbps, is maximum Bandwidth that any VM can utilize
(as stated in TABLE 3.3),

The range of Bandwidth utilization will be 0< UBW
VMi<1.

VM Utilization

The fitness of each VM is given by resource utilization, and it is mean of CPU,
RAM, and Bandwidth utilization of each VM, and it is find out by using the below
condition:

UVMi =
m∑
i=1

UCPU
VMi + URAM

VMi + UBW
VMi

3
(4.11)

63

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Where UVMi is VM by ith VM, VMCPU
VMi is CPU utilization value by ith VM, VMRAM

VMi

is RAM utilization value by ith VM, VMBW
VMi is Bandwidth utilization value by ith

VM,

The range of VM utilization will be 0< UVMi<1.

Therefore the first objective function of is :

Maximize: f(UVMi)

Constraint: 0 <= α <= 50, 0 <= β <= 512, 0 <= γ <= 1000.

Energy Consumption

The energy consumption rate is obtain through Equ. 4.12, which is used in Soccer
(Singh et al., 2016).

EnC = (EnCmax − EnCmin) ∗ UVMi + EnCmin (4.12)

Where EnC is energy consumption rate, EnCmax is the energy consumption at the
peak load (or 100% utilization), and EnCmin is the minimum energy consumption
in the active/idle mode (or as low as 1% utilization). In this research, EnCmax is
1 kWh and EnCmin is 0 < EnCmin < 0.05.

Therefore the Second objective function of is :

Minimize: f(EnC) Constraint: 0 < EnC <= 100%.

Resource Cost

The Resource cost is obtain through Equ. 4.13, which is used in Soccer (Singh et
al., 2016).

RC = c ∗ EnC (4.13)

Where c is initial cost that is $30, as mentioned in TABLE 3.3, RC is Resource
Cost and EnC is Energy Consumption Rate.

Therefore the third objective function is :

Minimize: f(RC)

4.1.6 Entrapment of ant in trap

Antlions are building their trap with their fitness value. If the ant is inside the
trap then it shoots the sand outside the center of the pit. It makes the ant slide
down when it tries to escape from the antlion.

64

Chapter 5. Self-optimization and Fault-tolerant Mechanism

4.1.7 Catching preys and rebuilding trap

Ant reaches the bottom of the pit, and then the antlion pulls it in sand and eats
its body. Next the antlion modify its position and build a new trap to catch a
new prey. Antlion catches ant, when the fitness of ant is greater than the fitness
of antlion. It’s given by,

ALt
j = At

i (4.14)

Constraint iffitness(At
i) > fitness(ALt

j)

4.1.8 Algorithm

Algorithm 2 Self-optimization

Input: list of Ant’s (worloads), list of Antlion’s (VM’s).
Output: Elite Antlion (the best solution for tasks allocation on VM’s)
Start

/* Antlion’s (VM’s) Initialization */

VM ← VM1, V M2, V M3......V Mk ; // k is number of Antlion’s (VM’s)

Compute Fitness of Ant’s & Antlion’s
/* CPU, RAM, & Bandwidth of each VM */

for i=1 to k do
compute CPU usage of VMi using Equ. (4.8)
compute RAM usage of VMi using Equ. (4.9)
compute Bandwidth usage of VMi using Equ. (4.10)

end
/* Antlion optimizer */

Find the fittest Antlion’s (VM’s) & assume it Elit Antlion’s ; // Optimum

Antlion’s (VM’s)

while end criterion does not meet do
for every Ant’s do

Select an Antlion using roulette wheel
Update the position of Ant using Equ. (4.15)

end
Compute the fitness of all Antlion’s ; // CPU, RAM, & Bandwidth of each

VM

Replace an Antlion with its corresponding Ant if it become fitter using Equ.
(4.14), and assign it to Elite Antlion
Elite Antlion = Antlion

end
Return Elite Antlion
End

65

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Here the fittest antlion is named as elite antlion. After this ants movements are
remodelled by

At
i =

Rt
A +Rt

E

2
(4.15)

Where Rt
A and Rt

E are the random walk of ant lion and elite antlion at ‘t’ iteration
is used to update the position of ant.

4.2 Fault-tolerant Mechanism

Fault-tolerance innovation is a capacity of a computer framework, electronic frame-
work or system to convey continuous service, despite of its components failing.
Adaptation to non-critical failure likewise settle potential service interruptions
identified with programming or logical errors. The reason is to prevent the system
from a single point of failure. Fault-tolerance frameworks are intended to make up
for various failures. Such frameworks naturally distinguish a failure of the com-
puter processor unit, I/O subsystem, memory cards, motherboard, control supply
or system parts. The failure point is recognized, and a backup segment or strategy
promptly has to take place with no loss of service.

The objective of this module is

To design a resource management system RMS in cloud which improves perfor-
mance in terms of execution time and average cost through fault tolerance by re-
ducing or avoiding the impact of failures on execution. 1

4.2.1 Fault Detection Procedure

The flow of proposed fault detection procedure is presented in FIGURE 4.3.

1An Automated Self-Healing Cloud Computing Framework for Resource Scheduling. Interna-
tional Journal of Grid and High Performance Computing. Vol (13), Issue (2), pp: 47-64. Indexed
by SCOPUS, ESCI, IET Inspec. Publisher: IGI Global. USA.

66

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Figure 4.3: Fault VM computation.

4.2.2 Threshold

The threshold value for identification of VM’s, which have minimum utilization
value that can not be consider for allocation. In this research, we have set threshold
value of CPU, RAM, and Bandwidth utilization individually.

Threshold value for Very low utilization capacity of CPU, RAM, and Bandwidth
utilization is 10%. The threshold for CPU, RAM, and Bandwidth is obatained
through following euations:

Threshold for CPU

thresholdCPU = VMCPU
max ∗ δ (4.16)

Where thresholdCPU is threshold for CPU utilization, VMCPU
max is maximum CPU

utilization, and δ is constant multiplier, and taken 10% in this research, and
VMCPU

max = 50 mips.

Threshold for RAM

thresholdRAM = VMRAM
max ∗ δ (4.17)

67

Chapter 5. Self-optimization and Fault-tolerant Mechanism

Where thresholdRAM is threshold for RAM utilization, VMRAM
max is maximum RAM

utilization, and δ is constant multiplier, and taken 10% in this research, and
VMRAM

max = 512 mb.

Threshold for Bandwidth

thresholdBW = VMBW
max ∗ δ (4.18)

Where thresholdBW is threshold for Bandwidth utilization, VMBW
max is maximum

BW utilization, and δ is constant multiplier, and taken 10% in this research, and
VMBW

max = 1000 kbps.

4.2.3 Algorithm

Algorithm 3 Fault-tolerant

Input: list of Ant’s (worloads), list of Antlion’s (VM’s).
Output: Fault Antlion, Best Antlion list (the best solution for tasks allocation on

VM’s)
Start

/* Antlion optimizer */

Initialize Antlion’s (VM’s)
VM ← VM1, V M2, V M3......V Mk

/* Calculate Fitness of each Antlion’s (VM’s) */

for i = 1 to k do
compute CPU usage of VMi using Equ. (4.8)
compute RAM usage of VMi using Equ. (4.9)
compute Bandwidth usage of VMi using Equ. (4.10)

end
/* Compute Fault Antlion */

for i = 1 to k do
if UCPU

VMi < thresholdCPU && URAM
VMi < thresholdRAM && UBW

VMi < thresholdBW

then
add VMi to Best Antlion list

end
else

assign to Fault Antlion and remove from Antlion list
end

end
Return Fault Antlion
Return Best Antlion list
End

68

Chapter 5. Self-optimization and Fault-tolerant Mechanism

4.3 Summary

In this chapter, the Antlion optimizer is explained which is modified for cloud re-
source management. The multiobjective functions which need to be optimized and
self-optimzation algorithm is discussed to find the optimal resource. in continue
to this, Fault-tolerant method is also described in this chapter with the thresh-
old criteria for each VM parametrs (CPU, RAM, and Bandwidth). The resource
managment technique is discussed in next chapter.

69

Chapter 5

Resource Management

Overview

Autonomic resource management is a capacity to enhance usage of resources (VM’s
for this research) and client fulfillment in autonomic frameworks. Based on state of
art survey, which discussed in chapter 2, it is found that the resource management
in cloud is an essential requirement for service provider and cloud user as well.
The resource management in cloud need to be low in cost and execution. The
proposed research work SMART is simlulated in Clousim 3.0 and implemented in
AWS EC2 instances. The experimental results are compared based on the following
performance metrics:

1. SLA violation rate,

2. Execution time,

3. Resource utilization,

4. Energy consumption,

5. Cost

The objective of this chapter is to “Attain the better system by incorporating an
efficient and intelligent resource scheduling algorithm in cloud computing”

5.1 Scheduling

The workloads submitted by the users areprocessed through SMART and duplicate
workloads identified through workload-filter and separated from the task manager.

70

Chapter 5. Resource Management

The initialized VM’s are processed with self-optimization and fault VM’s identified,
and separated from the resource pool. The Elite VM’s and workloads are scheduled
through round-robbin sheduling algorithm.

5.2 Algorithm

The following algorithm is designed for autonomic resource management

5.2.1 Time Complexity

The time complexity is the computational complexity that describes the amount
of time it takes to run an algorithm. Time complexity is commonly estimated by
counting the number of elementary operations performed by the algorithm, suppos-
ing that each elementary operation takes a fixed amount of time to perform. Thus,
the amount of time taken and the number of elementary operations performed by
the algorithm are taken to differ by at most a constant factor. The complexity
class QP consists of all problems that have quasi-polynomial time algorithms. It
can be defined in terms of TIME as follows:

QP =
⋃
T

Time(2logn) (5.1)

5.3 Results and Analysis

SMART simulates in cloudsim 3.0 toolkit as well as simulation is tested in Amazon
Web Services AWS. The system obtained optimal and fault VM based on modified
Ant Lion Optimizer, and identified redundant workloads through workload-filter.
SMART’s objective is to implement a resource management system to improve the
fault tolerance mechanism, self-adaptability and maximize resource utilization in
cloud computing. This section is organized based on performance metrics.

5.3.1 Performance Metrics

To observe the efficiency of SMART system based on the following metrics:

1. Resource Utilization by workloads

2. Execution Time

71

Chapter 5. Resource Management

Algorithm 4 Self-managment Aware Autonomic Resource Management

Input: list of Ant’s (worloads), list of Antlion’s (VM’s).
Output: the best solution for tasks allocation on VM’s
Start

// Call Workload Filtraion

/* Initialize Workloads */

W ← W1,W2,W3......Wn while i < n do
if (Wfrequancy= 1) then

assign to Filtered worklods;
end
else

identifiy as duplicate worklod and
seperate from workload list;

end

end
/* Call Fault-tolerant */

Initialize Antlion’s (VM’s)
VM ← VM1, V M2, V M3......V Mk

/* Calculate Fitness of each Antlion’s (VM’s) */

for i = 1 to k do
compute CPU usage of VMi using Equ. (4.8)
compute RAM usage of VMi using Equ. (4.9)
compute Bandwidth usage of VMi using Equ. (4.10)

end
/* Compute Fault Antlion */

for i = 1 to k do
if UCPU

VMi < thresholdCPU && URAM
VMi < thresholdRAM && UBW

VMi < thresholdBW

then
add VMi to Best Antlion list

end
else

assign to Fault Antlion and remove from Antlion list
end

end
/* Call Self-optimization */

Compute Fitness of Ant’s & Antlion’s // CPU, RAM, & Bandwidth of each VM

Find the fittest Antlion’s (VM’s) & assume it Elit Antlion’s ; // Optimum

while end criterion does not meet do
for every Ant’s do

Select an Antlion using roulette wheel
Update the position of Ant using Equ. (4.15)

end
Compute the fitness of all Antlion’s ; // CPU, RAM, & Bandwidth of each

VM

Replace an Antlion with its corresponding Ant if it become fitter using Equ.
(4.14), and assign it to Elite Antlion
Elite Antlion = Antlion

end
End

72

Chapter 5. Resource Management

3. SLA Violation Rate

4. Energy Consumption Rate

5. Cost

5.3.2 Validation of SMART

The proposed system SMART is validated for Execution Time, Resource Utiliza-
tion, SLA Violation Rate, Cost, and Energy Consumtion Rate and used for vali-
dation of performance of SMART. The validation performed the different number
of experiments in different type of parameters by comparing SMART with exist-
ing autonomic resource management techniques. Experiment has been conducted
with different number of workloads (10–4000) for validation of different perfor-
mance metrics has been evaluated. For each performance metrics, minimum 30
tests has been performed. The following existing resource management approaches
have been considered to validate SMART:

5.3.2.1 SOCCER

Self-Optimization of Energy-efficient Cloud Resources (SOCCER) (Singh et al.,
2016) is an autonomic resource management technique which schedules the re-
sources automatically by optimizing energy consumption. Scheduling rules have
been designed using the concept of fuzzy logic to calculate the priority of workload
execution. Large number of rules is generated for every request, so it is very diffi-
cult to take an effective decision in timelymanner. SOCCER always executes the
workloads with highest priority based on energy consumption, in which workloads
with lowest priority is facing the problem of starvation.

5.3.2.2 CHOPPER

An intelligent QoS-aware autonomic resource management approach for cloud com-
puting (CHOPPER) framework (Gill et al., 2017) is used for resource provisioning
in which: (i) clustering of workloads is done through workload priority, (ii) k-
means based clustering algorithm is used for clustering of workloads, and (iii) QoS
requirements of clustered workloads are identified and resources are provisioned by
resource provisioner based on their QoS requirements.

73

Chapter 5. Resource Management

5.3.3 Performance Analysis

5.3.3.1 Resource Utilization by Workload

Resource utilization by each workload is obtained through following equation used
in CHOPPER (Gill et al., 2017).

RU =
m∑
i=1

RC(i) − ET (i)

RC(i)
(5.2)

Where RU is resource utilization by each workloads in ms, m is number of work-
loads, RC(i) is resource completion request, and ET is execution time.

5.3.3.2 Execution Time

Execution time analysis obtain through Equ. 4.1, which is used in CHOPPER
(Gill et al., 2017).

5.3.3.3 SLA Violation Rate

The SLA cost is obtained through SLA violation rate, SLA violation rate obtained
through failure rate. First of all it obtain failure rate.
To find the failure rate sstem has to set threshold value which uses all the weight
values of the workload. The mean of the weight of workloads is considered as
threshold. The following conditions which is used in CHOPPER (Gill et al., 2017)
are used to calculate failure rate.

if weight value < threshold

failure(R)=2;

else if weight value > threshold

failure(R)=1;

failure rate =
failure(Ri)

n
(5.3)

Where, failure(Ri) is the failure rate of every workload and n is the number of
workload.

SLA Violation Rate

74

Chapter 5. Resource Management

SLA violation rate is obtain through following equation

SV R = failure rate ∗
n∑

i=1

W i (5.4)

The Equ. 5.3, and Equ. 5.4 is used in CHOPPER (Gill et al., 2017) where, Wi is
the weight of each workload.

5.3.3.4 Energy Consumption Rate

The energy consumption rate is obtain through Equ. 5.5 used in SOCCER (Singh
et al., 2016).

EnC = (EnCmax − EnCmin) ∗ UVMi + EnCmin (5.5)

Where EnC is energy consumption rate, EnCmax is the energy consumption at the
peak load (or 100% utilization), and EnCmin is the minimum energy consumption
in the active/idle mode (or as low as 1% utilization). In this research, EnCmax is
1 kWh and EnCmin is 0 < EnCmin < 0.05.

5.3.4 Execution Cost

The Execution cost is obtain through Equ. 5.6 used in CHOPPER (Gill et al.,
2017).

EC = c ∗ ET (5.6)

Where c is initial cost that is $30, as mentioned in TABLE 3.3, EC is Execution
Cost and ET is Execution Time.

5.3.5 Resource Cost

The Resource cost is obtain through Equ. 8.6 used in SOCCER (Singh et al.,
2016).

RC = c ∗ EnC (5.7)

Where c is initial cost that is $30, as mentioned in TABLE 3.3, RC is Resource
Cost and EnC is Energy Consumption Rate.

75

Chapter 5. Resource Management

5.3.6 SLA Cost

The SLA cost is obtain through Equ. 5.8 used in CHOPPER (Gill et al., 2017).

SLAC = SV R ∗ ET (5.8)

Where SVR is SLA violation rate obtained through Equ. 5.4, SLAC is SLA Cost
and ET is Execution Time.

5.3.7 Resource Utilization

The objective of this section is to Maximize the resource utilization through
self-optimization.

Through self-optimization, it obtained optimal VM’s, and analyse resource utiliza-
tion based on Equ. 5.1 and compared SMART results with two existing approaches
SOCCER(Singh et al., 2016) and CHOPPER(Gill et al., 2017). The resource uti-
lization is obtain for different workload dataset and presented in FIGURE 5.1 (a).

(a) Resource utilization. (b) Average resource utilization analysis.

Figure 5.1: Resource utilization based on workloads

FIGURE 5.1 (a) & (b) shows the experimental results of SMART, CHOPPER, and
SOCCER. In this total 30 test has been performed by increasing of 20 workloads
in each iteration. As per the expemental results and observation, the minimum
resource utilization for SMART, CHOPPER and SOCCER is as recorded 1857 ms,
1662 ms and 1424 ms respectively. The maximum resource utlization for SMART,

76

Chapter 5. Resource Management

CHOPPER, and SOCCER is recorded as 59195 ms, 56103 ms, and 53368 ms
respectively. Where as the average utilization of resources for SMART, CHOPPER,
and SOCCER is recorded as 30523 ms, 29060 ms, and 27350 ms. The experimental
observation for 30 test is the evidense that resource utilization rate of SMART is
higher then CHOPPER and SOCCER. In FIGURE 5.1, it is clearly visible that
the resource utilization of SMART is better than other two existing framework
SOCCER and CHOPPER. SMART maximizes resource utilization by 5.03%.

Hence the first sub-objective- ”Maximize the resource utilization through
self-optimization” is achieved successfully.

5.3.8 Execution Time

The execution time for SMART is recorded on the basis of succefully scheduling of
VM to workloads submitted by cloud user. In this, prposed system is taken eight
sample data for testing. It generate synthesis test data for average execution time,
which is set of 50 to 1500 set of 30 workloads.The analysis of execution time and
average execution time by SMART and other existing frameworks.

(a) Execution Time (ms) based on 50 to 300 Work-
loads.

(b) Average Execution Time (ms) for 50 to 1500
workloads.

Figure 5.2: Execution Time analysis based on number of workloads.

FIGURE 5.2 (a) & (b) shows the experimental results of SMART, CHOPPER, and
SOCCER. In this total 30 test has been performed by increasing of 50 workloads
in each iteration. As per the expemental results and observation, the minimum ex-
ecution time for SMART, CHOPPER and SOCCER is recorded as 162 ms, 170 ms

77

Chapter 5. Resource Management

and 197 ms respectively. The maximum execution time for SMART, CHOPPER,
and SOCCER is recorded as 1824 ms, 2001 ms, and 2098 ms respectively. Where
as the average execution time for SMART, CHOPPER, and SOCCER is recorded
as 978 ms, 1070 ms, and 1135 ms. The experimental observation for 30 test is the
evidense that execution time of SMART is lower then CHOPPER and SOCCER.

SMART reduces execution time by 8.6%.

5.3.9 Energy Consumption Rate

The energy consumption is calculated in kilo watt hour (kWh) for SMART, CHOP-
PER and SOCCER for cloud resources (VM’s). With the increasing number of
workloads from 100 to 400, tests has been conducted and it is recorded that the
value of energy consumption also increases while number of workloads are increases.
The minimum value of energy consumption is 2.14 kWh at 100 workloads.

(a) Energy Consumption Rate. (b) Average Energy Analysis.

Figure 5.3: Energy Consumption Rate & Analysis based on Resources (VM).

SMART performs better than CHOPPER and SOCCER in terms of energy con-
sumption at different number of cloud resources (VM) as shown in FIGURE 5.3
(a). In FIGURE 5.3 (b) it is clearly shown that the average energy consumption in
SMART is lesser than average energy consumption by CHOPPER and SOCCER.

78

Chapter 5. Resource Management

5.3.10 SLA Violation Rate Analysis

The SLA violation rate analysis is obtained based on Number of Workloads. SMART
process large dataset for computing SLA violation rate based on number of work-
loads, and results calculated through Equ. 5.3 and shown in FIGURE 5.4 for
analysing its performance.

(a) SLA Violation Rate.

(b) Average SLA Rate Analysis.

Figure 5.4: SLA Violation Rate & Analysis based on workloads.

As per anaysis shown in FIGURE 5.3 (a) & (b). The SLA violation rate is increas-
ing while increasing number of workloads. The experimental results are recored

79

Chapter 5. Resource Management

and analyse that SMART has less SLA violation rate as compared to SOCCER,
and CHOPPER. SMART reduces SLA rate by 48.78%.

5.3.11 Cost

The cost is obtained based on Energy consumption rate by Resources (VM), SLA
Violation Rate with respect to Execution Time and Execution Cost based on Exe-
cution Time. The average cost is obtain for different workload dataset and number
of Resources (VM). The following cost is evaluated for SMART:

1. Execution Cost,

2. Resource Cost, and

3. SLA Cost.

5.3.11.1 Execution Cost

It is defined as the product of total execution time to schedule of workload to
optimal resources (VM) and price as per mentioned in TABLE 3.3. The execution
cost is obtained through Equ. 5.5 and measured in dollars ($) and results are shown
FIGURE 5.4. As the number of workload increases, SMART performs better than
SOCCER and CHOPPER.

The cause is that SMART adjusts the resources at runtime according to the QoS
requirements of workload. The execution cost is 4% lesser in SMART than CHOP-
PER and 6% lesser in SMART than SOCCER.
FIGURE 5.5 (a) & (b) shows the experimental results of SMART, CHOPPER, and
SOCCER. In this total 30 test has been performed by increasing of 50 workloads
in each iteration. As per the expemental results and observation, the minimum
execution cost for SMART, CHOPPER and SOCCER is recorded as $ 4860, $ 5100
and $ 5910 respectively. The maximum execution cost for SMART, CHOPPER,
and SOCCER is recorded as $ 54707, $ 60027 and $ 62326 respectively. Where as
the average execution cost for SMART, CHOPPER, and SOCCER is recorded as
$ 29353, $ 32112 and $ 33761 respectively. The experimental observation for 30
test is the evidense that execution cost of SMART is lower then CHOPPER and
SOCCER.

SMART reduces execution cost by 8.59%.

80

Chapter 5. Resource Management

(a) Execution Cost.

(b) Average Execution Cost Analysis.

Figure 5.5: Execution Cost & Analysis based on workloads.

5.3.11.2 Resource Cost

It is defined as the product of total energy consumtion by resource (VM) and price
as per mentioned in TABLE 3.3. The resource cost is obtained through Equ. 5.7
and measured in dollars ($) and analysis is shown in FIGURE 5.6. Resource cost
rises as shown in FIGURE 5.5.

81

Chapter 5. Resource Management

Figure 5.6: Resource Cost & Analysis based on workloads.

FIGURE 5.6 shows the experimental results of SMART, CHOPPER, and SOC-
CER. In this total 30 test has been performed by increasing of 4 VM’s in each
iteration. As per the expemental results and observation, the minimum resource
cost for SMART, CHOPPER and SOCCER is recorded as $ 64, $ 201 and $ 145
respectively. The maximum resource cost for SMART, CHOPPER, and SOCCER
is recorded as $ 1946, $ 3950 and $ 2921 respectively. Where as the average re-
source cost for SMART, CHOPPER, and SOCCER is recorded as $ 1005, $ 2075
and $ 1533 respectively. The experimental observation for 30 test is the evidense
that resource cost of SMART is lower then CHOPPER and SOCCER.

5.3.11.3 SLA Cost

It is defined as the product of total SLA violation rate by workloads and total
execution time. The SLA cost is obtained through Equ. 5.8 and measured in
dollars ($). As the number of workloads increases, SMART performs better than
SOCCER and CHOPPER. The cause is that SMART adjusts the resources at
runtime according to the QoS requirements of workload. SLA cost rises as shown
in FIGURE 5.7

82

Chapter 5. Resource Management

Figure 5.7: SLA Cost & Analysis based on workloads.

5.3.12 Analysis

The analyse of Resource Utilization, Execution Time, Average Cost, Energy Ef-
ficiency, and SLA Violation Rate for SMART, SOCCER, and CHOPPER. In all
respect it is recorded that SMART perform better than the existing framework in
the mentioned simulation environment. The average of all parameters evaluvated
and presented in TABLE 5.1.

Table 5.1: Analysis

Parameters SMART CHOPPER SOCCER Analysis
VM Utilization 30523 ms 29060 ms 27350 ms Maximize 5%
Execution Time 978 ms 1070 ms 1135 ms Minimize 8%
SLA Violation 0.420 ms 0.850 ms 0.820ms Minimize 48%
Execution Cost $29353 $32112 $33776 Minimize 8.60%

The above analysis has been carried out based on the results, which is simulated
in CloudSim 3.0, for SMART, CHOPPER and SOCCER.

Hense the third sub-objective -

”Attain the better system by incorporating an efficient and intelligent
resource scheduling algorithm in cloud computing” is achieved succesfully.

83

Chapter 5. Resource Management

5.3.13 Implementation in AWS

The proposed research work SMART is implemented in Amazon Web Services
AWS as per comments recieved from SRC panel members. In AWS, 6 Instances.
Main algorithm is written in ALOscheduler (name of server), workloads are stored
in second one and client application is stored in third instance as presented in
FIGURE 5.8.

Figure 5.8: EC2 Dashboard

FIGURE 5.9 and 5.10 presented ALOscheduler and client application terminal
screenshots. In this, the initial status of ALOscheduler EC2 instance is nil. Now
this instance is ready to perform scheduling algorithm.

Figure 5.9: ALOscheduler EC2 Instance

84

Chapter 5. Resource Management

Figure 5.10: Client application EC2 Instance

FIGURE 5.11 presented all three terminals where ALOscheduler, workloads and
client application are installed.

Figure 5.11: ALOscheduler, Client, and Worker EC2 Instance

FIGURE 5.12 presented the execution of 62 workloads in AWS environment, and
it takes 9.03 seconds to compute the workloads in 5 instances.

85

Chapter 5. Resource Management

Figure 5.12: Execution of workloads

FIGURE 5.13 presents the execution of 125 workloads in AWS environments, and
it takes 15.04 seconds to execute all the workloads.

Figure 5.13: Execution of workloads

The total 4000 task has been submitted and results are recorded. The following
FIGURE 5.14 prented the analysis of exection time. While increasing of number
of taks, the execution time is also increases.

86

Chapter 5. Resource Management

Figure 5.14: Execution Time Analysis in AWS environment

5.4 Summary

SMART optimized resources and find optimal resources and seperate fault VM’s in
this work, so best resources which has high fitness value for better performance is
produce for scheduling. On other hand, it is also computed and identified duplicate
workloads to avoid accidently repeatable workloads and seperated it from submis-
sion list. Both resources and workloads are otpimal absed on its fitness value and
user priority for scheduling. SMART approach round-robbin scheduling algorithm
to schedule available resources to workloads. The proposed system is implemented
and simulated in the Amazon Web Service AWS and cloudsim 3.0 environment.
The proposed optimization method is to be finds the optimal VM’s as discussed.
In continuous, threshold for each VM parameters obtain and identified the VM’s
which have low utilization capacity in terms of CPU, RAM, and Bandwidth and
seperate from resource pool. These VM’s are observed as fault VM’s which is to
be calucted through faut-tolerant procedure as discussed. The objective of pro-
posed system is to produce an efficient autonomic resource management technique
in cloud, which named as SMART to improve the efficiency of the existing resource
management technique. The SMART algorithm is a hybrid approach to manage

87

Chapter 5. Resource Management

resource with its best utilization value. SMART successfully identified workloads
as per user priority and optimal resource for best utilization and schedule VM’s as
per QoS.

SMART compute different performance metrics based on equations and it is re-
coured that SMART perform better and satisfy all the sub-objective of this work,
which results that the objective of this work-

”To design a resource management system to improve the fault toler-
ance mechanism, self-adaptability, and maximize resource utilization
in cloud computing”

is achieved.

88

Chapter 6

Conclusions and Future Work

Resource management in cloud computing is the ability to manage resources ac-
cording to the user’s need in the cloud. The operating cost of the cloud services is
mostly dependent upon resource utilization. Also, customer satisfaction is one of
the major highlighting metrics to trust of cloud services subjected to SLA violation
rate. Due to the increasing demand for services, a large number of servers need to
be installed to fulfill the customer requirements, which increases the energy con-
sumption, which affects the operating cost to the service provider and customer
as well. To overcome this issue, and efficient autonomic resource management
technique needs to be applied, that is self-managing the resources without human
interventions. We propose an efficient self-management aware autonomic resource
management technique in cloud SMART to reduce the average cost with customer
satisfaction. In this, to identify the faulty VM’s, we implemented an automated
self-healing cloud computing framework for resource scheduling, which find the
fault VM’s from the resource pool to reject/avoid to allocate the workload submit-
ted by cloud user, which improves the performance in terms of execution time, and
average cost. To continue this, we optimized resources based on modified ALO,
which minimizes the energy consumption and SLA violation rate so that resources
can be efficiently utilized, and resource utilization can be maximized.

The experimental observations for different performance parameters are recorded
for proposed research work SMART and existing RMS, where it has been recorded
that the average resource utilization by SMART is increased by 5%, the average
execution time is minimized by SMART is 8%, the average SLA violation rate
is minimized by SMART is 48%, and the average execution cost is minimized by
SMART is 8.60%.

The experimental results are compared with Soccer and Chopper and it is recorded
that SMART is more efficient. To manage the workloads efficiently, we applied self-
protection in SMART, which helps to identify the malicious workloads submitted

89

Chapter 9. Conclusions and Future Work

by the cloud user. The objective of SMART is to attain a better resource man-
agement system by incorporating an efficient and intelligent resource management
algorithm in cloud computing. The efficiency metric for SMART computing SLA
violation rate is based on workloads, execution cost, energy consumption rate,
and energy efficiency analysis, execution time, and resource utilization. SMART
is simulated in Cloudsim toolkit and compares with existing systems. SMART
reduces SLA violation rate based on workloads, reduces execution cost, energy
consumption rate, and increases energy efficiency as compared with existing sys-
tems. Hence, SMART is an efficient autonomic resource management technique in
cloud computing.

Future Work
There is always some scope of improvements present in each research. Similarly,
in SMART we have identified some scope which can be extended in the future to
improve the quality of this research:

1. Scaling and migration of VM’s: The SMART work on a fixed number of
VM’s, further it can be extended to dynamic increments of VM or it can use
of other service providers VM.

2. Machine learning concept can be utilized for the real-time environment to
get better efficiency.

3. Energy efficiency by calculation of optimal threshold value for energy con-
sumption rate by applying machine learning and linear regression method.

4. SMART does not heal the resources, further, it can be improved by adopting
a self-healing mechanism.

5. Self-configuration is one more characteristic of autonomic computing, which
is responsible for re-installation of missing components, which can be included
in SMART for further enhancements.

90

Appendix A

List of Publications

Paper Published in SCI/ SCOPUS/ ESCI indexed Journals:

1. Bhupesh Kumar Dewangan, Amit Agarwal, Tanupriya Choudhury, Ashutosh
Pasricha. 2020. Extensive review of cloud resource management techniques
in industry 4.0: Issue and challenges. Software: Practice and Experience.4(1).
PP: 1-20. SCI
https://doi.org/10.1002/spe.2810

2. Bhupesh Kumar Dewangan, Amit Agarwal, Tanupriya Choudhury, Ashutosh
Pasricha. 2020. Cloud Resource Optimization System based on Time and
Cost. International Journal of Mathematical, Engineering and Management
Sciences.5(4). PP: 758-768. SCOPUS Q2
http://doi.org/10.33889/IJMEMS.2020.5.4.060

3. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. Self-characteristics based Energy-Efficient Resource Scheduling
for Cloud, Procedia Computer Science, Vol 152. PP: 204-211. SCOPUS
DOI: 10.1016/j.procs.2019.05.044

4. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. Energy-Aware Autonomic Resource Scheduling Framework for
Cloud. International Journal of Mathematical, Engineering and Management
Sciences.4(1). PP: 41-55. SCOPUS Q2
http://www.ijmems.in/assets/4-ijmems-18-234-vol.-4%2c-no.-1%2c-41%e2%80%9355%

2c-2019.pdf

DOI: 10.33889/IJMEMS.2019.4.1-004

5. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. Design of Self-Management Aware Autonomic Resource Schedul-
ing Scheme in Cloud. International Journal of Computer Information Sys-
tems and Industrial Management Applications. Vol (11), PP: 170-177.SCOPUS

91

https://doi.org/10.1002/spe.2810
http://doi.org/10.33889/IJMEMS.2020.5.4.060
10.1016/j.procs.2019.05.044
http://www.ijmems.in/assets/4-ijmems-18-234-vol.-4%2c-no.-1%2c-41%e2%80%9355%2c-2019.pdf
http://www.ijmems.in/assets/4-ijmems-18-234-vol.-4%2c-no.-1%2c-41%e2%80%9355%2c-2019.pdf
10.33889/IJMEMS.2019.4.1-004

List of Publications

Q3, IET Inspec. MirLabs USA.
http://www.mirlabs.net/ijcisim/regular papers 2019/IJCISIM 17.pdf

6. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. An Automated Self-Healing Cloud Computing Framework for
Resource Scheduling. International Journal of Grid and High Performance
Computing. Accepted for Vol (13), Issue (2),pp: 47-64. SCOPUS
Q2, ESCI, IET Inspec. IGI Global. USA

7. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. Sla-Based Autonomic Cloud Resource Managementframework
By Antlion Optimization Algorithm. International Journal of Innovative
Technology and Exploring Engineering. 8(4).119-123. SCOPUS.
https://www.ijitee.org/wp-content/uploads/papers/v8i4/D2659028419.pdf

8. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2019. A Self-Optimization Based Virtual Machine Scheduling to
Workloads in Cloud Computing Environment. International Journal of En-
gineering and Advanced Technology. 8(4). 91-96. SCOPUS.
https://www.ijeat.org/wp-content/uploads/papers/v8i4c/D24270484C19.pdf

Paper presented in SCOPUS indexed International Conferences:

1. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2018. Credential and Security Issues of Cloud Service Models. in
proceesing of 2016 IEEE conference on Next Generation Computing Tech-
nologies Publisher IEEE SCOPUS.
https://ieeexplore.ieee.org/document/7877536

DOI: 10.1109/NGCT.2016.7877536

2. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2018. Autonomic Cloud Resource Management. Fifth IEEE interna-
tional Conference on Parallel, Distributed and Grid Computing(PDGC). PP:
138-143. IEEE SCOPUS.
DOI: https://ieeexplore.ieee.org/document/8745977

DOI: 10.1109/PDGC.2018.8745977

3. Bhupesh Kumar Dewangan, Amit Agarwal, Venkatadri M, Ashutosh Pas-
richa. 2018. SLA-aware resource optimization based on time and cost in
cloud. 4th International Conference on Next Generation Computing Tech-
nologies NGCT 2018. UPES, Dehradun. India. Presented 20-21 Nov. 2018.
Springer SCOPUS.

92

http://www.mirlabs.net/ijcisim/regular_papers_2019/IJCISIM_17.pdf
https://www.ijitee.org/wp-content/uploads/papers/v8i4/D2659028419.pdf
https://www.ijeat.org/wp-content/uploads/papers/v8i4c/D24270484C19.pdf
https://ieeexplore.ieee.org/document/7877536
10.1109/NGCT.2016.7877536
https://ieeexplore.ieee.org/document/8745977
10.1109/PDGC.2018.8745977

List of Publications

Patent:

1. Dewangan, B.K, Choudhury, T., Agarwal, A. Et al. (2020). An efficient and
cost effective system design for low cost cloud resource management [Govt.
of India 202011023216 A]. Indian Patents.

93

References

Abdullahi, M., Ngadi, M. A., et al. (2016). Symbiotic organism search optimiza-
tion based task scheduling in cloud computing environment. Future Generation
Computer Systems , 56 , 640–650.

Addis, B., Ardagna, D., Panicucci, B., & Zhang, L. (2010). Autonomic manage-
ment of cloud service centers with availability guarantees. In Cloud computing
(cloud), 2010 ieee 3rd international conference on (pp. 220–227).

Alex, Yamini, R., & Germanus, M. (2017). Comparision of resource optimization
algorithms in cloud computing. In (pp. 847–855).

AlJahdali, H., Albatli, A., Garraghan, P., Townend, P., Lau, L., & Xu, J. (2014).
Multi-tenancy in cloud computing. In Service oriented system engineering (sose),
2014 ieee 8th international symposium on (pp. 344–351).

Alkhanak, E. N., & Lee, S. P. (2018). A hyper-heuristic cost optimisation ap-
proach for scientific workflow scheduling in cloud computing. Future Generation
Computer Systems .

Alsadie, D., Tari, Z., Alzahrani, E. J., & Zomaya, A. Y. (2018). Dynamic re-
source allocation for an energy efficient vm architecture for cloud computing. In
Proceedings of the australasian computer science week multiconference (p. 16).

Al Salami, N. M. (2009). Ant colony optimization algorithm. UbiCC Journal ,
4 (3), 823–826.

Altmann, J., & Kashef, M. M. (2014). Cost model based service placement in
federated hybrid clouds. Future Generation Computer Systems , 41 , 79–90.

An, B., Lesser, V., Irwin, D., & Zink, M. (2010). Automated negotiation with
decommitment for dynamic resource allocation in cloud computing. In Proceed-
ings of the 9th international conference on autonomous agents and multiagent
systems: volume 1-volume 1 (pp. 981–988).

Antonescu, A. F., & Braun, T. (2016). Simulation of sla-based vm-scaling algo-
rithms for cloud-distributed applications. Future Generation Computer Systems ,
54 , 260–273.

94

List of Publications

Anuj Kumar Yadav, M., & Ritika. (2017). The issues of energy efficiency in cloud
computing based data centers. Biosc.Biotech.Res.Comm., 12 (2), 1–10.

Arianyan, E., Taheri, H., & Sharifian, S. (2015). Novel energy and sla efficient
resource management heuristics for consolidation of virtual machines in cloud
data centers. Computers & Electrical Engineering , 47 , 222–240.

Bansal, N., Maurya, A., Kumar, T., Singh, M., & Bansal, S. (2015). Cost per-
formance of qos driven task scheduling in cloud computing. Procedia Computer
Science, 57 , 126–130.

Banu, M. U., & Saravanan, K. (2014). Optimizing the cost for resource subscription
policy in iaas cloud. arXiv preprint arXiv:1402.2491 .

Beloglazov, A., & Buyya, R. (2016, June 7). System, method and computer program
product for energy-efficient and service level agreement (sla)-based management
of data centers for cloud computing. Google Patents. (US Patent 9,363,190)

Bing, L., Song, A. M., & Song, J. (2012). A distributed qos-constraint task schedul-
ing scheme in cloud computing environment: model and algorithm. Advances in
information sciences and service sciences , 4 (5), 283–291.

Bittencourt, L. F., & Madeira, E. R. M. (2011). Hcoc: a cost optimization algo-
rithm for workflow scheduling in hybrid clouds. Journal of Internet Services and
Applications , 2 (3), 207–227.

Bruneo, D., Longo, F., Ghosh, R., Scarpa, M., Puliafito, A., & Trivedi, K. S.
(2015). Analytical modeling of reactive autonomic management techniques in
iaas clouds. In Cloud computing (cloud), 2015 ieee 8th international conference
on (pp. 797–804).

Buyya, R., Pandey, S., & Vecchiola, C. (2009). Cloudbus toolkit for market-
oriented cloud computing. In Ieee international conference on cloud computing
(pp. 24–44).

Cai, X., Feng, L., Ping, L., Lei, J., & Zhiping, J. (2017). Sla-aware energy-efficient
scheduling scheme for hadoop yarn. The Journal of Supercomputing , 73 (8),
3526–3546.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and experience, 41 (1), 23–50.

Casalicchio, E., Menascé, D. A., & Aldhalaan, A. (2013). Autonomic resource
provisioning in cloud systems with availability goals. In Proceedings of the 2013
acm cloud and autonomic computing conference (p. 1).

95

List of Publications

Chaisiri, S., Lee, B. S., & Niyato, D. (2012). Optimization of resource provisioning
cost in cloud computing. IEEE Transactions on Services Computing , 5 (2), 164–
177.

Changtian, Y., & Jiong, Y. (2012). Energy-aware genetic algorithms for task
scheduling in cloud computing. In Chinagrid annual conference (chinagrid),
2012 seventh (pp. 43–48).

Choi, Y., & Lim, Y. (2016). Optimization approach for resource allocation on
cloud computing for iot. International Journal of Distributed Sensor Networks ,
2016 , 23.

Convolbo, M. W., & Chou, J. (2016). Cost-aware dag scheduling algorithms for
minimizing execution cost on cloud resources. The Journal of Supercomputing ,
72 (3), 985–1012.

Coutinho, R., Drummond, & Frota, Y. (2013). Optimization of a cloud resource
management problem from a consumer perspective. In European conference on
parallel processing (pp. 218–227).

Dai, Y., Lou, Y., & Lu, X. (2015). A task scheduling algorithm based on genetic
algorithm and ant colony optimization algorithm with multi-qos constraints in
cloud computing. In Intelligent human-machine systems and cybernetics (ihmsc),
2015 7th international conference on (Vol. 2, pp. 428–431).

Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging
optimization algorithm: theoretical foundations, analysis, and applications. In
Foundations of computational intelligence volume 3 (pp. 23–55). Springer.

Delimitrou, C., & Kozyrakis, C. (2014). Quasar: resource-efficient and qos-aware
cluster management. ACM SIGPLAN Notices , 49 (4), 127–144.

Deng, J., Huang, S. C., Han, Y. S., & Deng, J. H. (2010). Fault-tolerant and
reliable computation in cloud computing. In Globecom workshops (gc wkshps),
2010 ieee (pp. 1601–1605).

Dewangan, B. K., Agarwal, A., Marryboyina, V., & Pasricha, A. (2018). Resource
scheduling in cloud: A comparative study. International Journal of Computer
Sciences and Engineering , 6 (8), 168–173.

Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: issues and challenges.
In Advanced information networking and applications (aina), 2010 24th ieee in-
ternational conference on (pp. 27–33).

Ding, J., Zhang, Z., Ma, R. T., & Yang, Y. (2016). Auction-based cloud service
differentiation with service level objectives. Computer Networks , 94 , 231–249.

96

List of Publications

Dou, W., Xu, X., Meng, S., Zhang, X., Hu, C., Yu, S., & Yang, J. (2017). An
energy-aware virtual machine scheduling method for service qos enhancement in
clouds over big data. Concurrency and Computation: Practice and Experience,
29 (14), e3909.

Egwutuoha, I. P., Chen, S., Levy, D., & Selic, B. (2012). A fault tolerance
framework for high performance computing in cloud. In Cluster, cloud and grid
computing (ccgrid), 2012 12th ieee/acm international symposium on (pp. 709–
710).

Elster, A. C., Tzovaras, D., Petcu, D., & Morrison, J. P. (2016). Cloudlightning:
A framework for a self-organising and self-managing heterogeneous cloud.

Fang, L. X., Zhan, Z. H., Jing, D., & Chen, W. N. (2014). Energy aware virtual
machine placement scheduling in cloud computing based on ant colony opti-
mization approach. In Proceedings of the 2014 annual conference on genetic and
evolutionary computation (pp. 41–48).

Fang, Y., Chen, Q., & Xiong, N. (2018). A multi-factor monitoring fault tolerance
model based on a gpu cluster for big data processing. Information Sciences .

Fargo, F., Tunc, C., Al-Nashif, Y., Akoglu, A., & Hariri, S. (2014). Autonomic
workload and resources management of cloud computing services. In Cloud and
autonomic computing (iccac), 2014 international conference on (pp. 101–110).

Gai, K., Qiu, M., Zhao, H., Tao, L., & Zong, Z. (2016). Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing. Journal of
Network and Computer Applications , 59 , 46–54.

Gan, C. Z., Du, K.-J., Zhan, Z.-H., & Zhang, J. (2015). Deadline constrained cloud
computing resources scheduling for cost optimization based on dynamic objective
genetic algorithm. In Evolutionary computation (cec), 2015 ieee congress on (pp.
708–714).

Gang, Z. (2014). Cost-aware scheduling algorithm based on pso in cloud computing
environment. International Journal of Grid and Distributed Computing , 7 (1),
33–42.

Gao, G., Hu, H., Wen, Y., & Westphal, C. (2017). Resource provisioning and
profit maximization for transcoding in clouds: A two-timescale approach. IEEE
Transactions on Multimedia, 19 (4), 836–848.

Garg, S. K., Toosi, A. N., Gopalaiyengar, S. K., & Buyya, R. (2014). Sla-based
virtual machine management for heterogeneous workloads in a cloud datacenter.
Journal of Network and Computer Applications , 45 , 108–120.

Ghasemi, S., Meybodi, M. R., Fooladi, M. D. T., & Rahmani, A. M. (2017). A
cost-aware mechanism for optimized resource provisioning in cloud computing.
Cluster Computing , 1–14.

97

List of Publications

Ghobaei Arani, M., Jabbehdari, S., & Pourmina, M. A. (2016). An autonomic
approach for resource provisioning of cloud services. Cluster Computing , 19 (3),
1017–1036.

Ghobaei Arani, M., Jabbehdari, S., & Pourmina, M. A. (2018). An autonomic
resource provisioning approach for service-based cloud applications: A hybrid
approach. Future Generation Computer Systems , 78 , 191–210.

Gill, S. S., Chana, I., Singh, M., & Buyya, R. (2017). Chopper: an intelligent qos-
aware autonomic resource management approach for cloud computing. Cluster
Computing , 1–39.

Guo, C., & Yu, J. (2005). Particle swarm optimization algorithm. INFORMATION
AND CONTROL-SHENYANG-, 34 (3), 318.

Guo, S., Xiao, B., Yang, Y., & Yang, Y. (2016). Energy-efficient dynamic offloading
and resource scheduling in mobile cloud computing. In Infocom 2016-the 35th
annual ieee international conference on computer communications, ieee (pp. 1–
9).

Hoenisch, P., Hochreiner, C., Schuller, D., Schulte, S., Mendling, J., & Dustdar, S.
(2015). Cost-efficient scheduling of elastic processes in hybrid clouds. In Cloud
computing (cloud), 2015 ieee 8th international conference on (pp. 17–24).

Hong, Z., Jiang, H., Li, B., Liu, F., Vasilakos, A. V., & Liu, J. (2016). A frame-
work for truthful online auctions in cloud computing with heterogeneous user
demands. IEEE Transactions on Computers , 65 (3), 805–818.

Iyer, G. N., & Veeravalli, B. (2011). On the resource allocation and pricing
strategies in compute clouds using bargaining approaches. In Networks (icon),
2011 17th ieee international conference on (pp. 147–152).

Jala, J., & Ramchand, R. K. (2019). Qos-based technique for dynamic resource
allocation in cloud services. In International conference on computer networks
and communication technologies (pp. 65–73).

Jamshidi, P., Ahmad, A., & Pahl, C. (2014). Autonomic resource provisioning
for cloud-based software. In Proceedings of the 9th international symposium on
software engineering for adaptive and self-managing systems (pp. 95–104).

Jamshidi, P., Pahl, C., & Mendonça, N. C. (2016). Managing uncertainty in
autonomic cloud elasticity controllers. IEEE Cloud Computing(3), 50–60.

Jansen, W. A. (2011). Cloud hooks: Security and privacy issues in cloud com-
puting. In 2011 44th hawaii international conference on system sciences (pp.
1–10).

98

List of Publications

Jayadivya, S., Nirmala, J. S., & Bhanu, M. S. S. (2012). Fault tolerant workflow
scheduling based on replication and resubmission of tasks in cloud computing.
International Journal on Computer Science and Engineering , 4 (6), 996.

Jayaswal, K., & Shah, D. (2015). Cloud computing black book.

Jhawar, R., Piuri, V., & Santambrogio, M. (2012). A comprehensive concep-
tual system-level approach to fault tolerance in cloud computing. In Systems
conference (syscon), 2012 ieee international (pp. 1–5).

Jin, L., Song, W., & Zhuang, W. (2018). Auction-based resource allocation for
sharing cloudlets in mobile cloud computing. IEEE Transactions on Emerging
Topics in Computing , 6 (1), 45–57.

Jing, L., Zhou, J., & Buyya, R. (2015). Software rejuvenation based fault toler-
ance scheme for cloud applications. In Cloud computing (cloud), 2015 ieee 8th
international conference on (pp. 1115–1118).

Jixian, Z., Xie, N., Zhang, X., & Li, W. (2018). An online auction mechanism for
cloud computing resource allocation and pricing based on user evaluation and
cost. Future Generation Computer Systems , 89 , 286–299.

Kamal, K., & Kemafor, A. (2010). Scheduling hadoop jobs to meet deadlines. In
Cloud computing technology and science (cloudcom), 2010 ieee second interna-
tional conference on (pp. 388–392).

Kang, D. K., Kim, S. H., Youn, C. H., & Chen, M. (2014). Cost adaptive workflow
scheduling in cloud computing. In Proceedings of the 8th international conference
on ubiquitous information management and communication (p. 65).

Kansal, N. J., & Chana, I. (2015). Artificial bee colony based energy-aware re-
source utilization technique for cloud computing. Concurrency and Computation:
Practice and Experience, 27 (5), 1207–1225.

Kaur, P., & Mehta, S. (2017). Resource provisioning and work flow scheduling in
clouds using augmented shuffled frog leaping algorithm. Journal of Parallel and
Distributed Computing , 101 , 41–50.

Koch, F., Assunção, M. D., Cardonha, C., & Netto, M. A. (2016). Optimising
resource costs of cloud computing for education. Future Generation Computer
Systems , 55 , 473–479.

Kohne, A., Pasternak, D., Nagel, L., & Spinczyk, O. (2016). Evaluation of sla-
based decision strategies for vm scheduling in cloud data centers. In Proceedings
of the 3rd workshop on crosscloud infrastructures & platforms (p. 6).

Kong, W., Lei, Y., & Ma, J. (2016). Virtual machine resource scheduling algorithm
for cloud computing based on auction mechanism. Optik-International Journal
for Light and Electron Optics , 127 (12), 5099–5104.

99

List of Publications

Latiff, M. S. A., et al. (2017). A checkpointed league championship algorithm-based
cloud scheduling scheme with secure fault tolerance responsiveness. Applied Soft
Computing , 61 , 670–680.

Lee, Y. C., Wang, C., Zomaya, A. Y., & Zhou, B. B. (2010). Profit-driven service
request scheduling in clouds. In Cluster, cloud and grid computing (ccgrid), 2010
10th ieee/acm international conference on (pp. 15–24).

Licklider, J. C., & Taylor, R. W. (1968). The computer as a communication device.
Science and technology , 76 (2), 1–3.

Lin, W. Y., Lin, G.-Y., & Wei, H. Y. (2010). Dynamic auction mechanism for
cloud resource allocation. In Proceedings of the 2010 10th ieee/acm international
conference on cluster, cloud and grid computing (pp. 591–592).

Linlin, W., Garg, S. K., & Buyya, R. (2011). Sla-based resource allocation for
software as a service provider (saas) in cloud computing environments. In Pro-
ceedings of the 2011 11th ieee/acm international symposium on cluster, cloud
and grid computing (pp. 195–204).

Liu, Jin, H., Chen, J., Liu, X., Yuan, D., & Yang, Y. (2010). A compromised-time-
cost scheduling algorithm in swindew-c for instance-intensive cost-constrained
workflows on a cloud computing platform. The International Journal of High
Performance Computing Applications , 24 (4), 445–456.

Malawski, M., Juve, G., Deelman, E., & Nabrzyski, J. (2015). Algorithms for
cost-and deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds. Future Generation Computer Systems , 48 , 1–18.

Malik, S., & Huet, F. (2011). Adaptive fault tolerance in real time cloud computing.
In Services (services), 2011 ieee world congress on (pp. 280–287).

Marzband, M., Azarinejadian, F., Savaghebi, M., & Guerrero, J. M. (2017). An
optimal energy management system for islanded microgrids based on multiperiod
artificial bee colony combined with markov chain. IEEE Systems Journal , 11 (3),
1712–1722.

Meena, J., Kumar, M., & Vardhan, M. (2016). Cost effective genetic algorithm
for workflow scheduling in cloud under deadline constraint. IEEE Access , 4 ,
5065–5082.

Mehta, S., & Kaur, P. (2019). Scheduling data intensive scientific workflows in
cloud environment using nature inspired algorithms. In Nature-inspired algo-
rithms for big data frameworks (pp. 196–217). IGI Global.

Mei, J., Li, K., & Li, K. (2017). Customer-satisfaction-aware optimal multiserver
configuration for profit maximization in cloud computing. T-SUSC , 2 (1), 17–29.

100

List of Publications

Mell, P., & Grance, T. (2011). The nist definition of cloud computing, computer
security division, information technology laboratory, (nist).

Midya, S., Roy, A., Majumder, K., & Phadikar, S. (2018). Multi-objective opti-
mization technique for resource allocation and task scheduling in vehicular cloud
architecture: A hybrid adaptive nature inspired approach. Journal of Network
and Computer Applications , 103 , 58–84.

Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software,
83 , 80–98.

Mosa, A., & Paton, N. W. (2016). Optimizing virtual machine placement for
energy and sla in clouds using utility functions. Journal of Cloud Computing ,
5 (1), 17.

Moschakis, I. A., & Karatza, H. D. (2011). Performance and cost evaluation of
gang scheduling in a cloud computing system with job migrations and starvation
handling.

Nachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017). Cloud
storage reliability for big data applications: A state of the art survey. Journal
of Network and Computer Applications , 97 , 35–47.

Navimipour, N. J. (2015). Task scheduling in the cloud computing based on the
cuckoo search algorithm. International Journal of Modeling and Optimization,
5 (1), 44.

Nir, M., Matrawy, A., & St-Hilaire, M. (2018). Economic and energy considerations
for resource augmentation in mobile cloud computing. IEEE Transactions on
Cloud Computing , 6 (1), 99–113.

Omer, S., Babiker, A., & Mustafa, A. (2011). Advantages of autonomic cloud com-
puting comparitive analysis. Journal of Electrical and Electronics Engineering ,
56–60.

Oprescu, A.-M., & Kielmann, T. (2010). Bag-of-tasks scheduling under budget
constraints. In Cloud computing technology and science (cloudcom), 2010 ieee
second international conference on (pp. 351–359).

OutrightSystems. (2019). Cloud computing in business. Retrieved from https://

medium.com/@outrightsystems

Panda, S. K., & Jana, P. K. (2017). Sla-based task scheduling algorithms for
heterogeneous multi-cloud environment. The Journal of Supercomputing , 73 (6),
2730–2762.

101

https://medium.com/@outrightsystems
https://medium.com/@outrightsystems

List of Publications

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm
optimization-based heuristic for scheduling workflow applications in cloud com-
puting environments. In Advanced information networking and applications
(aina), 2010 24th ieee international conference on (pp. 400–407).

Perez Botero, D., Szefer, J., & Lee, R. B. (2013). Characterizing hypervisor vul-
nerabilities in cloud computing servers. In Proceedings of the 2013 international
workshop on security in cloud computing (pp. 3–10).

Poola, D., Ramamohanarao, K., & Buyya, R. (2014). Fault-tolerant workflow
scheduling using spot instances on clouds. Procedia Computer Science, 29 , 523–
533.

Prodan, R., Wieczorek, M., & Fard, H. M. (2011). Double auction-based scheduling
of scientific applications in distributed grid and cloud environments. Journal of
Grid Computing , 9 (4), 531–548.

Qiang, L. (2012). Applying stochastic integer programming to optimization of
resource scheduling in cloud computing. Journal of Networks , 7 (7), 1078.

Qiu, X., Dai, Y., Xiang, Y., & Xing, L. (2017). Correlation modeling and resource
optimization for cloud service with fault recovery. IEEE Transactions on Cloud
Computing(1), 1–1.

Reddy, K. S., Panwar, L. K., Kumar, R., & Panigrahi, B. (2017). Profit-based con-
ventional resource scheduling with renewable energy penetration. International
Journal of Sustainable Energy , 36 (7), 619–636.

Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud
computing systems. In Inc, ims and idc, 2009. ncm’09. fifth international joint
conference on (pp. 44–51).

Sahni, J., & Vidyarthi, D. P. (2018). A cost-effective deadline-constrained dy-
namic scheduling algorithm for scientific workflows in a cloud environment. IEEE
Transactions on Cloud Computing , 6 (1), 2–18.

Salehi, M. A., & Buyya, R. (2010). Adapting market-oriented scheduling policies
for cloud computing. In International conference on algorithms and architectures
for parallel processing (pp. 351–362).

Sampaio, A. M., & Barbosa, J. G. (2018). A comparative cost analysis of fault-
tolerance mechanisms for availability on the cloud. Sustainable Computing: In-
formatics and Systems , 19 , 315–323.

Sandholm, T., Ward, J., Balestrieri, F., & Huberman, B. A. (2015). Qos-
based pricing and scheduling of batch jobs in openstack clouds. arXiv preprint
arXiv:1504.07283 .

102

List of Publications

Saripalli, P., & Walters, B. (2010). Quirc: A quantitative impact and risk assess-
ment framework for cloud security. In Cloud computing (cloud), 2010 ieee 3rd
international conference on (pp. 280–288).

Sedaghat, M., Hernández-Rodriguez, F., & Elmroth, E. (2014). Autonomic re-
source allocation for cloud data centers: A peer to peer approach. In 2014
international conference on cloud and autonomic computing (iccac) (pp. 131–
140).

Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira Jr, F. A., Ledoux, T., & Lejeune.
(2016). Sla guarantees for cloud services. Future Generation Computer Systems ,
54 , 233–246.

Sheikhalishahi, M., Grandinetti, L., Wallace, R. M., & Vazquez-Poletti, J. L.
(2015). Autonomic resource contention-aware scheduling. Software: Practice
and Experience, 45 (2), 161–175.

Singh, S., & Chana, I. (2015). Qrsf: Qos-aware resource scheduling framework in
cloud computing. The Journal of Supercomputing , 71 (1), 241–292.

Singh, S., & Chana, I. (2016). Earth: Energy-aware autonomic resource scheduling
in cloud computing. Journal of Intelligent & Fuzzy Systems , 30 (3), 1581–1600.

Singh, S., Chana, I., & Buyya, R. (2017). Star: Sla-aware autonomic management
of cloud resources. IEEE Transactions on Cloud Computing .

Singh, S., Chana, I., Singh, M., & Buyya, R. (2016). Soccer: self-optimization of
energy-efficient cloud resources. Cluster Computing , 19 (4), 1787–1800.

Sivanandam, S., & Deepa, S. (2008). Genetic algorithm optimization problems. In
Introduction to genetic algorithms (pp. 165–209). Springer.

Son, S., & Jun, S. C. (2013). Negotiation-based flexible sla establishment with
sla-driven resource allocation in cloud computing. In Cluster, cloud and grid
computing (ccgrid), 2013 13th ieee/acm international symposium on (pp. 168–
171).

Sotomayor, B., Montero, R. S., Llorente, I. M., & Foster, I. (2009). Virtual infras-
tructure management in private and hybrid clouds. IEEE Internet computing ,
13 (5).

Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., & Wang, J. (2013). Cost-efficient
task scheduling for executing large programs in the cloud. Parallel Computing ,
39 (4-5), 177–188.

Sun, D., Zhang, G., Wu, C., Li, K., & Zheng, W. (2017). Building a fault tolerant
framework with deadline guarantee in big data stream computing environments.
Journal of Computer and System Sciences , 89 , 4–23.

103

List of Publications

Tafsiri, S. A., & Yousefi, S. (2018). Combinatorial double auction-based resource
allocation mechanism in cloud computing market. Journal of Systems and Soft-
ware, 137 , 322–334.

Tanenbaum, A. S. (2009). Modern operating system. Pearson Education, Inc.

Tang, C., Xiao, S., Wei, X., Hao, M., & Chen, W. (2018). Energy efficient and
deadline satisfied task scheduling in mobile cloud computing. In Big data and
smart computing (bigcomp), 2018 ieee international conference on (pp. 198–
205).

Tao, F., Feng, Y., Zhang, L., & Liao, T. W. (2014). Clps-ga: A case library and
pareto solution-based hybrid genetic algorithm for energy-aware cloud service
scheduling. Applied Soft Computing , 19 , 264–279.

Teng, F., & Magoules, F. (2010). Resource pricing and equilibrium allocation
policy in cloud computing. In Computer and information technology (cit), 2010
ieee 10th international conference on (pp. 195–202).

Tesfatsion, S. K., Wadbro, E., & Tordsson, J. (2016). Autonomic resource manage-
ment for optimized power and performance in multi-tenant clouds. In Autonomic
computing (icac), 2016 ieee international conference on (pp. 85–94).

Thomas, E., Zaigham, M., & Ricardo, P. (2013). Cloud computing concepts,
technology & architecture. Prentic Hall .

Um, T. W., Lee, H., Ryu, W., & Choi, J. K. (2014). Dynamic resource allocation
and scheduling for cloud-based virtual content delivery networks. ETRI Journal ,
36 (2), 197–205.

Van, H. N., Tran, F. D., & Menaud, J.-M. (2009). Autonomic virtual resource
management for service hosting platforms. In Software engineering challenges of
cloud computing, 2009. cloud’09. icse workshop on (pp. 1–8).

Van den Bossche, R., Vanmechelen, K., & Broeckhove, J. (2010). Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads. In Cloud
computing (cloud), 2010 ieee 3rd international conference on (pp. 228–235).

Vashistha, A., Kumar, S., Verma, P., & Porwal, R. (2018). A self-adaptive view on
resource management in cloud data center. In 2018 8th international conference
on cloud computing, data science & engineering (confluence) (pp. 1–5).

Viswanathan, H., Lee, E. K., Rodero, I., & Pompili, D. (2015). Uncertainty-aware
autonomic resource provisioning for mobile cloud computing. IEEE transactions
on parallel and distributed systems , 26 (8), 2363–2372.

Wang, L., Liu, M., & Meng, M. Q.-H. (2017). A hierarchical auction-based mech-
anism for real-time resource allocation in cloud robotic systems. IEEE transac-
tions on cybernetics , 47 (2), 473–484.

104

List of Publications

Weiwei, L., Liang, C., Wang, J. Z., & Buyya, R. (2014). Bandwidth-aware divisible
task scheduling for cloud computing. Software: Practice and Experience, 44 (2),
163–174.

Wen, C. Y., & Chang, J. M. (2018). Fair demand response with electric vehicles
for the cloud based energy management service. IEEE Transactions on Smart
Grid , 9 (1), 458–468.

Wenbing, Z., Melliar-Smith, P., & Moser, L. E. (2010). Fault tolerance middleware
for cloud computing. In Cloud computing (cloud), 2010 ieee 3rd international
conference on (pp. 67–74).

Wu, L., Garg, S. K., Versteeg, S., & Buyya, R. (2014). Sla-based resource pro-
visioning for hosted software-as-a-service applications in cloud computing envi-
ronments. IEEE Transactions on services computing , 7 (3), 465–485.

Xie, N., Zhang, X., & Zhang, J. (2017). A truthful auction-based mechanism for
virtual resource allocation and pricing in clouds. In Computer and communica-
tions (iccc), 2017 3rd ieee international conference on (pp. 578–582).

Xu, C.-Z., Rao, J., & Bu, X. (2012). Url: A unified reinforcement learning ap-
proach for autonomic cloud management. Journal of Parallel and Distributed
Computing , 72 (2), 95–105.

Xuejun, L., Ding, R., Liu, X., Liu, X., Zhu, E., & Zhong, Y. (2016). A dynamic
pricing reverse auction-based resource allocation mechanism in cloud workflow
systems. Scientific Programming , 2016 , 17.

Yali, Z., Calheiros, R. N., Gange, G., Ramamohanarao, K., & Buyya, R. (2015).
Sla-based resource scheduling for big data analytics as a service in cloud com-
puting environments. In Parallel processing (icpp), 2015 44th international con-
ference on (pp. 510–519).

Yang, Z., Yin, C., & Liu, Y. (2011). A cost-based resource scheduling paradigm
in cloud computing. In Parallel and distributed computing, applications and
technologies (pdcat), 2011 12th international conference on (pp. 417–422).

Yibin, L., Chen, M., Dai, W., & Qiu, M. (2017). Energy optimization with dynamic
task scheduling mobile cloud computing. IEEE Systems Journal , 11 (1), 96–105.

Yuan, H., Bi, J., Tan, W., & Li, B. H. (2017). Temporal task scheduling with
constrained service delay for profit maximization in hybrid clouds. IEEE Trans.
Automation Science and Engineering , 14 (1), 337–348.

Yusoh, Z. I. M., & Tang, M. (2012). Composite saas placement and resource opti-
mization in cloud computing using evolutionary algorithms. In Cloud computing
(cloud), 2012 ieee 5th international conference on (pp. 590–597).

105

List of Publications

Zhangjun, W., Liu, X., Ni, Z., Yuan, D., & Yang, Y. (2013). A market-oriented
hierarchical scheduling strategy in cloud workflow systems. The Journal of Su-
percomputing , 63 (1), 256–293.

Zheng, Z., Zhou, T. C., Lyu, M. R., & King, I. (2010). Ftcloud: A component
ranking framework for fault-tolerant cloud applications. In 2010 ieee 21st inter-
national symposium on software reliability engineering (pp. 398–407).

Zhipiao, L., Wang, S., Sun, Q., Zou, H., & Yang, F. (2013). Cost-aware cloud
service request scheduling for saas providers. The Computer Journal , 57 (2),
291–301.

Zhongjin, L., Ge, J., Yang, H., Huang, L., Hu, H., Hu, H., & Luo, B. (2016). A
security and cost aware scheduling algorithm for heterogeneous tasks of scientific
workflow in clouds. Future Generation Computer Systems , 65 , 140–152.

Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient
resource allocation for d2d communications underlaying cloud-ran-based lte-a
networks. IEEE Internet of Things Journal , 3 (3), 428–438.

Zuo, L., Shu, L., Dong, S., Chen, Y., & Yan, L. (2017). A multi-objective hybrid
cloud resource scheduling method based on deadline and cost constraints. IEEE
Access , 5 , 22067–22080.

106

List of Publications

107

List of Publications

108

List of Publications

109

List of Publications

110

List of Publications

111

	Declaration
	Thesis Completion Certificate
	Thesis Completion Certificate from External
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to Cloud Computing
	1.2 Evolution of Cloud Computing
	1.2.1 Cluster
	1.2.2 Distributed Computing
	1.2.3 High Performance Computing (HPC)
	1.2.4 Application Service Provider (APA)

	1.3 Cloud computing Service Models
	1.3.1 Infrastructure-as-a-Service (IaaS)
	1.3.2 Platform-as-a-Service (PaaS)
	1.3.3 Software-as-a-Service (PaaS)

	1.4 Deployment-Models
	1.4.1 The Public Cloud
	1.4.2 The Private Cloud
	1.4.3 The Community Cloud
	1.4.4 The Hybrid Cloud

	1.5 Technology behind the Cloud Computing
	1.5.1 Virtualization
	1.5.2 Hypervisors
	1.5.3 Multi-Tenancy

	1.6 Cloud Computing Challenges
	1.7 Resource Management
	1.7.1 Resource Management in Cloud
	1.7.2 Evolution of Resource Management
	1.7.3 Why Resource Management?

	1.8 Autonomic Resource-Management in Cloud
	1.8.1 Self-management
	1.8.2 Self-Configuration
	1.8.3 Self-Healing
	1.8.4 Self-Protection
	1.8.5 Self-Optimization

	1.9 Research Gaps
	1.10 Metrics for Resource Management in Cloud
	1.11 Research Motivation
	1.12 Research Objective
	1.12.1 Sub-Objectives

	1.13 Organization of Thesis
	1.14 Summary

	2 Literature Review
	2.1 Auction-Based Resource Management System (RMS)
	2.2 Energy-Based RMS
	2.3 Fault-Tolerant Based RMS
	2.3.1 Reactive Frameworks
	2.3.2 Proactive Frameworks
	2.3.3 Frameworks by Industries

	2.4 Nature and Bio Inspired RMS
	2.5 Optimization-Based RMS
	2.6 Cost-Based RMS
	2.7 Profit-Based RMS
	2.8 QoS-based RMS
	2.9 Autonomic Cloud Resource Management
	2.10 SLA-Based RMS
	2.11 Research Challenges
	2.12 Evaluvation Parameters
	2.13 Objective of the thesis
	2.14 Summary

	3 Methodology
	3.1 The Proposed Research Methodology
	3.2 Workload-Filter
	3.2.1 Workload Dataset
	3.2.2 Algorithm
	3.2.3 User-Priority based on Execution Time

	3.3 Self-optimization
	3.4 Fault-tolerant
	3.5 Resource Management
	3.6 Performance Analysis
	3.7 SMART-Architecture
	3.8 Simulation & Test Environment
	3.8.1 Simulation Environments
	3.8.2 Cloudsim Simulation Toolkit
	3.8.3 Amazon Web Services Environment

	3.9 Summary

	4 Self-optimization and Fault-tolerant Mechanism
	4.1 Self-optimization
	4.1.1 Formal Optimization Model
	4.1.2 Modified ALO based Self-optimization
	4.1.3 Modified ALO Operators
	4.1.4 Random walk of ant (initial population/ solution)
	4.1.5 Building Trap (Fitness Value)
	4.1.6 Entrapment of ant in trap
	4.1.7 Catching preys and rebuilding trap
	4.1.8 Algorithm

	4.2 Fault-tolerant Mechanism
	4.2.1 Fault Detection Procedure
	4.2.2 Threshold
	4.2.3 Algorithm

	4.3 Summary

	5 Resource Management
	5.1 Scheduling
	5.2 Algorithm
	5.2.1 Time Complexity

	5.3 Results and Analysis
	5.3.1 Performance Metrics
	5.3.2 Validation of SMART
	5.3.2.1 SOCCER
	5.3.2.2 CHOPPER

	5.3.3 Performance Analysis
	5.3.3.1 Resource Utilization by Workload
	5.3.3.2 Execution Time
	5.3.3.3 SLA Violation Rate
	5.3.3.4 Energy Consumption Rate

	5.3.4 Execution Cost
	5.3.5 Resource Cost
	5.3.6 SLA Cost
	5.3.7 Resource Utilization
	5.3.8 Execution Time
	5.3.9 Energy Consumption Rate
	5.3.10 SLA Violation Rate Analysis
	5.3.11 Cost
	5.3.11.1 Execution Cost
	5.3.11.2 Resource Cost
	5.3.11.3 SLA Cost

	5.3.12 Analysis
	5.3.13 Implementation in AWS

	5.4 Summary

	6 Conclusions and Future Work
	References

