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ABSTRACT 

  

Slurry polymerization processes using Zeigler-Natta catalysts are most widely used for 

the production of polyethylene due to their several advantages over other processes. 

Significant advancements have been made in the modeling of these processes to obtain 

high-quality final products. The modeling work in this field has a very wide scope due 

to the great diversity of the catalyst types, polymerization processes, polymerization 

conditions, product qualities, and micro-structures that exist at the commercial scale.   

This study is on the multi-scale modeling, simulation and multiobjective optimization 

in an industrial high density polyethylene (HDPE) continuous stirred tank slurry 

reactor. The multi-scale modeling framework mainly comprises of the kinetic model, 

single-particle diffusion models, multiphase hydrodynamics, phase equilibria, reactor 

residence time distribution and the overall mass and heat balances. Guidelines to 

implement the multi-scale mathematical modeling and simulation in slurry phase olefin 

polymerization processes are proposed. Special focus is given on the need to reduce 

the computational time for the simulation of industrial reactors so that the models can 

be used as an effective tool-kit for optimization studies using state-of-art algorithms. 

A hierarchical and computationally-efficient multiscale mathematical model is 

developed to explain the polymerization of HDPE in an isothermal, industrial, 

continuous stirred tank reactor (CSTR). A modified polymeric multigrain model 

(PMGM) is used. Steady-state macroscopic mass balance equations are derived for all 

the species (namely, monomer, solvent, catalyst and polymer) to obtain the final 



particle size and the required monomer and solvent input rates for a given catalyst input 

and the reactor residence time. The interphase mass transfer coefficients are calculated 

for the industrial CSTR using operating data on a reactor. The present model is tuned 

with some data on an isothermal industrial reactor and the simulation results are 

compared with data on another set of the industrial reactor. The comparison reveals 

that the present tuned model is capable of predicting the productivity and the polymer 

yield at various catalyst feed rates and mean residence times. The effects of the 

variation of two operating variables (catalyst feed rate and the mean residence time) on 

the productivity, the polymer yield, the polydispersity index (PDI) and the operational 

safety, are analyzed. The present study indicates that an optimal value of the reactor 

residence time (for maximum productivity per catalyst particle) exists at any catalyst 

feed rate.  

Optimal operating conditions are required to obtain the maximum productivity of the 

polymer at minimal cost while ensuring operational safety. The main focus of the 

optimization study is to obtain the optimal operating conditions corresponding to the 

maximization of the productivity and yield at a minimal operating cost. The single 

objective optimization (SOO) and multiobjective optimization problems are solved 

using genetic algorithm (GA). The Pareto optimal solution is obtained using the 

NSGA-II algorithm. The solution of SOO problems gives only one set of optimal 

solutions, whereas, the solution of MOO problems gives a whole range of optimal 

solutions.  
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CHAPTER 1 

INTRODUCTION 

 

Polyolefins (POs), including polyethylene (PE) and polypropylene (PP), make a 

very significant contribution to the global petrochemical economy. As per recent 

data [1], nearly 185 million metric tons per annum of polyolefins (PE and PP) are 

manufactured globally. The global PO market is expected to expand at a rate 

exceeding about 6.2% from 2019 to 2025 [2]. PE accounts for a major portion of 

about 58% of the total global production of POs. The production of such large 

volumes of PE is due to its versatile physical and mechanical properties, high 

resistance towards chemicals, non-toxicity, low cost and non-polluting production. 

The physical and mechanical properties of PE can be varied by controlling the 

reactor operating conditions, thus producing a wide variety of PE for various 

applications, e.g., films, injection molding, blow molding, extrusion molding, 

pipes, etc. [3], [4]. PE can be classified as low-density PE (LDPE) with densities 

around 910-930 kg/m3 and high-density PE (HDPE) with densities around 930-970 

kg/m3. LDPE can further be classified as low-density polyethylene (LDPE) and 

linear low-density polyethylene (LLDPE), based on the amount of chain branching 

of the molecules and the process of their synthesis.    

 

Commercially, low pressure continuous catalytic processes are employed for the 

production of PE. These processes are categorized based on the flow regime as 

slurry-phase,  gas-phase and solution processes. The slurry processes produce about 

57% of the total PE [5]. Some of the advantages of slurry processes include their 

simple design, mild operating conditions, easier temperature control, well-defined 

mixing, high (as high as 99 %) monomer conversion and relative ease of processing 

[6], [7]. The gas-phase processes face the challenge of poor heat removal due to a 

relatively lower heat transfer coefficient compared to the slurry phase. The average 
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catalyst particle size is much bigger in the gas phase (50-300 micron) compared to 

the slurry phase (5-20 micron) and this results in a relatively higher intraparticle 

heat transfer resistance in the gas phase ethylene polymerization processes. In 

addition to poor heat removal, gas phase processes produce more off-spec (off-

specification) of the polymer during grade change-over. The generation of 

excessive fines in the product and relatively low-profit margins. This makes the gas 

phase processes less competitive compared to the slurry phase processes. Solution 

processes operate at relatively high temperatures (140 – 250oC) and pressures 

(3,500 – 10,500 kPa) and are mainly used for the production of LLDPE. With the 

growing commercial demand for the slurry processes, especially due to their 

advantages, a comprehensive understanding of slurry phase polymerization 

processes is vital for academia as well as the industrial community. 

The most widely used catalyst for ethylene polymerization is heterogeneous 

Zeigler-Natta (Z-N) catalysts [8]. Metallocenes catalysts and chromium oxide-

based Phillips catalysts are versatile for ethylene polymerization but their market 

share is quite low compared to the heterogeneous Z-N catalysts. The Z-N catalysts 

are typically supported on high specific surface crystalline magnesium dichloride 

and amorphous silica. A high specific surface provides several highly accessible 

active sites. These active sites maximize catalyst productivity. The metallocenes 

and Phillips catalysts are typically supported on silica or alumina/silica.  

The objective of this work is not the catalyst synthesis and its characterization, but 

equally important research aspects in this area. This work is focused on the 

development of a mathematical model to understand the polymerization of high-

density polyethylene (HDPE) in an isothermal, industrial, continuous stirred tank 

slurry reactor (CSTR). In recent years, considerable effort has been made by several 

workers to develop the mathematical model of ethylene polymerization in various 

reactor systems. These modeling studies are primarily focused on the prediction of 

the molecular weight distributions (MWDs), chemical composition distributions 

(CCDs) and the particle size distribution (PSD) of the final product. A multi-scale 
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computationally-efficient mathematical model is developed in this work to explain 

the polymerization of high-density polyethylene (HDPE) in an isothermal, 

industrial, continuous stirred tank slurry reactor (CSTR). This model is not only for 

the prediction of the behavior of an industrial slurry reactor for the ethylene 

polymerization process but also can be used as an effective tool for process 

optimization studies. To develop a mathematical model for the ethylene 

polymerization process, a clear understanding of the process is vital. The following 

section discusses the slurry phase ethylene polymerization processes and highlights 

their advantages and limitations.  

1.1 SLURRY PHASE ETHYLENE POLYMERIZATION PROCESSES    

The slurry processes employ either continuous stirred tank reactors (CSTRs) or 

loop reactors. Some major licensors of the CSTRs based slurry processes are Mitsui 

(CX® process) and LyondellBasell (Hostalen® process). Whereas, major licensors 

of the loop reactors-based slurry processes are Chevron-Phillips (MarTECH®) and 

BP Solvay. CSTRs based slurry processes are mainly used for the production of 

HDPE. Loop reactors are used for the production of both HDPE and LDPE.  

1.1.1 SLURRY POLYMERIZATION IN CSTRs   

 

The slurry polymerization of ethylene in CSTRs involves a suspension of catalyst, 

co-catalyst and solvent. These are injected into the reactor along with the gaseous 

monomer, comonomer, hydrogen and the liquid solvent. A typical flowchart of 

slurry polymerization in CSTR slurry processes is shown in Fig. 1.1.  The 

monomer, comonomer and hydrogen partially dissolve in the liquid solvent 

(medium) and diffuse from the gaseous bubble to the suspended solid catalyst 

particles (through the liquid medium). The polymerization occurs at the active sites 

on the inside of the catalyst and the polymer builds upon these catalyst particles. 

Thus, the (initially) smaller catalyst particles grow to larger polymer particles as 

the reaction progresses. The reaction mass, thus, comprises the gas bubble phase, 

the liquid phase and the solid polymer particles, a three-phase region. The unreacted 
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gases accumulate in the vapor space at the top of the reactor. The vapor space, thus, 

consists of vapors of monomer, solvent, comonomer and hydrogen.  The reactor, 

therefore, consists of two gaseous regimes, one at the top of the reactor in the 

continuous vapor space and the other in the form of gas bubbles in the three-phase 

region of the reaction mass [9].     

 

 

Fig. 1. 1 A typical flowchart of slurry polyethylene polymerization is CSTR 

 

The amount of solids present in the slurry is a very important factor in these 

processes. A higher solids concentration corresponds to a higher throughput per 

reactor volume. A typical solid concentration in the slurry varies from 15 - 45% 

[7]. Slurry from the reactor outlet enters the separation and drying sections. Here, 

the polymer slurry is separated from the solvent, unreacted monomer and low 

molecular weight polymer (oligomer or wax). A part of the solvent may be recycled 

to the reactor and the rest goes to the solvent recovery section. Here, the oligomer 

(by-product) is recovered and the separated solvent is returned to the solvent 

recovery section. Meanwhile, the polymer powder from the drying section 

undergoes mixing and pelletizing, followed by the packaging of the pellets.             

Slurry polymerization in CSTRs provides a wide range of multi-modal HDPE. The 

operating conditions (temperature, pressure, ethylene partial pressure and the molar 
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ratio of hydrogen to ethylene) of all the reactors can be controlled independently to 

obtain the final product with different specifications. Depending on the product 

requirement, CSTRs can be operated using different cascade arrangements. 

Reactors can be operated in a parallel mode using identical operating conditions 

giving fairly narrow MWDs (almost a unimodal product, for injection-molding). 

Reactors operating in series-cascades and operating under different conditions with 

a low hydrogen content in the second reactor give broad MWD (bimodal) HDPE 

[10].  

 

The polymerization of olefins is highly exothermic, with the heat of reaction of the 

order of 105 kJ/kmol [11]. Therefore, efficient heat removal and temperature control 

in the reactor is very important to ensure product quality and specifications. Hence, 

the reactors are equipped with different heat removal mechanisms for efficient heat 

removal and good temperature control. The main difference between the Mitsui 

(CX) process and the LyondellBasell Hostalen process lies in the mode of heat 

removal. In the Hostalen process, the heat of polymerization is removed by cooling 

water in a jacket whereas, in the CX process, jacket cooling water can remove only 

about 10% of the total heat, the remaining 90% of the heat is removed in an 

overhead condenser (by condensing the solvent vapor) and external slurry coolers.     

Hostalen Process:    

The Hostalen process is a very popular technology for the production of bimodal 

HDPE. This process uses cascades of slurry CSTRs for producing high-quality 

HDPE products having a range of MWDs (from narrow to broad). The rate of 

polymerization, polymer yield and MWDs are controlled using the concentrations 

of monomer, comonomer and hydrogen and the type and concentration of the 

catalyst [12]. 

Depending on the requirement of the final product, the reactors in this process can 

be operated in three different modes, namely, the BM process mode, the K1 process 

mode and the K2 process mode. A typical flowchart of the BM process mode for 

Hostalen process is shown in Fig. 1.2. In the BM process mode, three reactors are 
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arranged in series in a cascade with different operating conditions. The catalyst and 

cocatalyst are injected only into the first reactor whereas, the monomer, solvent and 

hydrogen are independently fed to each of the reactors. A higher concentration of 

hydrogen is maintained in the first reactor while the second reactor uses a lower 

hydrogen concentration to produce bimodal and multimodal HDPE grades. A small 

amount of comonomer is fed to the second reactor to control the density of the final 

product. The slurry from the second reactor enters a post reactor to reduce the 

unreacted monomer, hence eliminating its recovery using separation and drying 

sections. In the K1 process mode, reactors are operated in parallel and use identical 

operating conditions to give a narrow MWD product. The K2 process mode is also 

a parallel mode of operation with different operating conditions in each of the 

reactors. This mode produces a bimodal MWD product.       

 

The main advantages of the Hostalen processes are the self-stabilization of the 

process, accurate reproducibility of polymerization, easy scale-up and low 

operating costs [10], [12]. 

 

Fig. 1. 2 A typical flowchart of the BM process mode for Hostalen process (adapted 

from reference, [10])     
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CX Process: 

 

This process consists of two CSTRs of equal capacity arranged in series or parallel. 

The solvent is hexane, while the comonomers are propylene and butene-1. 

Hydrogen is used as the chain transfer agent. There are three ways of heat removal 

in this process, overhead condenser, cooling water in the reactor jacket and external 

slurry coolers. A major portion (nearly 60%) of heat is removed using an overhead 

condenser in which the vapor from the top of the reactor is condensed and recycled 

to the reactor. The remaining heat is removed via cooling water in a jacket and 

external cooling of the slurry. The reactor is continuously fed with the catalyst 

(MgCl2 supported Zeigler-Natta), cocatalyst (triethyl aluminium) suspended in 

hexane and fresh hexane.   

 

The slurry from the reactors enters a centrifuge which separates the polymer from 

the mother liquor. A part of the mother liquor (which contains a small amount of 

unreacted monomer and catalyst) is recycled to the reactor without any purification 

and the rest goes to the solvent recovery section where the oligomers are separated 

from the hexane.   

 

A typical flow chart for the series and parallel modes of CSTRs in the CX process 

is illustrated in Fig. 1.3. In the series mode, the slurry from the first reactor enters 

the second reactor along with fresh ethylene, comonomer and hydrogen [13]. In 

this mode, a high molar ratio of hydrogen to ethylene concentration is maintained 

in the first reactor and a small molar ratio of hydrogen to ethylene concentration is 

maintained in the second reactor. The yield of the polymer on the catalyst is usually 

very high and, therefore, the separation of catalyst from the polymer is unnecessary. 

A comparison between the Hostalen process and the CX process is given in Table 

1.1. In the parallel mode, catalyst and cocatalyst are fed to both the reactors. The 

slurry from both the reactors enters a flash vessel where the unreacted hydrocarbons 
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are removed and recycled to the reactor. The slurry from the flash vessel enters the 

centrifuge followed by the drying, mixing, pelletizing and packaging sections.   

  

Table 1. 1 A comparison between the Hostalen process and CX process 

 Hostalen process CX process 

Reactor type 2-3 CSTRs 2 CSTRs 

Reactor configuration 

BM (series) 

K1 (parallel) 

K2 (parallel) 

 

Series and parallel 

Pressure, kPa 200-800 300-1000 

Temperature, oC 76-85 75-85 

Solvent hexane hexane 

Residence time 

per reactor 
1-5 hr 45 min-2 hr 

Heat removal reactor jacket cooling 

overhead condenser 

reactor jacket cooling and 

external slurry cooling 

Ethylene conversion (%) up to 99.5 % up to 99% 

Polymer grades bimodal and trimodal bimodal 

Wax generation < 0.5 % ~ 1% 

 

The advantages of the CSTRs-based slurry processes are unmatched product 

quality, low-cost production, excellent process stability, safe behavior of the 

process, environment-friendly operation and a wide range of product-producing 

capability. The main disadvantages of CSTR slurry phase processes are wax 

generation and relatively poor mixing and temperature control with high slurry 

concentration.     

 

1.1.2 SLURRY POLYMERIZATION IN LOOP REACTORS   

 

Loop reactors are jacketed tubular reactors with recycle. The Chevron-Phillips 

slurry loop reactors use the reactor temperature and other operating conditions to 
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control the MWD, whereas the BP Solvay slurry loop reactors use hydrogen for 

molecular weight control. The Chevron-Phillips process uses all three major 

families of catalysts. A high-yield supported chromium-based catalyst is used to 

produce medium to broad MWD PE, a supported ZN catalyst produces narrow 

MWD PE and metallocene catalysts are used to produce a very narrow MWD PE 

[10]. In contrast, the BP Solvay process uses supported ZN catalysts [14].   

The slurry loop reactor operates at pressures of 3,000-9,000 kPa, and temperatures 

of 70-120 oC [6]. The mean residence time of the loop reactor is 1.5-2 hrs. The solid 

concentration in the slurry varies from 18-50%. The heat of polymerization is 

removed by the countercurrent flow of cooling water in a jacket. The operating 

temperature range inside the reactor does not allow the polymer to melt and, 

therefore, form a slurry of discrete particles in the liquid diluent.  

A typical industrial slurry cascade-loop reactor in a series arrangement is shown in 

Fig. 1.4.  In loop reactors, the catalyst suspension, monomer, comonomer, solvent 

and the anti-fouling agent are continuously fed using an axial pump placed near the 

bottom of the reactor. This axial pump is designed to maintain a high fluid velocity 

(5-7 m/s) ensuring adequate mixing and turbulence inside the reactor to facilitate 

sufficient heat removal from the reactor mixture [6], [15]. Moreover, high fluid 

velocity prevents solid deposition on the inner tube-wall even at high slurry 

concentrations. However, a higher velocity also increases the pumping cost and the 

pressure drop.   

The main advantage of the slurry loop reactor over the CSTRs is the efficient 

mixing and heat removal even at higher solid concentrations. Other advantages of 

the slurry loop reactors are high monomer conversion, uniform reactor content, 

quick grade transition, low power consumption, no wax generation and higher 

profit margins. Some major limitations of the slurry loop reactors include unstable 

start-up, fouling, concentration gradient at low slurry velocities and inability to 

produce some of the LLDPE grades. A brief comparison between the CSTR slurry 
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polymerization and the loop reactor slurry polymerization is summarized in Table 

1.2.       

 

 

Fig. 1. 3 Schematic of an industrial slurry-phase loop reactor series  
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Table 1. 2 A comparison between the CSTR slurry polymerization and the loop 

reactor slurry polymerization of ethylene 

  

Reactor type 

Slurry phase ethylene 

polymerization in CSTRs 

Slurry phase ethylene polymerization in loop 

reactors  

Solvent n-hexane 
iso-butane, iso-pentane, n-pentane, propane, 

neopentane and n-hexane  

Co-monomer Propylene and 1-butene 1-hexene and 1-butene 

Catalyst Supported Z-N 
Supported Z-N, supported chromium based, 

metallocenes  

Cocatalyst Triethyl aluminium Triethyl aluminium 

Reactor temperature, oC 75-85 70-120 

Reactor pressure, kPa 300-1000 3,000-9,000 

Average residence time, 

hr 
1.5-3 0.5-1 

Overall conversion, % 
CX: 95-99 

Hostalen: 95-99.5  
upto 99.5 % 

Product MWD 

CX: freely controlled from narrow 

to very wide Hostalen: definite 

MWD from narrow to broad  

Very narrow to wide MWD 

Density, kg/m3 930-970 920-970 

Melt index, g/10 min 0.01-80 0.01-100  

 Heat removal 

CX: overhead condenser, reactor 

jacket and external slurry cooling 

Hostalen: jacket cooling 

  

jacket cooling 

Product HDPE HDPE and some of the LLDPE grades 

solid concentration in 

the slurry 
15-45 wt. % up to 60 wt. % 
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1.2  MATHEMATICAL MODELING   

 

 A mathematical model is the conceptualization of the real process. The process 

model is useful in performance improvement, process safety, process optimization 

and process control [16], [17]. In recent years, considerable effort has been made 

by several workers to develop the mathematical model of olefin polymerization in 

various reactor systems. These modeling studies are primarily focused on the 

prediction of the MWDs, CCDs and the particle size distribution (PSD) of the final 

product. To develop a model that can predict the physical and chemical properties 

of the final product, a clear understanding of the physics and chemistry of the 

relevant phenomena is required at multiple length scales namely, microscale, 

mesoscale and macroscale [18], [19].   

 

1.3 MOTIVATION FOR THE PRESENT WORK  

 

The work reported [20]–[25] on the modeling of ethylene polymerization is limited 

to the micro and meso levels. Only a few studies [6], [26], [27] developed a 

complete model for olefin polymerization. Sarkar and Gupta [27] developed a 

model for polypropylene polymerization in CSTRs. However, their simulation was 

not validated against any experimental/industrial data. The model of Touloupides 

et al. [6] for a loop olefin reactor was also not validated against any experimental 

data. The model of Casalini et al. [26] for polyethylene polymerization in a series 

of CSTRs, indeed, was validated against a set of experimental data. This study used 

the MGM with multisite catalysts along with a segregated residence time 

distribution (RTD) model to describe the effect of RTD on the polymer properties. 

The MGM itself requires significantly high computational times than the PMGM 

for the simulation of an industrial reactor [24]. Considering the reactor residence 

time distribution in a model will significantly increase the simulation time. The 

computational time will further increase by incorporating a family of sites. The high 
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computational times of such a model limits its use for optimization studies. Thus, 

there is a need to develop a computationally efficient reactor model that requires 

lower computational times for the simulation of industrial reactors, without losing 

much in terms of the accuracy in its prediction capability. The investigation of 

reactor operating variables requires a model that is tuned and validated against 

several sets of experimental or industrial data. The multi-objective optimization 

study on a computationally efficient reactor model is required to obtain the optimal 

operating conditions. 

 

1.4 OBJECTIVES  

 

The objectives of this work are as follows  

1) To develop a computationally-efficient multi-scale mathematical model for 

an industrial high-density polyethylene (HDPE) slurry phase continuous 

stirred tank slurry reactor (CSTR).  

2) To develop a MATLABTM code for the simulation of the developed model. 

3) Tuning of the model using the industrial data.  

4) Validation of tuned model with the industrial data.  

5) The investigation of reactor operating variables on the productivity, 

polymer yield, plant safety and the product polydispersity index.   

6) The multi-objective optimization study of the industrial HDPE continuous 

CSTR using the tuned model  

1.5 ORGANISATION OF THE THESIS  

 

This thesis is divided into six chapters. Chapter 1 presents an overview of the slurry 

phase ethylene polymerization processes, underlines the motivation of the present 

work and sets the objective of this work. In chapter 2, a detailed literature review 

is presented on the multi-scale mathematical modeling and simulation approach of 

the ethylene polymerization in slurry reactors. Guidelines to implement the multi-
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scale mathematical modeling and simulation in slurry phase olefin polymerization 

processes are also proposed. Special focus is given on the need to reduce the 

computational effort for the simulation of industrial reactors so that the models can 

be used as an effective tool-kit for optimization studies using state-of-art 

algorithms. Chapter 3 is focused on the development of a computationally efficient 

multi-scale mathematical for an industrial slurry phase high-density polyethylene 

reactor. This chapter also covers the computational procedure for the simulation of 

the reactor model followed by the tuning of the developed model with the available 

industrial data. Chapter 4 deals with the optimization aspects and formulation of 

the optimization problems. In chapter 5, the key results are discussed which 

comprises the validation of the reactor model with the available industrial data on 

an industrial reactor, the sensitivity analysis of the tuned model concerning the 

tuning parameters and the multi-objective optimization study. Special focus is 

given on the study of the effects of the variation of operating variables on 

productivity, the polymer yield, the polydispersity index (PDI), and operational 

safety. Chapter 6 discusses the conclusions of the thesis followed by the 

opportunities for future work. 
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 CHAPTER 2 

MULTI-SCALE MODELING AND SIMULATION APPROACH 

  

Mathematical modeling of a polymerization process requires a complete 

understanding of the various physical and chemical phenomena at various scales. 

The model equations for a polymerization process are used to describe the 

phenomena of mass and heat transport, the reaction kinetics, phase equilibria and 

reactor hydrodynamics. The process model is useful in performance improvement, 

process safety, process optimization and process control [16], [17].      

 

The polymerization reaction begins when the monomer reaches an active site 

through pores of the catalyst.  As soon as the polymer accumulates at the active 

sites, the local stress build-up at different points. This leads to the fragmentation of 

the original catalyst into microparticles. The process continues until the entire 

catalyst particle disintegrates into several fragments. These fragments are also 

referred to as microparticles, catalyst sub-particles, micro-grains, or primary 

particles. The microparticles remain in-tact with the polymer which is already 

formed due to the polymerization reaction. As the reaction proceeds, a layer of 

polymer grows around every microparticle and, consequently, these microparticles 

with the surrounding polymers undergo radial expansion [28], [29]. This process 

continues as long as the particles remain inside the reactor or until the catalyst is 

completely deactivated. The mechanism of catalyst fragmentation is well 

documented for the heterogeneous Z-N catalysts [30]–[34] and the Phillips 

catalysts [35], [36]. The ideal fragmentation phenomenon is called replication. The 

particle size distribution of the final product after the polymerization in a batch or 

semi-batch reactor replicates the particle size distribution of the original catalyst 

particle entering the reactor. Ideal replication is supposed to be achieved when there 
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is an appropriate balance between the mechanical properties of the particle and 

catalyst activity [11].    

 

In recent years, considerable effort has been made by several workers to develop 

the mathematical model of olefin polymerization in various reactor systems. These 

modeling studies are primarily focused on the prediction of the MWDs, CCDs and 

the particle size distribution (PSD) of the final product. To develop a model that 

can predict the physical and chemical properties of the final product, a clear 

understanding of the physics and chemistry of the relevant phenomena is required 

at multiple length scales. The ethylene polymerization processes can be modeled at 

three different length scales [18], [19], namely, microscale, mesoscale and 

macroscale. Modeling at a microscale level includes the chemical kinetics, chain 

growth and its composition, molecular weights and its distribution, etc. Modeling 

at a mesoscale mainly comprises of intra-particle mass and energy transport and 

phase equilibria. Modeling at macroscale levels mainly consists of component 

balances, overall material and energy balances and the reactor residence time 

distribution (RTD). Each length scale emphasizes the phenomena at specific levels. 

However, there is no dividing line between these levels of modeling A complete 

model for a polymerization process includes modeling at all three scales.  The 

following sections discuss the multi-scale modeling and simulation approach for 

the slurry phase ethylene polymerization processes.  

 

2.1 KINETIC MODEL (MICRO-SCALE MODEL)      

 

A general kinetic model of heterogeneous Z-N polymerization may include a series 

of elementary steps. A general kinetic model may include the following elementary 

steps:     

 



17 
 
 

− Site activation 

− Chain initiation 

− Chain propagation 

− Chain transfer 

− Chain transformation 

− Site deactivation and 

− Reversible catalytic inhibition 

 

Different workers have proposed different elementary reactions to model these 

elementary steps. Table 2.1 gives a brief review of the different elementary 

reactions proposed by different workers for each of the elementary steps. A 

generalized kinetic model of olefin polymerization processes is given in Table 2.2. 

This table consists of all the proposed elementary reactions by different workers 

(Table 2.1) for each of the elementary steps in the polymerization process. Every 

elementary reaction has a distinct kinetic rate constant.  

 It is observed in Table 2.1 that some workers [37] [5] proposed the comprehensive 

kinetic model which comprises almost all possible elementary reactions of the 

generalized kinetic model (Table 2.2). Zacca and Ray [15] proposed a simplified 

kinetic model. This simplified kinetic model includes site activation by co-catalyst, 

chain propagation, chain transfer to monomer and hydrogen, spontaneous site 

deactivation and site transformation by a co-catalyst. This model has been used by 

several workers [6], [38], [39] in this field. A comprehensive kinetic model 

proposed by Kissin and co-workers [40], [41] was used by Pladis et al. [42] to study 

catalytic olefin copolymerization in a series of CSTRs. Several workers simplified 

the kinetic model by eliminating site activation [17], [22], [43]–[45] or chain 

transfer [22], [44], [46]. Some workers also eliminated the site deactivation step 

[23], [47] in their kinetic model.   
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Table 2. 1 A brief review of the kinetic model used in olefin polymerization 

processes 

Elementary 

step 

Elementary 

reaction 

References* 

[48] [24] [15] [37] [41] [5] [46] [17] [49] [6] [45] [50] [51] [20] 

Site 

activation 

by co-catalyst ✓  ✓ ✓ ✓ ✓   ✓ ✓  ✓ ✓  

by hydrogen    ✓ ✓ ✓         

by monomer    ✓  ✓ ✓        

spontaneous    ✓  ✓        ✓ 

  

Chain   

Initiation  

monomer 
✓ ✓  ✓ ✓ ✓   ✓ ✓ ✓  ✓  

  

Chain 

propagation 
monomer 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Chain  

 transfer 

to co-catalyst 
   ✓ ✓   ✓       

to hydrogen ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓  

to monomer ✓  ✓ ✓ ✓ ✓  ✓   ✓  ✓ ✓ 

β-hydride     ✓          

spontaneous ✓  ✓ ✓  ✓  ✓  ✓ ✓    

Chain 

transformation 

to co-catalyst 
  ✓ ✓           

to hydrogen    ✓  ✓         

to monomer    ✓           

spontaneous    ✓  ✓         

Site 

deactivation 

by co-catalyst 
     ✓         

by hydrogen    ✓  ✓         

by monomer    ✓           

by poison ✓    ✓ ✓         

spontaneous ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Reversible 

catalyst 

inhibition 

By hydrogen             ✓  
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Table 2. 2 A generalized kinetic model of olefin polymerization 

Site activation 

By co-catalyst: [cocat]
k
actkk k

P oC P+ ⎯⎯→    

By hydrogen:  2

2

k
aHkk k

P oC H P+ ⎯⎯⎯→   

By monomer:  
k
aMi

kk k

P i o iC M P M+ ⎯⎯⎯→ +   

Spontaneous:   
k
aSPkk k

P oC P⎯⎯⎯→  

Chain initiation by monomer i:  

in,

1,

k
ikk k

o i iP M P+ ⎯⎯→  

Site transformation 

To hydrogen:  , 2 0

k
tHkk m k

n i nP H P D+ ⎯⎯→ +  

To co-catalyst: , 0[cocat]
k
tcocatkk m k

n i nP P D+ ⎯⎯⎯→ +   

To solvent: , 0

k
tSkk m k

n i nP S P D+ ⎯⎯→ +  

Spontaneous: , 0

k
tSPkk m k

n i nP P D⎯⎯→ +  

Chain Propagation 

By monomer i = 1:    

p,11

p,21

,1 1 1,1

,2 1 1,1

k

k

kk k

n n

kk k

n n

P M P

P M P

+

+

+ ⎯⎯⎯→

+ ⎯⎯⎯→
  

By monomer i = 2:   

p,12

p,22

,1 2 1,2

,2 2 1,2

k

k

kk k

n n

kk k

n n

P M P

P M P

+

+

+ ⎯⎯⎯→

+ ⎯⎯⎯→
  

 

Reversible catalyst inhibition by hydrogen  

22

k k

P PHC H C+   

Chain Transfer 

To hydrogen: , 2 0

k
trHkk k k

n i nP H P D+ ⎯⎯⎯→ +   

To monomer: 
,

, 1,

k
trM ikk k k

n i i i nP M P D+ ⎯⎯⎯→ +  

Spontaneous: 
,

, 0

k
trSP ikk k k

n i nP P D⎯⎯⎯→ +   

To co-catalyst: , 0[cocat]
k
trcocatkk k k

n i nP P D+ ⎯⎯⎯→ +  

To solvent: , 0

k
trSkk k k

n i nP S P D+ ⎯⎯→ +  

 β- hydride elimination: ,i 0

k
trkk k k

n nP P D =⎯⎯→ +  

Site deactivation  

By hydrogen: , 2

k
dHkk k k

n i d nP H C D+ ⎯⎯→ +  

By co-catalyst: , [cocat]
k
dHkk k k

n i d nP C D+ ⎯⎯→ +  

By monomer: ,

,

k
dM ijkk k k

n i j d nP M C D+ ⎯⎯⎯→ +  

By by-product: ,

k
dBkk k k

n i d nP B C D+ ⎯⎯→ +  

Spontaneous: 
,

,

k
dSP ikk k k

n i d nP C D⎯⎯⎯→ +  

 

Based on the literature review (Table 2.1), it is observed that a majority of workers 

employed chain initiation, chain propagation, chain transfer and site deactivation 

as elementary steps in their kinetic model. Chain propagation is an essential 

elementary reaction employed in all kinetic models. Chain transfer to monomer and 

hydrogen and spontaneous site deactivation are commonly used in the kinetic 

model. In recent studies, site activation by co-catalyst [26], [50], [51] and reversible 
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catalytic inhibition by hydrogen [26], [50], [51] are also employed as elementary 

reactions.    

 

2.1.1 MULTIPLE ACTIVE SITES vs. SINGLE SITE IN A KINETIC 

MODEL   

 

The kinetic model using a heterogeneous Z-N catalyst often uses multiple active 

sites, each with a distinct kinetic rate constant. The use of multiple sites in the 

kinetic model leads to a broad MWD in the predictions. The experimental evidence 

[32], [52] also supports the presence of multiple active sites in the Z-N catalyst. 

The kinetic behavior of Z-N catalytic olefin polymerization using multiple sites is 

described by several workers [6], [44], [47], [53][37]. Touloupides et al. [6] 

suggested that five to six active sites may be required to describe the breadth in the 

MWD in olefin polymerizations using heterogeneous Z-N catalysts. However, a 

kinetic model using multiple active sites significantly increases the number of 

kinetic parameters involved in the model. The computational time for the 

simulation of an industrial reactor is significantly increased by increasing the 

number of active sites in the kinetic model. Modeling the actual behavior of Z-N 

catalysts in terms of the rate of polymerization and the PDIs of the final product 

using a small number of kinetic parameters is also a big challenge. One way to 

reduce the number of kinetic parameters in a model is to lump the active sites [54]. 

In the lumped active site model, each site can be assumed to be activated using 

different mechanisms (e.g., by co-catalyst, hydrogen, etc.) to give distinct active 

centers. In this way, even a single site or a two-site kinetic model with multiple 

active centers can provide a satisfactory prediction of the MWDs and PDIs [54]. 

This will significantly reduce the number of kinetic parameters. 

In contrast, the use of a single-site catalyst in a kinetic model [24][22][55] kinetic 

model can be used for the accurate prediction of the rate of polymerization and 

polymer yield, multiple sites are generally incorporated in the kinetic model to 
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predict broadness in the MWD. The lumped active site model [54]using a single 

catalytic site can also predict some broadness in the MWD. A single site kinetic 

model also results in a decrease in the number of kinetic parameters to be estimated. 

This leads to a drastic reduction in the computational time for the simulation of the 

industrial reactor. Small computational time is vital for a model to be useful for 

optimization studies. The multi-objective optimization (MOO) [56], [57] study is a 

computationally rigorous activity. In reality, the MOO problem has to be solved 

several times with different combinations of algorithmic parameters to confirm the 

convergence of the results. Thus, the time consumed in a single simulation is crucial 

for solving MOO problems. Therefore, a balance between accuracy and simplicity 

is required for kinetic models to be used for optimization studies. A simplified 

lumped site model using a single catalytic active site and a smaller number of 

kinetic parameters can make a reasonable balance between accuracy and simplicity.  

 

2.1.2 ESTIMATION OF KINETIC PARAMETERS  

 

As discussed earlier, a kinetic model using multiple active sites significantly 

increases the number of kinetic parameters involved in the model. Employing a 

generalized kinetic model (e.g., Table 2.2), also requires the estimation of several 

kinetic parameters. Generally, the values of the kinetic parameters are not disclosed 

in the literature. Although some of the values of the kinetic parameters may be 

available in the literature, wide ranges of their values are reported. Besides, the 

parameters not only depend on the kinetic mechanism but also the specific catalysts 

and co-catalysts. A small difference in catalyst composition may result in 

significant variations in the values of the kinetic parameters and consequently, the 

polymer properties. The olefin polymerization processes use a large number of high 

activity catalysts with different compositions and morphology for the production of 

polymer with various specifications. With the continuous evolution in catalyst 

technology, the reported values cannot be directly used with much confidence. An 
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accurate estimation of kinetic parameters is a challenging and computationally 

expensive task. A computationally efficient parameter estimation technique is vital 

to develop a kinetic model that is to be used for the prediction of product 

specifications with high accuracy at the industrial scale. 

In the past, considerable effort has been made by several workers to estimate the 

kinetic parameters for olefin polymerization processes. The reported procedures 

involve the estimation of kinetic parameters using experimental/industrial data on 

a batch, semi-batch and continuous reactors. The experimental data related to 

polymer microstructure and MWDs are obtained using gel permeation 

chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR) and 

nuclear magnetic resonance (NMR) spectroscopy [58]. The experimental/industrial 

data obtained from these techniques are used to estimate the best-fit values of the 

kinetic parameters. The best-fit values are generally obtained by tuning using a trial 

and error technique [59] or using error minimization via evolutionary algorithms 

[56], [57] so that the model predictions match with the experimental data-sets. 

Another approach to estimate the kinetic data may include the least-squares 

technique [60], nonlinear programming (NLP) techniques [61] and multi-response 

linear regression using the maximum likelihood estimation approach [60], [62], etc. 

These approaches are also used for parameter estimation, data reduction and 

optimization studies [63]. Table 2.3 presents a brief overview of the techniques 

used for the estimation of a large number of kinetic parameters in olefin 

polymerization processes.       
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Table 2. 3 A brief overview of the techniques used for the estimation of kinetic 

parameters 

Source of data Catalyst Parameter estimation procedures/techniques Ref. 

Gas-phase olefin 

copolymerization in 

batch, semi-batch and 

continuous reactor 

data 

 

Transition 

metal 

catalyst 

Analytical equations are derived to estimate the kinetic 

parameters and reactivity ratio of the active sites 
[64] 

Computational 

experiment data 

Transition 

metal 

catalyst 

Two online estimation techniques are used namely, 

extended Kalman filter (EKF) and a non-linear 

programming technique (nonlinear dynamic parameter 

estimator) to estimate the kinetic parameters 

 

[61] 

Cascade stirred 

reactors for ethylene-

propylene 

copolymerization  

 

Z-N 

catalyst 

 

The least-square technique is used to estimate kinetic 

parameters 
[65] 

Commercial slurry 

phase, CSTRs for 

HDPE  

 

Z-N 

catalyst 

A two-step manual iterative algorithm is developed to 

estimate a large number of kinetic parameters 
[38] 

Gas-phase PP 

polymerization in a 

stirred-bed reactor  

 

Z-N 

catalyst 

A two-step manual iterative algorithm is used to estimate 

a large number of kinetic parameters 
[66] 

Industrial slurry phase 

ethylene 

polymerization in 

reactor trains  

 

Z-N 

catalyst 

A non-linear optimization procedure subjected to hard and 

soft constraints is used to estimate a large number of 

kinetic parameters 

[67] 

Experimental data on 

ethylene/1-olefin 

copolymerization 

process  

 

Z-N 

catalyst 

Simultaneous deconvolution of MWD and the CCD and 

minimization of the sum of the square of error using the 

genetic algorithm is used 

[68] 

Industrial slurry phase 

series CSTRs for 

HDPE 

Z-N 

catalyst 

A multistep method by formulating three non-linear 

programmings is developed to estimate the kinetic 

parameters using the MWDs deconvolution 

 

[13] 

Co-polymerization of 

ethylene and 1,9-

decadiene in a semi-

batch reactor 

Metalloce

ne catalyst 

An online data-driven strategy using retrospective cost 

model refinement algorithm is used for estimation of 

kinetic parameters 

[69] 

  

Some workers [38], [45] have used a two-step iterative technique to estimate the 

kinetic rate constants. In the first step, a single site catalyst was used to model all 
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the reactions except the MWDs and the PDI of the polymer so that the model 

predictions match with plant data. In the second step, multi-site modeling is 

incorporated to match the model-predicted MWDs and PDI with the plant data. The 

rate constant for chain transfer to hydrogen and monomer were adjusted to match 

the molecular weights at each active site. This approach is useful to handle the large 

number of kinetic parameters resulting from the consideration of multiple active 

site catalysts. A recent study [70] developed a technique for deconvolution and the 

estimation of the kinetic parameters based on the MWD, CCD and characterization 

techniques (GPC-IR, C-13 NMR spectroscopy, fractionation). In this study, the 

technique used was validated using a Monte Carlo simulation-based case study.   

Kinetic modeling is a theoretical conceptualization of the real polymerization 

process. Estimation of kinetic parameters using the approach described above may 

lead to impractical outcomes [59]. Therefore, the parameters estimation approaches 

are not universal but process-dependent and may be unsuitable under particular 

conditions.  Thus, further study is required in this field to develop a methodology 

that is suitable for most of the catalysts and processes for the accurate and efficient 

estimation of kinetic parameters.    

2.1.3 A SIMPLIFIED KINETIC MODEL  

 

A simplified kinetic model comprises only important kinetic parameters. Based on 

the literature review, a simplified kinetic model is proposed (see Table 2.4) for the 

olefin polymerization processes. The corresponding moment equations are also 

given in Table 2.4. A similar (or slightly modified) kinetic model with two active 

sites can be used to predict the actual behavior of ZN catalysts in most olefin 

polymerization processes. The number of kinetic parameters is significantly 

reduced using such simplified kinetic models. Some workers [24], [27] [9], [21], 

[22], [55] also used single active sites to model olefin polymerization processes.    
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2.1.4 METHOD OF MOMENTS  

 

The (kinetic) model equations can be solved using the method of moments. This is 

a deterministic modeling technique to obtain the various moments of the live 

polymer chains and the dead chains produced at the catalyst sites. This method 

reduces a large number of mass balance equations into a much smaller and 

manageable number (using a fewer number of moments). This is a simple and 

computationally inexpensive method to determine the average MWD and the PDI. 

This method has been employed by several research groups [9], [24], [25], [71], 

[72] due to its simplicity and easy implementation.  

Table 2. 4 A simplified kinetic model and the corresponding moment equations 

Kinetic Scheme Moment Equations 

Site activation by co-

catalyst   

[cocat]
k
actkk k

P oC P+ ⎯⎯→     

Chain initiation  

1

k
inkk k

oP M P+ ⎯⎯→      

Chain propagation  

p

1

kkk k

n nP M P ++ ⎯⎯→   

Chain Transfer  

To hydrogen: 

2 0

k
trHkk k k

n nP H P D+ ⎯⎯⎯→ +   

To monomer: 

0

k
trMkk k k

n nP M P D+ ⎯⎯⎯→ +   

Site deactivation 

Spontaneous: 

k
dSPkk k k

n d nP C D⎯⎯⎯→ +  

( ) ( )0

0 0 0 2 0

k

k k k k k k k k k k k

in trM dsP trM trH P Pk P k P M k k M k H k M k M
t


 


= + − + + + +


   

( ) ( )1
0 0 1 2 0 1( )

k
k k k k k k k k k k k k

in trM dsP trM trH P Pk P k P M k k M k H k M k M
t


  


= + − + + + + +


  

( ) ( )2
0 0 2 2 0 1 2( 2 )

k
k k k k k k k k k k k k k

in trM dsP trM trH P Pk P k P M k k M k H k M k M
t


   


= + − + + + + + +


  

( )0

0 2

k

k k k k

dsP trM trHk k M k H
t




= + +


  

( )1
1 2

k
k k k k

dsP trM trHk k M k H
t




= + +


   

( )2
2 2

k
k k k k

dsP trM trHk k M k H
t




= + +


 , k = 1, 2, . . (depending on the number of site type) 

 

  

The moment equations in Table 2.4 are solved to obtain the values of the first three 

moments of the live chains, k

l , and of the dead chains,  k

l  (l = 0, 1, 2). The 
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average molecular properties such as the number average molecular weight, Mn, the 

weight average molecular weight, Mw, and the polydispersity index, PDI, can be 

obtained as,    

1 1

1
n

0 0

1

( )

( )

s

s

N
k k

k

N
k k

k

M MW





=

=

 
+  

 =
 

+  
 




       (2.1) 

2 2

1
W

1 1

1

( )

( )

s

s

N
k k

k

N
k k

k

M MW





=

=

 
+  

 =
 

+  
 




       (2.2) 

W

n

M
PDI

M
=          (2.3) 

       

Another method to obtain the MWD and PDI of the polymer is by using population 

balances (Dubé et al. 1997, Mantzaris et al. 2002) and the method of instantaneous 

distribution [75] using Flory’s [76] most probable distribution. The interested 

reader is referred to a review article [75] for these methods.  

 

2.2 SINGLE PARTICLE MODELS (MESO-SCALE MODEL)    

  

2.2.1 OVERVIEW OF SINGLE PARTICLE MODELS  

 

Modeling at the mesoscale primarily deals with intraparticle monomer and thermal 

diffusion. This leads to the intraparticle monomer concentration gradient and 

temperature gradient. The state-of-the-art single-particle models for olefin 

polymerization are at the heart of this scale of modeling. The single-particle models 

are classified as particle morphology models and performance models [11]. The 

particle morphology models [77]–[86] are mainly focused on the phenomena of 
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catalyst fragmentation and morphology development. The performance models are 

used to predict the rate of polymerization and polymer properties such as the 

MWDs and PDI [24], [27], [87], [88]. This model considers the radial variation in 

the local monomer concentration, responsible for the broad MWD in the formation 

of the polymer. The radial thermal gradient inside the macroparticle also alters the 

rate of reaction by altering the kinetic rate constants and results in the formation of 

a polymer with a broad MWD. The particle morphology models have been recently 

reviewed by Alizadeh and McKenna [29] and will not be discussed in this review. 

Table 2. 5 Salient features of single-particle models 

MGM [26], [89]–[91]  PFM [20], [92]–[94] PMGM [24], [27], [55] RPPFM [6], [95] 

Assumes fragmentation 

of the original catalyst 

into microparticles  

Considers the 

dispersion of catalyst 

fragments in a 

polymer continuum 

Combines the 

continuum theory of 

the PFM and 

microstructural feature 

of the MGM 

Combines the features 

of the PFM and the 

concept of random pore 

diffusion through the 

porous catalyst  

Considers two levels of 

diffusion coefficients, 

microparticle diffusion 

and macroparticle 

diffusion 

Considers only 

macroparticle 

diffusion 

Considers 

instantaneous catalyst 

fragmentation into 

microparticles and their 

expansion like MGM 

Considers two levels of 

diffusion, diffusion 

through pores of the 

macroparticle and also 

through the amorphous 

phase of the semi-

crystalline polymer  

Considers the 

intraparticle monomer 

concentration gradient 

and temperature gradient 

in the radial direction 

Considered as a 

simplified pseudo-

homogeneous MGM 

Considers only 

macroparticle diffusion 

Considers the 

intraparticle monomer 

concentration gradient 

and temperature 

gradient in the radial 

direction  

Considers the 

intraparticle monomer 

concentration gradient 

and temperature 

gradient in the radial 

direction 

Considers the 

intraparticle monomer 

concentration gradient 

and temperature 

gradient in the radial 

direction 

Includes the effect of 

monomer transport by 

convection through the 

pores of the growing 

macroparticle  

  

Several single-particle models have been proposed in the literature. These include 

the multigrain model, MGM, the polymeric flow model, PFM, the polymeric 

multigrain model, PMGM and the random pore polymeric flow model, RPPFM. 
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Table 2.5 summarizes the salient features of single-particle models. Out of these 

models, the MGM and PFM are the most employed models at single-particle levels. 

The PMGM and RPPFM have also evolved from these two models. 

 

2.2.2 MATHEMATICAL MODELING AT SINGLE PARTICLE LEVEL 

 

The MGM gives a detailed and realistic picture of the particle growth by expansion 

due to polymerization. This model can incorporate the heterogeneous nature of 

active sites and considers the fragmentation of the catalyst into microparticles and 

their expansion during polymerization. The original catalyst particles are assumed 

to be aggregates of a large number of smaller microparticles with the active sites 

present on their surface. The microparticles are assumed, for simplification, to be 

arranged in a spherical shell to form close-packed layers in the macroparticle 

(Figure 2.1).   

As the polymerization proceeds, a layer of polymer grows around every 

microparticle and, consequently, these microparticles with the surrounding 

polymers undergo radial expansion [11], [29]. This process continues as long as the 

particles remain inside the reactor or until the catalyst is completely deactivated. 

The mechanism of catalyst fragmentation is well documented for the heterogeneous 

ZN catalysts [30], [32]–[34], [96] and the Phillips catalysts [35], [97]. The ideal 

fragmentation process is called replication. This states that the particle size 

distribution of the final product after the polymerization in a batch or semi-batch 

reactor replicates the particle size distribution of the original catalyst particle 

entering the reactor [11]. The MGM considers that the incoming monomer has to 

first diffuse through the pores of the macroparticles to reach the polymer surface 

surrounding the microparticle. Thereafter, the monomer has to diffuse through the 

polymer layer to the active sites present at the surface of the microparticles (Figure 

2.1). Thus, the MGM considers two levels of diffusional resistance and particle 
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morphology. The newly formed polymer chains push the previous layer and 

consequently, the macroparticle grows as the reaction progresses.   

             

Fig. 2. 1 Schematic of the PFM and the MGM (adapted from references [11], [24], 

[95]) 

The PFM considers that the fragmented catalyst and the polymer chains form a 

continuum. Thus, the diffusion of monomer takes place through the pseudo-

homogeneous polymer matrix (Figure 2.1). This model is considered as the 

simplified pseudo-homogeneous multigrain model. The major difference between 

the PFM and MGM is that the diffusivity at the microparticle level is neglected in 

the PFM whereas the MGM considers the different values of diffusion coefficients 

at both the macroparticle level and the microparticle level.  

The mathematical modeling at the intraparticle level is a typical diffusion-reaction 

problem in which the monomer gradient exists only in the radial direction.  

Likewise, intraparticle thermal gradients also exist in only the radial direction but 

the direction of heat transport is opposite to that of the monomer transport.  

The intraparticle mass balance equations for monomer for the diffusion inside a 

macroparticle can be given as follows  
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where 
mpD  and 

mpM are the diffusivity of monomer and monomer concentration 

in the macroparticle, vR  is the rate of monomer consumption per unit volume of the 

macroparticle, 
1sk  is the mass transfer coefficient, 

0M ,
,inmpM and 

bM are the initial 

monomer concentration in the macroparticle, monomer concentration at the liquid 

solid interface and monomer concentration in the bulk of the liquid, respectively. 

The diffusivity of the monomer in the macroparticle, 
mpD , can be expressed in 

terms of the monomer diffusivity in the pure liquid, DL , the catalyst porosity, 

and the catalyst tortuosity,  , as follows 

Dmp LD



=          (2.8)  

The mass balance equation of monomer for the diffusion inside the polymers 

around the microparticle can be given as  
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BC 2 :         p p eqr R M M  = =       (2.12)  

 Here 
pD ,

pM 
 and 

pR
 are the diffusivity of monomer, the concentration of 

monomer and rate of monomer consumption in the polymeric shell around a 

microparticle, respectively, cfr is the radius of the catalyst after fragmentation and 

μR is the radius of polymeric shell around the microparticle. 
0M and

eqM are the 

initial monomer concentration and the equilibrium monomer concentration at the 

surface of the polymeric shell around the microparticle. The value of 
pD  is 

obtained in terms of the diffusivity of monomer in the amorphous phase, 
ampD , and 

the correction factors, α and β, using the equation proposed in the literature [98]–

[100],  

amp

P

D
D


=          (2.13)  

The rate of polymerization at the microparticle, 
μpR , can be obtained as   

*

P PR k C M =         (2.14) 

where Pk is the propagation rate constant, *C is the concentration of active sites at 

the surface of the microparticle and M is the monomer concentration at the active 

site.   

The intraparticle heat balance equation at the macroparticle level is given as   
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where   and 
,P mpC  are the density and specific heat capacity of the macroparticle, 

PH  is the heat of polymerization, h and 
mpk are the heat transfer coefficient and 

the thermal conductivity and 0T  and 
mpT are the initial temperature and 

temperature of the macroparticle, respectively at any time, t.  

Similarly, the heat balance equation at the microparticle level is given as   
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where 
,P pC 

 and 
pk  are the specific heat capacity and the thermal conductivity of 

the polymeric shell around the microparticle, respectively. 
0T and 

pT are the 

initial temperature and the temperature of the polymeric shell around the 

microparticle at any time, t.   

The PMGM [24], [25] combines the attributes of the PFM and the MGM. The 

effective diffusivity in the macroparticle in PMGM is obtained by multiplying the 

diffusivity in the pure polymer and the volume fraction of polymer in the 

macroparticle and can be given as  

, 1 c
eff PMGM Poly

P

V
D D

V

 
= − 

 
       (2.23) 

        

Kanellopoulos et al. [95] developed a modified PFM using the concept of random 

pore diffusion through the porous catalyst [101]. They referred to their model as 
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the random pore polymer flow model, RPPFM. This model also includes the 

intraparticle monomer transport through convection as suggested by Kittilsen et al. 

[102] . The intraparticle monomer balance using this model can be given as 

2
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This model (RPPFM) also considers the dual diffusion of monomer through the 

pores of the macroparticle and also through the amorphous phase of the semi-

crystalline polymer. At the beginning of the polymerization process, when the 

catalyst undergoes fragmentation, monomer transport takes place through the 

highly porous pseudo-homogeneous network of the catalysts and polymer. As the 

polymerization progresses, the particle morphology changes and the monomer has 

to diffuse through the permeable amorphous phase of the particle since the 

crystalline phase is (almost) impermeable to the monomer. The effective diffusivity 

for this model can be given as   

, 2
(1 )(1 3 )o P

eff RPPFM ij iD D D


 


= + − +      (2.28)  

Here, 
o

ijD  is the gas phase binary diffusion of component i in presence of 

component j using the Chapman and Enskog equation and P

iD is the diffusivity of 

component, i, in the amorphous phase. Table 2.6 summarizes the mathematical 

model equations, prediction capabilities, advantages and limitations of the single-

particle models.     
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Table 2. 6 A comparison between the various single-particle models (mesoscale) 

 MGM PFM  PMGM RPPFM 

Mass balance 
Eq. 2.4-2.7 

Eq. 2.9-2.12  
Eq. 2.4-2.7  Eq. 2.4-2.7  Eq. 2.24-2.27 

 Heat balance 
Eq. 2.15-2.18 

Eq. 2.19-2.22 

Eq.2.15-2.18 

 

Eq. 2.15-2.18 

 

Eq. 2.15-2.18 

 

Effective 

diffusivity 

Eq. 2.8  

Eq. 2.13  
Eq. 2.8 Eq. 2.23 Eq. 2.28 

Prediction 

capabilities 

predicts a high rate of 

polymerization  

predicts a lower rate of 

polymerization 

compared to the MGM  

predicts a lower rate 

of polymerization 

predicts a high rate of 

polymerization  

predicts broad MWD predicts less broad 

MWD 

predicts narrow to 

broad MWD 

predicts less broad 

MWD 

predicts PDI: up to 45 predicts PDI: 4-9 predicts PDI: 4- 10 PDI: not reported 

Advantages 

a most realistic and 

detailed description of 

the single-particle model 

considered as the 

simplified version of 

MGM 

incorporates the 

salient features of 

both PFM and MGM this model links the 

rate of diffusion to the 

evolution of particle 

morphology 

predictions match well 

with the values at 

industrial scale both 

qualitative and 

quantitative 

predictions match well 

with the values at the 

industrial scale 

qualitatively but not 

quantitatively 

computationally 

efficient than MGM 

for the simulation of 

industrial reactors 

Limitations 

the experimental 

evidence for most of the 

supported olefin 

catalysts do not support 

the phenomena of 

replication considered in 

the model  

fails to describe the 

particle morphology 

for most of the 

polymerization 

processes using 

supported Z-N and 

Phillips catalyst 

predicts the low rate 

of polymerization  

the effective 

diffusivity is difficult 

to calculate as it 

depends on the 

porosity which varies 

with time, the 

composition of the 

continuous phase and 

the nature of the 

polymerization 

reaction. This limits 

the use of this model 

for several 

polymerization 

processes on an 

industrial scale 

 

two levels of structural 

organization (micro and 

macro) makes this model 

complex and 

computationally 

expensive 
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2.2.3 THE COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS   
  

A fundamental understanding of reactor hydrodynamics is vital to ensure the 

maximum yield, productivity, product quality and smooth reactor operation. The 

non-ideal behavior of the slurry phase polyolefin reactors results in the 

heterogeneity in the flow field [103], non-uniform solid distribution (slug 

formation) [104], [105] and non-uniform temperature field [106]. These 

phenomena influence the polymer properties, yield and reactor safety. A 

fundamental understanding of these phenomena requires the modeling of solid-

liquid hydrodynamics at the mesoscale. Modeling the hydrodynamics at the 

mesoscale requires solving the equations of momentum, mass and heat transport 

using extensive numerical techniques and large-scale computing capabilities. 

Computational fluid dynamics (CFD) is a promising tool for modeling the 

hydrodynamics of multiphase flow in olefin reactors at the mesoscale level. 

Hydrodynamic modeling using CFD has been extensively studied for the gas-solid 

flow in fluidized bed reactor [107]–[110]. Khan et al.  [111] have reviewed the CFD 

modeling for the gas-solid flow in the fluidized bed reactor. Hydrodynamic 

modeling using CFD has also been studied for the liquid-solid flow in the slurry 

loop reactor in the recent past [105], [106], [112], [113]. However, an extensive 

review of the liquid-solid flow in the slurry reactor has not been published in the 

open literature to the best of our knowledge.      

Hydrodynamic modeling of the two-phase flow using CFD is done using either the 

Eulerian-Lagrangian or Eulerian-Eulerian approach. The Eulerian-Lagrangian 

approach in polyolefin reactors considers the liquid or gas phase (continuous) in 

the Eulerian frame of reference and tracks the solid particles in the Lagrangian 

frame of reference. The Eulerian-Eulerian approach considers both phases 

(liquid/gas and solid) as a continuum (i.e., two-fluid model) and solves the 

momentum and mass balance equations for each phase.  Most studies in the CFD 

modeling of polyolefin reactors have employed the Eulerian-Eulerian two-fluid 

model. These models involve the k-ε turbulence model, the kinetic theory of 
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granular flow (KTGF), and drag models [103], [105], [112], [114]. The k-ε 

turbulence model consists of two transport equations and is used to characterize the 

turbulent flow in slurry reactors. The KTGF is used to obtain the solid shear-strain 

tensor and considers the particle-particle collisions in the solid phase [104], [105]. 

The drag models [108], [114], [115] are used to describe the momentum exchange 

between the solid and the liquid phases. In addition, the particle swelling [105], 

[116] is modeled by incorporating the species transport in the two-fluid model. This 

accounts for the diffusion of liquid into the amorphous region of the semi-

crystalline polymer particles [105]. In the recent past, the CFD models have been 

employed to understand the fluid dynamics, particle swelling and segregation, 

cohesive force-induced particle agglomeration, etc., in the slurry loop reactors. 

Table 2.7 presents a review of the CFD modeling approach applied to model the 

solid-liquid hydrodynamics at mesoscale in the slurry reactors.    

  

  

Table 2. 7 Application of the CFD modeling approach for liquid-solid 

hydrodynamics 

Research 

aspect 

Reactor/ 

system 
CFD approach Main findings Reference 

Modeling of 

slugging regime 

Solid-liquid 

fluidization 

experimental 

set-up 

 

Eulerian- Eulerian 

KTGF, Gidaspow drag 

law 

The pressure drop was found 

to be higher than the 

theoretical values for all fluid 

velocities. This was in 

agreement with the 

experimental values for the 

slugging regime. 

[117] 

Model prediction 

of bed voidage 

Solid-liquid 

(glass-water) 

experimental 

fluidization set 

up 

Eulerian-Eulerian two-

fluid model, Wen and 

Yu drag law and 

Gidaspow drag law 

CFD simulations were in 

reasonable agreement 

(within 5%) with the 

experimental results. 

[118] 

3D-modeling of 

solid-liquid flow 

hydrodynamics 

Tubular loop 

reactor 

Eulerian-Eulerian two-

fluid model, KTGF, 

Gidaspow drag model 

The solid hold-up was found 

to be uniform for small 

particles and high circulation 

fluid velocity. The model 

predicted data of pressure 

gradient were found to agree 

with the classical calculated 

data.  

[103] 
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3D-modeling of 

temperature field 

Tubular loop 

reactor (pilot-

scale) 

Eulerian-Eulerian two-

fluid model, KTGF, 

Gidaspow drag model 

and heat balance 

equations 

The temperature distribution 

was found uniform in the 

ascending straight pipe 

section and asymmetric in 

the upper curve section of the 

tubular reactor. The reactor 

temperature decreases with 

the increase in the circulation 

velocity and increases with 

the increase in the slurry 

concentration. 

[106] 

Effect of drag 

correlations and 

mass force on 

solid-liquid 

hydrodynamics 

Solid-liquid 

experimental 

fluidization 

set-up 

Two fluid-model, 

KTGF with added mass 

force in momentum 

equations, and drag 

models (Gidaspow, 

Wen and Yu (1966) and 

Beetstra et al. (2007)) 

The drag model by Beetstra 

et al. (2007) showed the best 

prediction of solid holdup 

with the experimental data. 

The mass force in 

momentum balance showed a 

significant effect on solid-

liquid hydrodynamics and 

should not be ignored. 

[119] 

2D CFD-PBM 

coupled modeling 

for flow field and 

the PSD 

Tubular loop 

reactor (pilot-

scale) 

PBM and quadrature 

method of moments, 

Algebraic slip mixture 

model, KTGF, 

Gidaspow drag model 

The particle aggregation and 

breakage resulted in a broad 

PSD and a small volume 

average mean diameter of the 

particle. A larger average 

particle diameter and a 

broader PSD resulted in the 

non-uniform slurry velocity 

distribution. 

[120] 

Solid-phase 

dispersion, 

segregation and 

formation of 

polymer slugs 

8-leg slurry 

loop reactor 

Eulerian-Eulerian two-

fluid model, KTGF, 

Gidaspow drag model 

Large particles (2.5 mm in 

average diameter) tended to 

segregate and form large 

slugs and led to reactor 

blockage and operational 

instability. 

[112] 

Effect of slug 

dynamics on the 

reactor operation 

8-leg slurry 

loop reactor 

Eulerian-Eulerian two-

fluid model, KTGF, 

Gidaspow drag model 

The slug formation led to 

severe fluctuations in the 

average solid volume 

fractions, flow velocities and 

pump pressure. This led to 

operational instabilities. A 

mitigation method to ensure 

mixing in the transverse 

direction was proposed. 

[113] 

Modeling of 

particle swelling 

and aggregation 

Slurry loop 

reactor and 

stirred tank 

reactor 

Swelling-dependent 

two-fluid model, 

KTGF, k-ε turbulence 

model, Gidaspow drag 

model and population 

balance equation 

This model was able to 

describe the swelling and 

aggregation of solid 

particles. The model 

predicted a gradual increase 

and a sharp increase in the 

power consumption in a 

stirred tank and a loop 

reactor, respectively. 

[105] 
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Particle 

agglomeration 

due to cohesive 

forces between 

swollen PE 

particles 

Slurry loop 

reactor 

Eulerian-Lagrangian 

model (CFD-DEM), 

simplified Johnson-

Kendall-Roberts 

model for cohesive 

forces 

The surface cohesive energy 

density for the swollen PE 

particles was measured to be 

in between 4000 J/m3 and 

5000 J/m3 

[121] 

  

The advancement in computational power and developments in computationally 

efficient CFD codes have motivated the research community to employ the CFD 

models in olefin polymerization reactors. A complete reactor model of the olefin 

polymerization reactor requires combining the kinetic model, intra-particle mass 

and heat diffusion with the CFD hydrodynamic model. A complex kinetic model is 

required to predict the molecular weight distribution and PDI. This requires large-

scale computations. Thus, the simulation of a complete reactor model using CFD 

is a big challenge to be used for process optimization and control [122]. Most of 

the reported work on CFD analysis of a complete reactor is limited to the lab or 

pilot scale. It is also a major challenge to develop and validate a complete reactor 

model using CFD for a large-scale industrial reactor.  

 

2.2.4 PHASE EQUILIBRIA AND THERMODYNAMIC PROPERTIES  

 

The slurry reactors for the polymerization of olefin are multi-phase systems. These 

include solid macroparticles, the continuous liquid phase, the dispersed gas bubble 

phase and the vapor phase (in the case of CSTRs). At steady-state conditions, an 

equilibrium is established among these phases. The rate of polymerization and the 

polymer properties depend on the value of the equilibrium monomer concentrations 

in the different phases. These concentrations can be obtained using concepts of 

phase equilibria and the equation of state (EOS). Henry’s law [123], [124], sorption 

data [46], [125] and equations of state (EOS) [9], [27], [42], [123] have been used 

to determine the equilibrium monomer concentration in slurry reactors. The 

Sanchez-Lacombe EOS (S-L EOS), Soave-Redlich-Kwong EOS (S-R-K EOS), 

Peng-Robinson EOS (P-R EOS) and Benedict-Webb-Rubin EOS (B-W-R EOS) are 
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commonly used to estimate the equilibrium monomer concentration in slurry 

reactors.   

The S-L EOS is probably the most commonly used EOS for the calculation of 

thermodynamic properties and equilibrium concentrations of various species 

involved in olefin polymerization systems. This EOS has been used to predict the 

various thermodynamic properties of pure components and mixtures such as molar 

volumes, heat capacities, enthalpies, fugacity coefficients and various departure 

functions related to entropy, enthalpy and Gibbs free energy. The mixing rule can 

be used to predict mixture properties using the values of the pure components. The 

Chao-Seader and Scatchard-Hildebrand correlations have been used to obtain the 

activity coefficients for interphase equilibrium calculations [38].  

 

2.3 MACRO SCALE MODEL  

 

2.3.1 RESIDENCE TIME DISTRIBUTION  

 

The residence times of different macroparticles are not the same in slurry CSTRs 

due to their non-ideal behavior. The different macroparticles stay for different times 

in the reactor and hence the macroparticles will have a residence time distribution 

(RTD). The macroparticles will have different sizes and molecular weights. The 

intraparticle monomer concentration gradients are also different for microparticles 

with different residence times. The RTD can affect the final PSD and also results 

in a distribution of polymer properties [126], [127]. Thus, the effect of RTD can be 

studied along with single particle models for a better understanding of the physio-

chemical phenomena at the macroscale level. Control of the PSD is important as 

very fine particles (below about 80 µm) lead to fouling of the reactor and 

downstream processes whereas, large particles (over about 1000 µm) create melting 

problems in the barrel of extruders during processing.   
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The tanks-in-series (TIS) model [21], [27] and the segregation model [26], [128] of 

RTD have been used to study the effect of RTD on the PSD in slurry CSTRs. Soares 

and Romero [129] used Monte Carlo simulation to obtain the final PSD using an 

arbitrary RTD and initial catalyst PSD in a slurry reactor. Recently, Casalini et al.  

[26] employed the segregation model to obtain the PSD and final properties of the 

polymer from slurry CSTRs. The axial dispersion model has been employed to 

model the RTD in loop reactors [15].  

The internal age distribution, ( )I  , for N- ideal CSTRs in series using the TIS 

model is given by   

2 1
2 1( 1)

( ) e 1 ...........
2! ( 1)!

N
N NN N

I N
N

−
− − −

= + + + + 
− 

       (2.29)  

Here, θ is the dimensionless time, defined as ,
t




= and τ is the mean residence 

time of the reactor.    

The exit age distribution, ( )E  , for N ideal CSTRs in series using the TIS model 

is given by   

( ) 1 exp( )
( 1)!

N
NN

E N
N

  −= −
−

      (2.30) 

The net rate of polymerization, Rpoly (kg/h), in the reactor can be written as 

1

  0

( ) ( )poly c vR I R I d


   
=

=          (2.31) 

Here, Rv is the rate of polymer produced in kg polymer/(kg cat-h) and cI  is the 

catalyst feed rate in kg/h.     

If the number average molecular weight and the weight average molecular weight 

of the jth macroparticle are 
n,jM  and 

w,jM , respectively, the average value of the 
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number average molecular weight, Mn, and the weight average molecular weight, 

Mw, of all the macroparticles can be obtained as  

n

n,j

1

1
=

mpN

j

j

M
w

M
w=

 
 
 


         (2.32) 

w w,j

1

=
mpN

j

j

w
M M

w=

 
 
 

          (2.33) 

Here, wj and w are the mass of the jth macroparticle and the total mass of all the 

macroparticles, respectively. The total mass of all the macroparticles at the exit, w, 

can be obtained using the exit age distribution, ( )E  , as  

( ) 3 3

,0

0

4

3
e i Pw N E r r d


  



 = −        (2.34) 

Here, Ne is the number of macroparticles exiting the reactor per unit time, r  is the 

radius of macroparticles having age between  and d +  and 
,0ir  is the radius 

of the catalyst particle in the feed. Thus, the values, 
nM and wM , are calculated as  

3

,0

0

3

,0

0

( ) ( ) 1

1
( ) ( ) 1

( )

i

n

i

n

E r r d

M

E r r d
M





 

 






 − 
=
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



     (2.35) 
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,0 w

0
w

3

,0

0

( ) ( ) 1 ( )

( ) ( ) 1

i

i

E r r M d

M

E r r d





  

 





 − 
=

 − 





     (2.36) 

The segregation model assumes that the macroparticle neither aggregates nor 

breaks inside the reactor. The PSD based on the mass of the macroparticle at the 

outlet, ( )mf r , in terms of the reactor RTD, ( )E  , and the PSD of the catalyst at 

the inlet can be given as  
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( )

( )

 

,0

 0 0

,
( ) ( ) ( )

,0

o

o

r r

o

m m o o

or

m rd
f r f r E d dr

dr m r

 
 

=

=

=        (2.37) 

The PSD based on the number of macroparticles, ( )nf r , can be obtained using the 

relation [128]  

3

3

0

( ) /
( )

( ) /

n
n

n

f r r
f r

f r r dr


=

  
       (2.38) 

Any generic property of the macroparticle,  ( ; )om r r , with the initial size, 
or , to the 

final size, r , can be obtained using the age, * , of the macroparticle.  The fraction 

of particles with their initial size between 
or and  o or dr+ and the time spent between 

θ and θ + dθ is given by   

( , ) ( )E( )o n oF r f r =         (2.39) 

Introducing the exit age distribution in terms of the final particle size, ( )H r , such 

that  

( ) ( )E d H r dr  =          (2.40) 

( ) ( )
d

H r E
dr


=         (2.41) 

Further, ( )H r  can be expressed in terms of the microparticle growth factor,   (= 

p cfR r ), as   

( )
( )

o

E d
H r

r d

 


=         (2.42) 

If, minr and maxr  are the minimum and maximum size of particles entering the reactor, 

then the fraction of particles of size range between r  to r dr+  at the reactor outlet 

can be obtained as   
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The final properties can be obtained using the average kth order bulk moment, ( )k r  

(
k k= + ) as   
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Finally, the overall moment can be obtained as  

,

0

( )

r

k overall m k

r

f r dr 
=

=

=         (2.45) 

Accordingly, the final properties can be calculated using the various overall bulk 

moments as   

1,

n

0,

overall

overall

M MW



=          (2.46) 

2,

w

1,

overall

overall

M MW



=          (2.47) 

w

n

M
PDI

M
=          (2.48) 

The segregation model is simple and can be incorporated with simplified as well as 

complex mixing patterns in a reactor. Some workers [126], [130], [131] also used 

a population balance modeling (PBM) approach to characterize the final property 

of the macroparticles in gas phase reactors. The segregation model is reported to be 

computationally inexpensive [128] as compared to the PBM approach.  
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 2.3.2 MASS AND HEAT BALANCE    

 

The mass and heat balance equations for slurry phase ethylene polymerization in a 

CSTR (Figure 2.2) is given in Table 2.8. The equations are derived for the homo-

polymerization of ethylene in a CSTR. The equations can be modified for the case 

of co-polymerization. The mass balance equations for the various components are 

based on the assumption that the liquid in the CSTR is well mixed. It is also 

assumed that the monomer is not present inside the macroparticles but solvent is 

present inside them corresponding to its equilibrium solubility in the polymer.    

  

  

 

Fig. 2. 2 Schematic of slurry polymerization of ethylene in a CSTR; S: solvent, 

M: monomer, C: catalyst 
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Table 2. 8 Mass and heat balance equations at macroscale [55] 

Mass balance equations 

Components Component balance equations 

monomer M,in T L poly
 -   (1- ) ( ) -   M I Q F M MW R

dI

dt
=

 

catalyst C,in T c s,avg
 -       C I Q F f

dI

dt
=

 

polymer T c s,avg poly
-   (1 -  )     P Q F f R

dI

dt
= +

 

solvent ( )L

S,in T S T S

M

( )
 -  (1 -  ) 1 -    1S

c He PE

M MW
I Q F Q F S

dI
f

dt
 


−= −

 
− 

   

Interphase monomer transport equations 

Gas to liquid 
*

gl gl gl G L L
( )( )R k a v v M M= + −  

Liquid to solid ls ls ls L S L
( )( )

S
R k a v v M M= + −  

Inside the 

macroparticle 
( )diff ef ls L s

M
R D a v v

r


= +

  

Heat balance equation 

Component, i 
,

, ,

( )i i P i

in i out i imp jacket ext

d V C T
H H Q Q Q

dt


= − + − −

 

* The description of the symbols is given in the nomenclature  

The mass transfer coefficients and the interfacial areas used in Table 2.8 can be 

estimated using several correlations of Calderbank and Moo-Young [132] and 

Ranz-Marshall [123]. The gas-liquid interfacial area is calculated from the values 

of the gas bubble diameter and the gas hold up using the correlations of [133] given 

in the literature. The correlations for the estimation of mass transfer coefficients in 
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the slurry polymerization process are given in Table 2.9. The correlations are also 

reviewed by [134].   

Table 2. 9 Correlations for estimation of the mass transfer coefficients [55] 

k
gl
 and a

gl
  References 

Sparged vessels   
1

3
1

L 2
gl 2

L

  
0.42
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k Sc

 
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N d
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                   for F  <  0.037N                                                               
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L

P
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[123] 

  * The description of the symbols is given in the nomenclature   
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2.4 AN OUTLOOK OF THE MULTI-SCALE MODELING   

 

The multi-scale modeling in olefin polymerization processes is a complex 

amalgamation of chemical and physical interdependent effects. These effects are 

modeled at three different length scales. Thus, one of the main objectives of a multi-

scale modeling study is to understand the interdependence of the chemical reactions 

and physical transports at the different length scales and their combined effects on 

the particle evolution, rate of polymerization and product quality.   

An understanding of the intrinsic links among these effects at different length scales 

in slurry reactors is presented in Figure 2.3. The microscale modeling is mainly 

concerned with the chemical effects (i.e. kinetics, site heterogeneities, catalyst 

deactivation, etc.)  at the catalyst active sites. The chemical effects control the 

microstructural and molecular properties (MWD, CCD, PSD, bulk density, etc.)  of 

the final product at this scale. The product properties are not only affected by the 

chemical effects but also by the physical effects at the mesoscale. The liquid-solid 

hydrodynamics, sorption, swelling, interphase and intraparticle diffusional 

transport of mass and heat, etc., at the mesoscale level also play a role in 

determining the product quality and the reactor overall performance. The liquid-

solid hydrodynamics in the slurry reactor affects the solid holdup, particle size 

distribution and reactor performance. Monomer sorption into the polymer affects 

the local monomer concentration. This affects the rate of polymerization [125]. The 

particle swelling and aggregation at the mesoscale can affect the local mass and 

heat transport and consequently affect the polymer properties, rate, yield and 

reactor dynamics. Interphase mass and heat transport can have a significant impact 

on the macroparticle temperature and monomer concentration [123]. This directly 

affects the rate of polymerization and the polymer yield. Intra-particle mass and 

heat transport result in a radial variation of both the monomer concentration and the 

temperature inside a particle.  Mathematical models [24], [55], [134] have shown 

that the radial variation in the monomer concentration affects the MWD and PDI 

of the final product. This effect becomes more profound in the slurry reactors using 
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high activity catalysts as the intra-particle mass diffusion can become the rate-

limiting step. The intra-particle temperature gradient can affect the rate constants 

and reaction kinetics and thus, affect the product quality. The reactor residence time 

distribution at the macroscale level can also affect the product particle size 

distribution and the in-homogeneities in the final product.   

 

 

Fig. 2. 3 Schematic representation of the links between the chemical and physical 

effects at different length scales in the slurry phase ethylene polymerization 

processes 

Thus, a complete model for slurry phase ethylene polymerization at the industrial 

scale should consider the physicochemical effects at all three scales. It is a big 

challenge to develop a complete model for an industrial-scale reactor due to the 

added complexity at each level, the availability of the information and the cost of 

computation. Thus, the level of complexity in modeling studies should depend on 

the use of the model.   
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2.5 COMPUTATIONAL TECHNIQUES FOR THE SIMULATION OF 

MATHEMATICAL MODELS   

 

A multiscale reactor model may comprise of the kinetic model at the microscale, 

the diffusion model at the mesoscale and the RTD model equations, the overall 

balance equations, etc., at the macroscale. The kinetic model equations comprise a 

system of ODE-initial value problems (ODE-IVP) and contain only one 

independent variable, time, t. In contrast, the intraparticle balance equations 

(diffusion model) are partial differential equations (PDEs), which consist of more 

than one independent variable, generally, time, and the radius of the growing 

macroparticle. The intraparticle diffusion equations of the single-particle models 

are non-linear parabolic PDEs with Neumann boundary and initial conditions 

[137]. The overall balance equations for the steady-state and dynamic reactor 

models are generally a system of algebraic equations or a differential-algebraic 

system of equations (DAEs). A brief review of the multiscale modeling approach 

and the computational techniques used for olefin polymerization in slurry reactors 

is given in Table 2.10. The intraparticle diffusion and heat transfer equations 

(PDEs) can be reduced to a set of ODEs in time, t, using discretization methods. 

The finite difference method with unequal step size, finite element method, finite 

volume method, method of lines and the orthogonal collocation (OC) technique can 

be used to obtain the set of ODEs at the internal grid points [137]. Referring to 

Table 2.10, it can be seen that the finite difference method and the orthogonal 

collocation technique are the most widely used discretization methods for the PDEs 

in olefin polymerization processes.    
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Table 2. 10 A review on the modeling and simulation approaches 

References Modeling approach  Computational techniques (Simulation tools)  

[93] 

Kinetic model (micro) Gear’s method (DGEAR from the NAG lib.) 

PFM (meso) 
Orthogonal collocation on finite-elements (DGEAR 

from the NAG lib.) 

[24], [25] 

Kinetic model (micro) Gear’s method (DGEAR from the NAG lib.) 

PMGM (meso) Finite difference (DGEAR from the NAG lib.) 

[27] 

Kinetic model (micro) Gear’s method (LSODE from the NAG lib.) 

PMGM (meso) Finite difference (LSODE from the NAG lib.) 

Overall mass balance 

(macro) 

Modified Newton-Raphson and modified Levenberg-

Marquardt method 

RTD, Tanks in series 

(macro) 
Romberg/Gauss-Legendre quadrature 

[138] 

Kinetic model (micro) 
differential-algebraic system equation solver 

(DDASSL) 

MGM (meso) Finite difference (DDASL) 

Overall energy balance 

(macro) 
DDASSL 

[22] 

Kinetic model (micro) IVPAG from the IMSL lib. 

MGM (meso) Finite difference (IVPAG from the IMSL lib.) 

Monomer gas liquid 

balance (macro) 
Discretization and explicit method 

[139] 
PFM (meso) 

 

Method of lines (a variable co-efficient ODE solver, 

VODE in FORTRAN) 

[102] MGM (meso) 
 Finite volume (Adam-Bashforth-Moulton solver of 

order 13, ode 113 solver in MATLAB) 

[140] PFM (meso) Global collocation (DGEAR from the IMSL lib.) 

[141] PFM and MGM (meso) 
Orthogonal collocation on finite-elements 

(gPROMS simulation software) 
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[5]  Dynamic model (macro) 
Backward differentiation formula 

(implemented as MATLAB S-function in C-language) 

[95], [140] RPPFM (meso) Global collocation method 

[17] 

Kinetic model (micro) Orthogonal collocation 

MGM (meso) Orthogonal collocation 

Overall mass and energy 

balance, component 

balance (macro) 

Differential-algebraic system equation solver 

[142] 

Kinetic model (micro) Gear’s method (ode15s solver in MATLAB) 

PMGM and PMLM 

(meso) 

PMLM: Polymeric 

multilayer model 

Finite difference (ode15s solver in MATLAB) 

[143] 

MGM (meso) Finite dufference 

RTD, Tank in series 

(macro) 
Relaxation type unsteady state approach with iteration 

[144]  PMLM (meso) 
Finite difference 

(PDEPE function in MATLAB) 

[51]  

Kinetic model (micro) (ode15s solver in MATLAB) 

MGM (meso) 
Finite difference techiques (ode15s solver in 

MATLAB) 

[26] 

Kinetic model (micro) ode15s solver in MATLAB 

MGM (meso) Finite difference (ode15s solver in MATLAB) 

RTD, segregated model 

(macro) 

Numerical integration by the trapezoidal rule 

(trapz and cumtrapz algorithms in MATLAB) 

   

The discretization using the finite difference method results in a large number of 

grid points which results in an accurate and stable solution. In contrast, 

discretization using orthogonal collocation results in much fewer grid points 

compared to that in the finite difference method. The intraparticle mass balance is 
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a typical reaction-diffusion problem, the Thiele modulus playing a very important 

role. When the diffusional rate is small compared to the reaction rate (a high value 

of the Thiele modulus), discretization using finite difference requires a very fine 

mesh compared to the orthogonal collocation method. In this case, the orthogonal 

collocation method will significantly reduce the number of ODEs and the 

simulation time. Fontes and Mendis [17] highlighted the advantages of orthogonal 

collocation over the finite difference method for the simulation of the MGM. 

The ODEs in the olefin polymerization processes are generally stiff. Most of the 

ODE solvers become computationally expensive while solving stiff ODEs. Gear’s 

method [137], [145], which is based on the multistep predictor and corrector 

equations, is probably the most widely used method for the simulation of stiff ODEs 

in slurry phase olefin polymerization processes. The Rosenbrock method is also 

used to solve stiff ODEs in gas phase olefin polymerization processes [146]. 

However, the performance of this method suffers when used to achieve high 

precision. Several computer packages include DDASSL, D02EJF (old variant, 

D02EBF) from the NAG subroutine, ODEPACK (old variant, LSODE and others), 

DGEAR (in IMSL), etc., have been used in previous studies. Other ODE solvers 

like ode15s, ode 23, ode 23s, ode 23t, ode 23tb, ode45, ode 113, etc., in MATLAB 

can also be used to solve the stiff ODEs. Among these, ode 15s in MATLAB is 

currently widely used for the simulation of stiff ODEs in olefin polymerization 

processes.   

  

2.5 A GUIDELINE TO IMPLEMENT THE MATHEMATICAL MODEL 

AND SIMULATION    

 

The slurry polymerization of olefins employs either CSTRs or loop reactors. A clear 

understanding of the important aspects of slurry polymerization processes is a pre-

requisite to develop a model. Modeling approaches in CSTRs and loop reactors for 

slurry polymerization of olefins are almost the same at the micro and meso scales. 
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A general guideline to implement the mathematical model and its simulation at 

multi-scale is illustrated in Figure 2.4.    

The kinetic model is an essential part of any modeling work as it directly predicts 

the properties of the final product. A simplified kinetic model proposed in Table 

2.4 can be used to describe the microscale phenomena. The simplified kinetic 

model (Table 2.4) using two active sites each with distinct kinetic rate constants 

may be a good balance between the computational complexity and the accuracy. 

The intraparticle diffusion phenomena can be described using the single-particle 

models and the equilibrium monomer concentrations in various phases can be 

obtained using phase equilibrium considerations. A choice between the various 

single-particle models can be made by the user considering the advantages and 

disadvantages associated with the respective models as described in this article. The 

component balances and the overall material and energy balances describe the 

macro-level phenomena. 

The intraparticle diffusion equations can be reduced to a set of ODEs using the 

finite difference or orthogonal collocation approach and solved using an ODE 

solver (e.g., ode15s in MATLAB). The material balances for the various live and 

dead chains give the set of ODEs using the method of moments. The solution of the 

moment equations using an ode solver gives the various moments of the live and 

dead chains to obtain the MWDs and the PDI. Data on a lab-scale, pilot plant, or 

industrial level can be used to estimate the kinetic parameters so that the model 

predictions match with experimental/industrial data.  The overall material and 

energy balance equations are solved using an algebraic solver or a differential-

algebraic solver depending on the nature of the equations.  

Finally, the mathematical model can be solved to obtain the rate of polymerization, 

yield, and various properties of the final product. The model predictions can be 

validated using the available lab scale, pilot scale, or industrial data set. 
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Fig. 2. 4 A general flow chart for the implementation of modeling at multi-scales 

and simulation  



55 
 
 

  

 CHAPTER 3   

MULTI-SCALE MODELING AND SIMULATION FOR AN 

INDUSTRIAL SLURRY PHASE HIGH DENSITY 

POLYETHYLENE REACTOR 

Two models can be used to describe the production of polymers with broad MWDs. 

The first set of models [94], [147]–[150] suggests the presence of multiple active 

sites in the catalyst, with differences in their activities resulting in a polymer with 

broad MWDs. The second set of models [31], [90], [123], [138] considers the 

presence of transport resistances that affect the rate of monomer transport to the 

active sites of the catalyst. In the past several years, a significant number of studies 

have been reported in the open literature that focuses on the single-particle growth 

in heterogeneous Zeigler-Natta polymerizations of several monomers [49], [142]. 

Experimental observations [31] reveal that as the reaction starts, the original 

catalyst particles (macroparticles) fragment into several smaller-sized sub-particles. 

These sub-particles are called microparticles. As the reaction progresses polymer 

is formed and deposited around each microparticle. The monomer continuously 

reaches the active sites of the microparticles (through the layers of polymer already 

formed) and new layers are formed continuously.  The new polymer layer 

surrounding the microparticles radially pushes the older layers and the 

macroparticle expands radially outward. This process continues till the 

macroparticle is present inside the reactor or the catalyst is completely deactivated. 

The incoming monomer experiences a higher diffusional resistance towards the 

catalyst, as the layer of polymer around the microparticle grows and the reaction 

progresses [123], [138].   

 

Several physical models have been proposed in the literature for modeling particle 

growth in olefin polymerizations. Some of these include the solid core model, SCM 

[31], [151], the polymeric core model, PCM [92], [151], the polymeric flow model, 
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PFM [20], [85], [152], the multigrain model, MGM [26], [89]–[91], [153] and the 

polymeric multigrain model, PMGM [9], [24], [25].  

The MGM presents a very detailed and clear picture of the particle morphology 

accounting for the fragmentation of the original catalyst particle and its expansion 

as the polymerization progresses. This model incorporates catalyst break-up into 

microparticles and the diffusion of monomer through the catalyst. The MGM can 

also include the heterogeneous nature of active sites. Several workers [27–30] have 

studied the polymerization phenomena and macroparticle expansion using this 

model. The high computational time is a major disadvantage with the MGM [24], 

[25].  

 

Sarkar and Gupta [24], [25] developed a model combining the attributes of the 

polymeric flow model and the multigrain model. They referred to their model as 

the polymeric multigrain model (PMGM). They studied propylene polymerization 

in an isothermal slurry reactor using a single site, non-deactivating supported Z-N 

catalyst. Sarkar and Gupta [24] reported that higher PDIs can be predicted by using 

the PMGM with single-site non-deactivating catalysts. The PMGM was found to 

be much more computationally efficient compared to the MGM. Thus, the PMGM 

is modified and used in the present work.    

 

The PMGM developed by Sarkar and Gupta [24] uses the average radius of the 

microparticles after disintegration and then calculates the size of the original 

catalyst. The modified PMGM uses the size of the original catalyst particle before 

disintegration and calculates the average radius of the microparticle after 

disintegration. The average size of the original catalyst particle is generally known 

whereas the size of the microparticle after disintegration is based on the 

visualization of catalyst disintegration in the model. The present model uses the 

known value of the diameter of the original catalyst particle to control the size of 

the microparticle (after disintegration). The analysis of the effect of the particle size 
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distribution (PSD) of the original catalyst on the PSD of the final product will be 

easier using the known value of the diameter of the original catalyst.  

 

The tuning of the present model requires the size of the original catalyst particle as 

an input parameter. The tuned values of the model parameters depend on the size 

of the original catalyst. If the model starts with the known value of the diameter of 

microparticles then the variation in tuning parameter values will lead to different 

sizes of the original catalyst. Thus, it will complicate the tuning process of the 

developed model with industrial data. 

 

The work reported [9], [20], [22], [49], [139] on the modeling of ethylene 

polymerization is limited to the micro and meso levels. Only a few studies [6], [26], 

[27] developed a complete model for olefin polymerization. Sarkar and Gupta [27] 

developed a model for polypropylene polymerization in CSTRs. However, their 

simulation was not validated against any experimental/industrial data. The model 

of Touloupides et al. [6] for a loop olefin reactor was also not validated against any 

experimental data. The model of Casalini et al. [26] for polyethylene 

polymerization in a series of CSTRs, indeed, was validated against a set of 

experimental data. This study used the MGM with multisite catalysts along with a 

segregated residence time distribution (RTD) model to describe the effect of RTD 

on the polymer properties. The MGM itself requires significantly high 

computational times than the PMGM for the simulation of an industrial reactor [24]. 

Considering the reactor residence time distribution in a model will significantly 

increase the simulation time. The computational time will further increase by 

incorporating a family of sites. The high computational times of such a model limit 

its use for optimization studies. Thus, there is a need to develop a computationally 

efficient reactor model which requires lower computational times for the simulation 

of industrial reactors, without losing much in terms of the accuracy in its prediction 

capability. 
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In this study, a complete and computationally efficient model for an isothermal 

slurry CSTR for high-density polyethylene is developed. The modified PMGM is 

used. The present model is tuned and validated with data available on an industrial 

isothermal slurry CSTR for high-density polyethylene. The sensitivity analysis of 

the tuned model is performed to understand the effects of tuning parameters on the 

polymer productivity, polymer yields, the bulk monomer concentration, required 

monomer to solvent ratio and the polydispersity index of the final product.   

  

 3.1 REACTOR MODELING    

This study is on an isothermal, industrial slurry CSTR for high-density 

polyethylene. In this process, liquid n-hexane is used as a solvent. The volume of 

the industrial reactor is approximately 145 m3 with an internal diameter of 5.6 m. 

It is a fully baffled reactor equipped with a turbine agitator which rotates at a 

constant rate of 90 RPM.  Solid catalyst particles suspended in n-hexane, are 

introduced into the reactor at a rate that is sufficient to maintain the desired rate of 

polymerization. Ethylene (monomer) and hydrogen (chain transfer agent) are 

sparged into the reactor. These two components diffuse from the bubbles, through 

the solvent, to the catalyst surface where the polymerization takes place (inside the 

porous macroparticles).   

The reactor usually operates at temperatures of about 77 - 85 °C and pressures of 

about 7 - 8 bar [7]. The polymerization is highly exothermic and temperature 

control is critical. Most of the heat of polymerization is removed through the 

vaporization of large amounts of the solvent (n-hexane) in the slurry reactor. 

Indeed, good temperature control in the reactor requires maintaining a sufficient 

solvent-to-monomer ratio inside the reactor. It is observed from all the available 

data on the industrial reactors that the solvent-to-monomer ratio at the steady-state 

operation of the slurry phase ethylene polymerization in CSTRs is constant at 

around 1.6. This ratio is required for sufficient heat removal and to maintain the 

reactor at isothermal conditions. The reactor outlet is a slurry containing about 15 
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- 40 % solid [7] (polymer plus catalyst) and a small amount of unreacted ethylene 

and oligomers. This goes to downstream separation and drying sections, followed 

by mixing and pelletizing sections. The process has a very stable operation, good 

temperature control and a very high conversion (up to about 99 %) of ethylene.   

A multi-scale mathematical model is developed herein to explain the 

polymerization of high-density polyethylene (HDPE) in an isothermal, industrial, 

continuous stirred tank slurry reactor (CSTR). The present reactor model is based 

on the following major assumptions  

i. All the catalyst particles entering the reactor are spherical and are of the 

same average size  

ii. The reactor is operating under isothermal conditions at steady state and a 

sufficient solvent-to-monomer ratio is maintained to ensure isothermal 

conditions. The intraparticle temperature gradient is reported to be 

negligible in the open literature [157] in slurry polymerizations. Therefore, 

the particle-energy-balance is not considerd in this work  

iii. All the particles spend the same time (the mean residence time, θ) inside the 

reactor   

iv. The liquid inside the CSTR is well mixed   

v. A macroparticle leaving the reactor consists of catalyst and polymer. The 

monomer is not present inside a macroparticle coming out of the reactor 

(but unreacted monomer is present in the exit stream) 

vi. The solvent is assumed to be present only in the liquid phase in the exit 

stream. The reported value of the hexane solubility in HDPE [158] shows 

that the solvent sorption in the polymer leaving the reactor is negligible (less 

than 2% of the solvent present in the liquid phase) 

vii. Since a very small amount of hydrogen is fed to the reactor, it is not 

considered in the mass balance equation     
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3.1.1 KINETIC MODEL  

A simplified kinetic model, as proposed in the literature [24], [25], is used in this 

study. The kinetic scheme includes a series of elementary reactions, namely, chain 

initiation, propagation and chain termination through hydrogen.  This is given in 

Equations 1a – 1c. Here, P
0
 represents the active catalyst (and its concentration), M 

represents the monomer (and its concentration), Pn and Dn  represent an active site 

with a live polymer chain of length, n, and a dead polymer with chain length, n, 

respectively (and their concentrations): 

P  
0 1

k
P M P+ ⎯⎯⎯→                  (3.1a) 

P  
n 1

k
P M P

n
+ ⎯⎯⎯→

+
; n = 1, 2, . . .              (3.1b) 

1 tr  
n 2 n2

k
P H D+ ⎯⎯⎯→ ; n = 1, 2, . . .            (3.1c) 

The corresponding moment equations of the live and dead polymer chains, λ
k
 and 

μ
k
 (k = 0, 1, 2), respectively, are defined as   

k
k n

n 1

n P


= 
=

                                                                                     (3.2) 

k
k n

n 2

n D


= 
=

                                                                                                (3.3)  

The moment equations are given in Table 3.1.  

Table 3. 1 Moment Equations [24], [25] 

0th Moment (Live chain) 
0

1 2 0

d
C C

dt


= −  

1st Moment (Live chain) 
1

1 4 1

d
C C

dt


= −  

2nd Moment (Live chain) 
2

1 3 1 4 22
d

C C C
dt


 = + −  

0th Moment (Dead chain) 
0

4 0 1( )
d

C P
dt


= −  
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1st Moment (Dead chain) 
1

4 1 1( )
d

C P
dt


= −  

2nd Moment (Dead chain) 
2

4 2 1( )
d

C P
dt


= −  

Mass Balance 
1

1 3 0 2 1

dP
C C C P

dt
= − −  

where,   

*

1
 

P
C k M C=  

0.5

2 P tr 2
C k M k H= +  

3 P
C k M=  

0.5

4 tr 2
C k H=  

  

The moments, λ
k
 and μ

k
 (k = 0, 1, 2), can be used to give the number and weight 

average molecular weights, M
n and M

w
, and the polydispersity index, PDI, of the 

polymer.    

1 1

0 0

  nM MW
 

 

 +
=  

+ 
        (3.4) 

2 2

1 1

  wM MW
 

 

 +
=  

+ 
       (3.5)  

  w

n

M
PDI

M
=           (3.6)  

3.1.2 POLYMERIC MULTIGRAIN MODEL, PMGM   

The polymeric multigrain model, PMGM [9], [24], [25], describes the diffusion of 

monomer inside the catalyst macroparticles and the (radially) outward movement 

of the polymer-coated microparticles as the reaction progresses. Experimental 

observation [31] reveals that very soon after the reaction starts, the original catalyst 

particles are fragmented into several smaller-sized sub-particles. This is modeled 

as follows. We assume that at t = 0, the catalyst sub-particles (all assumed spherical) 

are arranged in close-packed spherical shells. Also, it is assumed that at t = 0, all 
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the close-packed catalyst spheres in the ith shell have the same radius, Rc,i. The 

values of Rc,i are random (and in a certain range) and are generated using a code, 

Rand, for random number generation. As the reaction progresses, polymer grows 

around each catalyst sub-particle as shown in Figure 3.1. The radius of the polymer 

coating is the same for all catalyst particles in any layer. It is also assumed that the 

number of catalyst sub-particles, Ni, in shell, i, remains constant throughout the 

polymerization. The number, Ni, of microparticles in the ith shell are calculated 

using mass balance (of the original catalyst particle before disintegration and the 

total mass of all the microparticles after disintegration), and is given by     

3 3( )(1 )
i+1 i

i 3
c,i

r r
N

R

− −
=          (3.7a)                                  

Here, the ith shell extends between radii, ri and ri+1 (ri being measured from the 

origin, which is at the center of the first catalyst sub-particle) and ε is the void 

fraction associated with close-packed spheres. It is easy to see that 

2  . . . 2
i+1 c,1 c,2 c,i

r R R R= + + +                    (3.7b) 

2  . . . 2
i c,1 c,2 c,i-1

r R R R= + + +        (3.7c)   

Here, i = 1, 2, . . . , P. 

The radius of microparticles in the ith shell are calculated using a random number 

generator, Rand, as reported  in the literature [90]:      

2- (0.5 - )

2
1- 

= + ( - )
c c,av c,max c,av - 0.125(1- )

Rand

e
R R C R R

e

 
 
 
 

    (3.8) 

0    1Rand   

  0.5;                 = -1

  0.5;                 =  1

Rand C

Rand C




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R
c,max and R

c,av are the maximum and average radii of the microparticles after 

disintegration (these parameters are obtained as described later).   

The number and weight average molecular weights of the polymer in the ith shell 

can be obtained as 

1 1
n,i

0 0

M MW

i

 

 

 +
 = 

+ 
 

  (3.9)                                   

2 2
w,i

1 1

M MW

i

 

 

 +
 = 

+ 
 

                                                                                    (3.10) 

The mean value of the number average (
n

M ) molecular weight, the weight average 

(
w

M ) molecular weight and the PDI ( PDI ) of the entire macroparticle can be 

calculated by summing up over each shell as    

1

1
i

n,

n

i1

P w

M
i

M =
 +
 
 

=  

        (3.11)  

                                                                                                    

( )
P+1

 
i w,i

i=1
w

M w M=           (3.12)                                                                                                                                        

  w

n

M
PDI

M
=           (3.13)                                                                                                                                                      

Here, w
i 
is the mass fraction of the polymer of molecular weights, M

n,i
 and M

w,i
, in 

the ith shell.  

 

The present model uses (tuned) values of the diameter of the original catalyst 

particle, D
cat

, to determine the value of R
c,av

 for a given (assumed) value of the 

number, P, of (computational) grid points shown in Figure 3.1. The exact details 

are described later. Since the present model differs slightly from the previous one 

(PMGM) we shall refer to it as the modified PMGM.   
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The macroparticle growth at any time is described using the diffusion equation for 

a single macroparticle  

1 2 = - 
ef v2t

M M
D r R

r rr

   
 

   
          (3.14a)                                                                                                                                                      

 1:    0, 0
M

BC r
r


= =


              (3.14b)                                                                                                                                   

 2 :    ,    ( -  )
P 2 ef ls L P 2

M
BC r R D k M M

r


= =

+ +
                    (3.14c)                                                                                       

IC: t = 0,  M = 0          (3.14d)                                                                                                                     

In the above equation, M is the monomer concentration inside the macroparticle at 

any radial position, r, D
ef

 is the effective diffusivity of monomer inside the 

macroparticle, M
L
 is the monomer concentration in the bulk liquid phase (outside 

the macroparticle) and k
ls
 is the mass transfer coefficient at the liquid-solid 

interface. Rv is the rate of monomer consumption per unit macroscopic volume. It 

is assumed that the chain transfer agent, hydrogen, is uniformly distributed in the 

𝑅c,1 

𝑅c,2 𝑅c,3 

𝑅c,i 

R 
h,i

 

𝑅c,P 

R 
h,P

 

R 
h,1

 

Fig. 3. 1 Catalyst sub-particles at time, t, with each catalyst microparticle 

being surrounded by a layer of polymer. Rc,i : radius of catalyst sub-particle in 

the ith shell, Rh,i : radius of macroparticle at the hypothetical grid point 
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macroparticle (due to it being a small molecule) during polymerization. The 

diffusion equation (PDE) for the single-particle (Equation 3.14) is converted into a 

set of ordinary differential equations (ODEs) at time, t. The finite-difference 

approximation with an unequal spacing of grid points [137] is used to obtain the set 

of ODEs at all the grid points. These ODEs are presented in Table 3.2. These ODEs 

are written at each of the computational grid points, i; i = 1, 2, …, P + 2. 

  

Table 3. 2 Diffusion Equations in the Macroparticle [24], [25] 

Computational 

grid point 
Diffusion Equation 

i = 1 
( )

( )

ef,1 2 11
v,1

1

6  -  
   -  

2

D M MdM
R

dt r
=



 

i = 2 to P + 1 

ef,i

i+1 i

i i-1 i i i-1

i
i-1

i i-1 i-1

2 DdM 1 1 1 1 1 1
 = M +  -  M + + M +

dt Δr + Δr Δr R Δr Δr Δr R

                                                                                              -  R

      
               
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i = P + 2 

, 2 , 2
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2 12 2

1 2 1 2

2 22 2 2 2
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    
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The computational grid points:  
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                                                R
1 = 0    

                                                              R
2 = R

c,i  

                                             
h, i h, i 1

i + 1 c,i h, i 1
2

R R
R R R

−

−

−
= + + ; i = 2, 3, …, P 

                                             P+2 h,PR R=   

     i i + 1 i
r R R = −  ;             i = 2, 3, …, P +1             

  

 

The rate of monomer consumption, R
mp

, for each macroparticle is obtained by 

summing over all its computational shells: 

4 * 3 ( ) 
mp

( )
P i 1 i c,i3 1

P
MW k C M N R

i

R


=  
+

=

                                                    (3.15)                                                                                                        

In Equation 3.15, k
P
 is the propagation rate constant, C* is the concentration of the 

catalyst active site, MW is the molecular weight of the monomer and M
i+1 is the 

monomer concentration at the (i + 1)th computational grid point. The term, R
mp, 

represents the polymer production rate of each catalyst particle (kmol/cat. particle-

s). Clearly, a higher value of R
mp is required to maximize the overall productivity 

of the polymerization process.    

 

The overall rate of monomer consumption, R
poly

, is calculated by summing over all 

the macroparticles staying inside the reactor for time, θ, the mean residence time:  

4 * 3 ( ) 
P i +1 i c,i E mp E3 1

poly

P
MW k C M N R N

i

R R N


 
 

=    = 
 = 

                      (3.16)                                                             

Here, N
E
 is the total number of catalyst particles entering the CSTR per second 

(related to I
C,in

). It is being assumed that each catalyst particle stays inside the CSTR 

for the same time, θ. 
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The polymer yield may be defined as the kg of polymer produced per kg of catalyst 

and may be expressed in terms of the diameter, D
mp

 , of the macroparticle (obtained 

from the model), the catalyst density, C , the polymer density, P , and the diameter, 

D
cat

 , of the original catalyst particle: 

33[( / 6) ]
mp E mp

Yield
3[( / 6) ] catcat C E

D N D
P P

DD N C

   

  

    
 = =
     

                                          (3.17)                                                                       

From the above equation, it is clear that for a given value of P , C  and D
cat

, the 

polymer yield increases with an increase in D
mp

. Hence, D
mp

 may be considered as 

a measure of the polymer yield (kg of polymer/kg-cat).  It is to be emphasized that 

a higher value of the polymer yield (D
mp

) is also desirable along with a higher value 

of the productivity (R
mp

). 

3.1.3 MASS TRANSFER ASPECTS 

In our study, we have considered both the liquid phase as well as the gas-bubble 

phase. The gas-bubble phase contains monomer and hydrogen (in contrast to the 

vapor phase above the slurry, which contains n-hexane, unreacted monomer and 

hydrogen). Figure 3.3 shows, schematically, the variation of the monomer 

concentration inside the reactor at pseudo-steady-state conditions. R
gl

 is the gas-to-

liquid mass transfer rate of the monomer. Similarly, R
ls is the liquid-to-

macroparticle surface (solid) mass transfer rate of the monomer. R
diff is the rate of 

diffusion of the monomer to the inside of the macroparticle. At pseudo-steady state, 

   
gl ls diff

R R R= = . These are written as  

*( )( )
gl gl gl G L L

R k a v v M M= + −        (3.18a)                                                                                                                               

( )( )
ls ls ls L S L P+2

R k a v v M M= + −                  (3.18b)                                                                                                                   

( )diff ef ls L s

M
R D a v v

r


= +


                              (3.18c)                                                                                                                          
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In Equation 3.18, k
gl

 and k
ls
 are the gas-liquid and liquid-solid mass transfer 

coefficients, a
gl

 and a
ls
 are the gas-liquid and liquid-solid interfacial areas per unit 

volume, v
G
, v

L
 and v

s
 are the total volumes of the gas, liquid and solid phases in the 

reactor volume and M
L
 and M* are the liquid-phase monomer concentration and the 

equilibrium monomer concentration corresponding to the gas-liquid interface. At 

pseudo-steady state, the rates of mass transfer are all equal and are equal to the total 

rate of polymerization (in the macroparticle), R
poly

.  

  

Fig. 3. 2 Variation of the monomer concentration inside the reactor with location, 

at any time. M* : equilibrium monomer concentration at the gas-liquid interface, 

ML: monomer concentration in bulk liquid, MP+2 : monomer concentration at the 

surface of the macroparticle 

  

The mass transfer coefficients, k
gl 

and k
ls
, and the interfacial areas, a

gl
 and a

ls
, are 

estimated using the correlations summarized in Table 2.8. The value of k
gl 

is 

calculated using the correlation of  Calderbank and Moo-Young [132] for 

mechanically agitated sparged reactors. The gas-liquid interfacial area, a
gl

, is 

calculated from the values of the gas bubble diameter, db, and the gas hold up, g , 

using the correlations [133], [135], [159] in Table 2.8. These above correlations 

   Monomer 
Concentration 

Growing macro particle Ethylene bubble 

          Liquid 

medium 

R
gl
 

𝑅
ls

 

 R 
diff 

𝑀∗ 

   ML 

𝑀P+2 
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were also used in open literatures[160] [160]. The Ranz and Marshall correlation is 

used to calculate the values of k
ls
 and a

ls.   

 

As the operating temperature in the reactor is much higher than the critical 

temperature of the monomer, we have used the concept of solubility of a gas in a 

liquid to estimate the equilibrium concentration, M*, of the monomer in the liquid. 

The partial pressure of the monomer and hydrogen in the gas phase can be related 

to the equilibrium monomer concentration in the liquid phase using [124] Henry’s 

law as 

*   
et et-hex

p H M=           (3.19a)   

2 2 2

*

H H -hex H   p H M=               (3.19b)                                                                                                                                            

Here, et-hexH and 
2H -hexH  are Henry’s law constants for ethylene in hexane and 

hydrogen in hexane, respectively. 

3.1.4 OVERALL MASS BALANCE  

To study the polymerization of ethylene in a CSTR, we need to write the set of 

linearly independent overall mass balance equations for the various components fed 

to the reactor. The steady-state mass balance equations for various components are 

written as 

 -   (1- ) ( ) -    0
M,in T L poly

I Q F M MW R =  (monomer)                                (3.20a)                            

 -        0
C,in T c s,avg

I Q F f  =  (catalyst)                                                                  (3.20b) 

-   (1 -  )      0
T c s,avg poly

Q F f R + = (polymer)                                                    (3.20c) 

( )
L -  (1 -  ) 1 -    0

S,in T S
M

M MW
I Q F 



 
  =
 
 

(solvent)                              (3.20d)                            
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Here, I
M,in

, I
S,in

, and  IC,in are the inlet mass flow rates of the monomer, solvent and 

the catalyst, respectively, Q
T 

 is the volumetric flow rate of the slurry at the exit, F 

is the volume fraction of solids present in the slurry at the reactor outlet,  f
c
 is the 

mass fraction of catalyst in the solids at the reactor outlet and ρ
s,avg  is the average 

density of the solid. The average density, ρ
s,avg, of the solid can be expressed 

assuming volume additivity (in terms of f
c
, ρ

C
 and P ) as    

  

s,avg

1-1

c P

f f
c c

  
= +                                                                               (3.21) 

Here, C  and P  are the densities of the catalyst and the polymer, respectively. 

3.2 COMPUTATIONAL PROCEDURE   

The flow chart used to solve the model equations is given in Figure 3.3. The first 

step is to read the kinetic parameters, k
P
 and k

tr
, the parameters, D

cat
, D

1, IC,in
, θ, p

et
,  

NE, ρ
P
, ρ

M
, ρ

C
 and ρ

S
, the hydrogen concentration, H

2
, and the number of grid points, 

P. The value of N
i
 and Rc,i are generated using Equations 3.7 and 3.8, respectively. 

The mass transfer coefficients, k
gl 

and k
ls
, etc., are estimated using Table 2.8. The 

single-particle diffusion equations (Equation 3.14) in their finite difference form 

(Table 3.2) are then solved from time 0 to θ using a guess value of M
L
. The 

monomer profiles inside the macroparticle, M
i 
(t = 0 to θ), R

mp and subsequently, 

R
poly

, are obtained at θ.     

The value of Rpoly obtained from the diffusion equations is used in the mass transfer 

equations. The value of R
gl

 is equated to R
poly

 at pseudo-steady-state conditions, as 

discussed earlier. An updated value of M
L
 is obtained from Equation 3.18 using the 

value of R
gl

. Here, the equilibrium monomer concentration of the ethylene at the 

gas-liquid interface, M*, is calculated using Henry’s law and the partial pressure of 

the monomer in the vapor phase (read as input in Figure 3.2). The updated value of 
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M
L
 is used in the next iteration of solving the diffusion and the mass transfer 

equations. This process is repeated until a converged value of M
L
 is obtained. The 

monomer profile inside the macroparticle and the value of R
poly is also updated in 

each iteration to obtain the converged values. The overall mass balance equations 

(Equations 3.20) are then solved using the converged value of R
poly

 to obtain the 

values of the required monomer flow rate, 
M,inI , the required solvent flow rate, 

S,inI

, ρ
s,avg

 and f
c
 .  The moment equations (Table 3.1) are then solved (after convergence 

of the monomer profile) to obtain the various moments of the live and dead polymer 

chains in each computational shell. These moments are used to find the number and 

weight average molecular weights, M
n,i

 and M
w,i

, for each shell. These are then used 

to obtain the number and weight average molecular weights, 
nM and 

wM , for the 

entire macroparticle, followed by the PDI . The system of ODEs in Tables 3.1 and 

3.2 have been solved using the function, ode15s, of MATLAB®. 
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C
, ρ
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   k
P
 and D
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Tune   k
P
 and D

1
 (Equation 3.24)  

Assume 

Fig. 3. 3 The algorithm used for solving the equations characterizing the reactor  
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3.3 TUNING OF DATA ON AN INDUSTRIAL REACTOR 

The model is tuned using sets of available data for an industrial single-stage HDPE 

slurry CSTR. In the first step, the values of NE are calculated for each of the data 

sets (using Equation 3.22a). Thereafter, an average value of D
cat

 is evaluated using 

Equation 12b and the Ndata (= 7) sets of industrial reactor values of D
mp

, I
M,in and 

I
C,in

: 

( )
( )M,in1

E 3
P

mp6

I
iN

i
D

i

 
=

 
 
 

              (3.22a)                                                                                                                                              

( )
( )

1/ 3
1/ 3

C,in1 6

cat 1/ 3
1C

E

N I
data iD

N idata N
i



 
 = 
  = 

              (3.22b) 

                                                                                                                          

In the second step, this value of D
cat 

is used to obtain the radii, R
c,i

, of microparticles 

in each shell, after fragmentation, and the corresponding N
i
. Sarkar and Gupta [24], 

[25] use an arbitrary value of R
c,av and calculate the values of R

c,i
, D

cat and N
i
 using 

Equations 2 and 3. In the present study, the mass balance given by Equation 13 is 

used along with Equations 2 and 3 to obtain the values of N
i 
and R

c,i
, respectively:    

4 3 3
i c,i cat3 61

P
N R D

i

  
=  

 =
                                                                                       (3.23)   

 

The value of R
c,max is taken as 1.5 times the value of  R

c,av, as suggested by some 

workers [24], [25], [90].   

 

In the next step, the reactor model is simulated using the values of I
C,in and θ of the 

industrial reactor as per the computational flow chart described in the previous 

section (and in Fig. 3.2). The values of k
P
 and D

1
 are used as tuning parameters 
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(since, in the literature, a wide range of values of k
P
 are given) to predict the values 

of the required monomer mass flow rate, 
M,inI , the required solvent mass flow rate, 

S,inI , and the average diameter of the macroparticle, 
mpD . The estimation of these 

two tuning parameters is performed using the minimization of the following 

objective function (sum-of-squares of the relative errors)   

22 2 modelmodel model
mp mpM,in M,in S,in S,in

f

M,in S,in mp

D DI I I I
E

I I D

     −− −
    

= + +     
     
     

         (3.24)                                                                      

Here, 
M,inI  , 

S,inI and mpD  are values from the industrial reactor, while the values, 

model

M,inI , model

S,inI  and model

mpD , are the model predictions. The factor, f, is the ratio of the 

minimum macroparticle diameter to the maximum macroparticle diameter, 

min max

mp mpD D , taken from the data set of the industrial reactor. Out of the seven data sets 

from the industrial reactor, three are used for model tuning and the remaining four 

are used for model validation. 

  

The effect of various physico-chemical, and the kinetic parameters as well as the 

reactor operating conditions are studied using the tuned model. A set of reference 

values and ranges of operating conditions used in our analysis are given in Table 

3.3.   
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Table 3. 3 Reference values of the parameters and ranges of the operating 

conditions used in the simulation 

Parameter Value References 

Diffusivity of monomer in n-hexane 1.25×10-8 m2/s        [160], [161] 

Density of catalyst   2600 kg/m3          [143] 

Density of n hexane 600.6 kg/m3          [162] 

Void fraction of close-packed spheres, ε 0.476          [24] 

Termination rate constant, ktr 0.186×10-1.5 m1.5 kmol-0.5 s-1          [24] 

Number of the computational shells, P 36          [24] 

Hydrogen concentration, H
2
 1×10-3 kmol/m3          [24] 

Concentration of active sites, C* 
1×10-2 kmol site/(m3 of 

catalyst) 
         [157] 

Henry’s law constant of ethylene in n-

hexane, Het-hex 
11.325 ×105 Pa-m3/kmol          [160] 

Reactor temperature, T 80-82 oC     plant data 

Reactor pressure, P
t
 7.5 - 8.2 bar     plant data 

Ethylene partial pressure, p
et
 0.60 - 0.75 bar     plant data 

Catalyst volumetric flow rate (slurried 

in hexane) 
115 – 245 l/hr     plant data 

Reactor mean residence time, θ 1.3 - 1.9 hr     plant data 

Ethylene mass flow rate, I
M,in

 16.16 - 23.5 tons/hr     plant data 
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CHAPTER 4 

 MULTIOBJECTIVE OPTIMIZATION 

Optimal operating conditions are required to obtain the maximum productivity of 

the polymer at a minimal cost. The optimum reactor operation should also ensure 

the operational safety of the reactor. Thus, a series of optimization problems 

starting with single objective optimization (SOO) problems to complex multi-

objective optimization (MOO) problems have been formulated and solved. 

Multiobjective optimization using evolutionary algorithms are commonly used to 

obtain the set of optimal solutions for the objectives of conflicting nature. Genetic 

algorithms (GAs) are the widely used optimization technique to find the optimal 

solution for both SOO and MOO, constrained and unconstrained problems. This is 

a generic population-based computing technique influenced by the Darwinian 

concept of natural selection in biology. This technique emulates the idea of natural 

genetics to search the optimal solutions in the feasible domain using reproduction, 

crossover and mutation.   

4.1. MOO FOR POLYOLEFINS POLYMERIZATION PROCESSES 

 Olefin polymerization processes often involve multiple objectives with conflicting 

nature. Several MOO studies on polyethylene reactors have been reported in the 

published literature with various objective functions, constraints and decision 

variables [163]–[165]. Yao et al. [163] employed a GA technique to maximize the 

productivity of LDPE in an industrial tubular reactor using the jacket temperature 

profile as the control function. The maximum reactor temperature and the range of 

jacket temperature were used as the constraints. Properties of the final product were 

not considered in this study. Agrawal et al. [164] optimized the operation of an 

industrial LDPE tubular reactor using binary-coded NSGA- II, and its jumping gene 
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adaptations. The two objective functions, maximization of monomer conversion 

and minimization of undesirable side product (with two constraints, the desired 

value of the number average molecular weight and maximum temperature inside 

the reactor) were used in this study. The reactor operating variables such as the inlet 

feed temperature, inlet pressures and feed flow rates of initiators, solvent, oxygen, 

were considered as the decision variables. The softer constrain was used to obtain 

the pareto-optimal solution rather than the hard (equality) end-point constrain. 

Furthermore, the NSGA-II-aJG and NSGA- II-JG performed better compared to 

the NSGA-II near the end-point constrain. Agrawal et al. [165] used three 

objectives (i) maximization of monomer conversion (ii) minimization of an 

undesirable side product, and (iii) minimization of compressor power input to 

optimize the design of an industrial LDPE tubular reactor. This study also used 

binary-coded NSGA- II and it’s jumping gene adaptations. The results of design 

stage optimization and operation stage optimization were compared. The design 

stage optimization resulted in a significant improvement in the reactor performance 

compared to the operation stage optimization. The three objective optimizations 

produced a better solution compared to the two objective optimizations. 

Mogilicharla et al.  [166] conducted the MOO of long-chain branched propylene 

polymerization using NSGA-II to obtain the pareto optimal set of solutions of the 

operating conditions. This study used the three conflicting objectives functions, 

maximization of the weight average molecular weight, maximization of the grafting 

density and minimization of total polymerization time. The two catalysts and one 

cocatalyst concentrations and the time gap between the catalyst injections were 

used as the decision variables. The optimal solutions led to the various competitive 

process possibilities and also showed improvement in the objective functions as 

compared to the literature data of Ye and Zhu [167] .   
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4.2 OPTIMIZATION STUDY OF THE HDPE SLURRY REACTOR    

The optimization study is performed to obtain the optimal value of the set of 

decision variables corresponds to the maximization or minimization of one or more 

objectives. Appropriate constraints are often employed to maintain the safety and 

stability of the system.  The main operating variables of the HDPE slurry reactor 

are shown in Figure 2.2. The monomer, ethylene, is the gas phase feed, the solvent 

(hexane) is liquid-phase feed while the solid catalyst is slurried with the solvent and 

continuously fed to the reactor.  

 4.2.1. CONSTRAINTS  

The polymerization reaction is highly exothermic and temperature control is very 

important to avoid runaway reactions. All the heat of polymerization has to be 

removed through the solvent (n-hexane) in the slurry reactor. The solvent to 

monomer ratio, I
S,in

/I
M,in

, directly affects the temperature control of the reactor. It is 

observed from all the available data on the industrial reactors that the minimum 

value of this ratio at the steady-state operation of the slurry phase ethylene 

polymerization in CSTRs is 1.6. This ratio is required for sufficient heat removal 

and to maintain the reactor at isothermal conditions. Therefore, the constraint used 

in all the optimization problems is given by Eq. 4.1. 

   

S,in

M,in

1.6
I

I
          (4.1)  

4.2.2. DECISION VARIABLES 

The volume of the reactor is constant and the mean residence time of the reactor 

mainly depends on the feed rates of monomer, M,inI ,  and solvent, S,inI , at a steady 

state. The productivity and the yield are the functions of the value of C,inI and   as 

discussed in section 3.2. The rate of polymerization and the yield also depends on 

the equilibrium monomer (ethylene) concentration in the liquid phase. The 

equilibrium monomer concentration directly depends on the ethylene partial 



79 
 
 

pressure, etp . Therefore, etp ,  and C,inI are considered as the decision variables in 

the optimization study.  

Bounds on the decision variables 

4 4

C,in

0.8  (hr) 2

0.4 (bar) 0.9

5 10 ( / ) 15 10

etp

I kg s− −

 

 

   



       (4.2) 

4.2.3. OBJECTIVES 

The main focus of the optimization study of the reactor is to find the optimal 

operating conditions to obtain the maximum productivity ( polyR ) and yield ( mpR ) at 

the minimal operating cost. The costs associated with the catalyst feed rate (

C,in   E C CI N  =  ) and the mean residence time ( ) are considered as the major 

operating costs in this study. Therefore, the objectives of this study can be the 

maximization of both polyR  and yield mpR  and minimization of total catalyst present 

in the reactor at steady state ( EN  ) or C,in  I .   

4.2.4. FORMULATION OF THE OPTIMIZATION PROBLEMS 

Problem 1 (SOO)   

poly:Max I R=          (4.3) 

subject to  

bounds   

Equation (4.2)  

constraint  

Equation (4.1)  
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 Problem 2 (SOO)  

mp:Max I R=           (4.4) 

subject to  

bounds   

Equation (4.2)  

constraint  

Equation (4.1)  

 

Problem 3 (MOO)  

1 poly

2

:

: E

Max I R

Min I N 

=

=
            (4.5) 

subject to  

bounds   

Equation (4.2)  

constraint  

Equation (4.1)  

Problem 4 (MOO) 

1 poly

2 C,in

:

:

Max I R

Min I I

=

=
        (4.6) 

Subject to  

bounds   

Equation (4.2)  

constraint  

Equation (4.1)  

 

Problem 5 (MOO)  

1 poly

2 mp

:

:

Max I R

Max I R

=

=
         (4.7) 

bounds   
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Equation (4.2)  

constraint  

Equation (4.1)  
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 CHAPTER 5 

 RESULTS AND DISCUSSION  

 

5.1 COMPARISON OF MODEL PREDICTIONS WITH DATA ON THE 

INDUSTRIAL REACTOR   

The best-fit values of the tuning parameters obtained from the model tuning 

procedure given in Figure 3.3 are given in Table 5.1. The earlier reported values 

[22], [143] of these parameters are also given in Table 5.1. The other simulation 

parameters and operating conditions are at their reference values given in Table 3.3.   

Table 5. 1 Best-fit values of the two tuning parameters 

Parameter 
Best-fit value 

(this study) 

Soni and Bhagwat 

[143] 

Bhagwat et al. 

[22] 

10-6 × k
P
 (m3/(kmol-s)) 0.59 1.0 10 

1010 × D
1
 (m2/s) 1.14 1.0 1.0 

  

One of the data sets of the industrial reactor is selected as a reference data set. Both 

the model-predicted values and the values from the industrial reactor data are 

normalized using the respective values of the reference data set (due to propriety 

reasons). In an industrial reactor operating at a steady-state, the required value of 

monomer flow rate, IM,in, is decided by the value of the catalyst flow rate, IC,in. An 

increase in IM,in from this required value at a given IC,in leads to a continuous 

accumulation of the monomer in the vapor space. This will lead to a continuous 

increase in both the partial pressure of the monomer and the total pressure of the 

reactor. This will make the operation unstable. The present model also considers 

IC,in as an input condition and predicts the required value of IM,in for a set of the 

assumed value of model tuning parameters. In the industrial reactor, the inlet flow 

rate of solvent, IS,in and the value of  IM,in decide the residence time of the reactor, 



83 
 
 

 . Whereas, the simulation of the present model considers the values of   along 

with IC,in as input conditions and predicts the required values of IS,in and IM,in. A 

comparison of the tuned model-predicted values of IM,in and IS,in with the 

corresponding values of the industrial reactor data set (plant-data) at different 

values of  are shown in Figures 5.1a and 5.1b, respectively. The productivity and 

yield control the average size of macroparticle, Dmp, at given values of IM,in , IC,in 

and  . The present model also predicts the values of Dmp at different values of IC,in 

and  . A comparison of the tuned model-predicted values of Dmp with the 

corresponding values of the industrial reactor data set (plant-data) at different 

values of   is shown in Figures 5.1c. 

The values of  IC,in, IM,in and IS,in from the plant data are controlled by the operator 

at the inlet of the reactor. This is why, Figure 5.1a and Figure 5.1b show a smooth 

variation for the plant data values of IM,in and IS,in.  Whereas, a small error in the 

model predictions makes the variation in the model-predicted values of IM,in and 

IS,in not so smooth in Figure 5.1a and Figure 5.1b. However, the agreement between 

the plant data and the model predicted values of IM,in and IS,in is observed to be quite 

good. A similar agreement is observed in Figure 5.1c between the plant data values 

with the model prediction for Dmp. It is to be noted here that the value of Dmp is also 

obtained as an output from the tuned model and is also not controlled by the 

operator. This is why there is no smooth variation for both the values in Figure 5.1c. 
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Fig. 5. 1 Comparison of tuned model-predictions with the industrial reactor data 

(a) I
M,in

 vs. θ, (b) I
S,in

 vs. θ and  (c) Dmp vs. θ    
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5.2 SENSITIVITY TO MODEL PARAMETERS 

Having compared the tuned model-predictions with the industrial reactor data, we 

now focus on the study of the effect of the two main tuning parameters, D
1
 and k

P
 

(parametric study). Figure 5.2 shows the effect of D
1
 on R

mp
, M

L
, Dmp, the solvent 

to monomer ratio, I
S,in

/I
M,in

 and the PDI . As D
1
 increases, more monomer diffuses 

inside the macroparticle, thus increasing the monomer concentration, M
i
, inside the 

macroparticle, and so, R
mp

. Similarly, increasing D
1 leads to a reduction in M

L
, the 

monomer concentration in the bulk liquid. These effects are shown in Figure 5.2a. 

Since R
mp

 increases with an increase in D
1, the macroparticle diameter, D

mp
, 

increases (note that θ and I
C,in are both constant). An increase in D

1
 leads to an 

increase in I
M,in

 and a decrease in the ratio, I
S,in

/I
M,in

 (shown in Figure 5.2b). An 

increase in the value of D
1
 leads to a decrease in PDI . This is because an increase 

in D
1
 leads to a flatter monomer profile inside the macroparticle, thus reducing the 

PDI . Our tuned model predicts a value of PDI  between 4 - 5 (for the reference 

values of the other simulation parameters given in Table 3.3).  
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Fig. 5. 2 Influence of D1 on (a) R
mp

 and M
L
, (b) D

mp
 and I

S,in/ IM,in
 and (c) PDI  
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The influence of varying the propagation rate constant, k
P
, is shown in Figure 5.3. 

As seen in Figure 5.3a an increase in the value of k
P
 leads to an increase in the value 

of R
mp

 and decrease in the value of M
L
. This is because an increase in the value of 

k
P
 leads to an increase in the value of k

P
C*M

i
, despite a decrease in the value M

i
 

(clearly, the effect of k
P
 dominates), thus increasing R

mp (Figure 5.3a). As k
P
 

increases, M
i
 decreases, leading to a decrease in the value of M

L
 (in Figure 5.3a). 

An increase in the value of R
mp

 with an increase in k
P
 leads to an increase in D

mp
 

and the required rate of monomer input, I
M,in

 and, consequently, the ratio, I
S,in

/I
M,in

 

decreases (Figure 5.3b). As k
P
 increases, M

i
 falls more sharply with the radial 

location inside the macroparticle and leads to an increase in the value of PDI  

(Figure 5.3c).      
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Fig. 5. 3 Influence of k
P
 on (a) R

mp
 and  M

L
, (b) D

mp
 and I

S,in
/I

M,in
 and (c) PDI  
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5.3 EFFECT OF REACTOR OPERATING VARIABLES 

5.3.1 EFFECT OF REACTOR RESIDENCE TIME AND CATALYST 

FEED RATE  

The effect of the two operating variables, θ and I
C,in

, of the reactor on R
poly

, R
mp 

, 

D
mp

 and I
S,in

/I
M,in

  are shown in Figure 5.4. The value of R
mp represents the polymer 

production rate of each catalyst particle whereas the value of R
poly represents the 

overall polymer production rate. Increase in either θ or I
C,in

 (I
C,in

 = N
E 

ρ
C
ν

C
) leads 

to an increase in the value of the total number of macroparticles present in the 

reactor, N
E
θ. Thus, the range of N

E
θ is kept the same so as to carry out a 

comparative study of the effect of θ and I
C,in

 on various reactor performance 

parameters. The rate of monomer consumption per particle, Rmp, is multiplied with 

the number of macroparticles present in the reactor, NEθ, to give the total rate of 

monomer consumption, Rpoly. The simulation results show this trend of increasing 

R
poly

 with an increase in both θ and I
C,in

 (Figures 5.4a and 5.4b). The comparison 

shows that at lower values of N
E
θ, R

mp
 is higher (Figure 5.4b), while at higher 

values of N
E
θ, R

mp
 is higher (Figure 5.4a). This is because at lower values of N

E
θ, 

the value of θ is higher in Figure 5.4b, while at higher values of N
E
θ, the value of θ 

is higher in Figure 5.4a. As discussed above, the value of N
E
θ can be increased 

either by increasing θ or I
C,in

. The value of R
mp

 will be higher if N
E
θ is increased by 

increasing θ than by increasing I
C,in

. In both cases, the increase in R
poly

 also 

increases R
gl

, as discussed before. The increase in R
gl

 leads to a decrease in M
L
 

according to Equation 3.18a. The decrease in M
L
 leads to a decrease in M

i
 and 

consequently, R
mp

. Thus, an increase in either θ or I
C,in

 should decrease R
mp

. 

However, the simulation results show this trend only for an increase in I
C,in

 (Figure 

5.4b). The simulation results shown in Figure 5.4a indicate that the value of R
mp 

increases with an increase in θ upto a certain value, θ
opti

. Thereafter, it decreases   
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Fig. 5. 4 Effect of variation of (a) θ on R
mp

 and R
poly

 at constant I
C,in

, (b) I
C,in

 on 

R
mp

 and R
poly at constant θ 

 

with further increases in θ. This is because the profile of monomer concentration 

becomes flatter with increase in θ as shown in Figure 5.5. This leads to an increase 

in M
i
 at lower values of P (inside the macroparticle) as shown in the inset of Figure 

5.5. However, decrease in M
L
 (with an increase in θ) decreases the values of M

i
 at 

higher values of P (near the surface, inside the macroparticle). The increase in M
i
 

at lower values of P dominates at values of θ below θ
opti

 and this leads to the 

increase in R
mp

 with increase in θ. The decrease in M
i
 at higher values of P starts 
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dominating as the value of θ goes beyond θ
opti

 and this leads to a decrease in R
mp

 

with an increase in θ.     

 

 

Fig. 5. 5 Normalized monomer profile (Mi / M
*) vs. P at various θ. The monomer 

profile is shown in the inset at lower values of P 

  

The effects of θ and I
C,in

 on D
mp

 and I
S,in

/I
M,in

 obtained from the reactor model are 

shown in Figures 5.6 a and 5.6 b. The values of D
mp

 represents the polymer yield 

as discussed before. It is important to note that the ratio, I
S,in

/I
M,in

, affects the 

temperature control of the reactor. The polymerization reaction is highly 

exothermic and temperature control is very critical. All the heat of polymerization 

has to be removed through the solvent (n-hexane) in the slurry reactor. Thus, higher 

values of I
S,in

/I
M,in

 are required for operational safety. The value of I
M,in

 is directly 

proportional to the value of R
poly

. Whereas, the value of I
S,in

 depends on the value 

of I
M,in

 and the value of θ.   
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Fig. 5. 6 Effect of variation of (a) θ on D
mp

 and  I
S,in

/I
M,in

 at constant I
C, in

and (b) 

I
C, in

 on D
mp

 and I
S,in

/I
M,in

 at constant θ 

  

It is observed from Figure 5.6 a that the value of D
mp

 (polymer yield) increases if 

the value of N
E
θ is increased by increasing θ. Figure 5.6 b shows that the value of 

D
mp

 decreases slightly if the value of N
E
θ is increased by increasing I

C,in
. The 

observation from Figure 5.6 a can be attributed to the fact that the macroparticles 

stay for a longer time inside the reactor (due to increasing θ) and therefore, the 

value of D
mp

 will be higher. In Figure 5.6 b, θ remains constant, while N
E
θ is 

increased by increasing I
C,in

. The increase in I
C,in

 leads to a decrease in R
mp

 as 
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discussed in Figure 5.4b. This is why in Figure 5.6 b, the value of D
mp

 decreases by 

increasing I
C,in

.    

It is observed that the values of I
S,in

/I
M,in

 worsen with the increase in N
E
θ either by 

increasing θ or by increasing I
C,in

 (Figures 5.6 a and 5.6 b). At a constant θ, an 

increase in I
C,in

 increases the value of R
poly

 as discussed before (Figure 4.4b). This 

leads to an increase in I
M,in

 and a decrease in I
S,in

 as θ is kept constant. Therefore, 

the ratio I
S,in

/I
M,in

 decreases with an increase in I
C,in

 in Figure 5.6 b. The decrease in 

I
S,in

/I
M,in

 is observed to be steeper in Figure 5.6 a than in Figure 5.6 b. This is 

because the increase in θ also leads to a decrease in the sum of I
S,in

 and I
M,in

. Thus, 

the model gives an insight that if N
E
θ is increased by increasing θ then the polymer 

yield, D
mp

, improves at the cost of compromising the operational safety (I
S,in

/I
M,in

) 

of the reactor [operational safety is reflected by low values of (I
S,in

/I
M,in

) since low 

values of this ratio lead to difficult temperature control in the reactor, and, indeed, 

there is a possibility of runaway reaction occurring]. Whereas, if N
E
θ is increased 

by increasing I
C,in, the cost of operational safety (I

S,in
/I

M,in
)  is less but the yield 

slightly worsens.     

The effect of the operating variables, θ and I
C,in 

on PDI  is shown in Figure 5.7. It is 

observed that the value of PDI  decreases if the value of N
E
θ is increased by 

increasing θ, while it increases if it is increased by increasing I
C,in

. This is due to 

the fact that as θ increases, the monomer profile becomes flatter as discussed above 

(Figure 5.5). This leads to a decrease in the diffusional resistance inside the 

macroparticle. The decrease in diffusional resistance decreases the value of PDI  

with increase in θ (Figure 5.7 a). It is also observed that an increase in the value of 

I
C,in for a constant θ leads to a slightly steeper monomer profile and consequently 

the value of PDI  increases slightly (Figure 5.7 b).         
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Fig. 5. 7 Effect of variation of (a) θ on PDI  at constant I
C,in

, (b) I
C,in

 on PDI  at 

constant θ 

  

The combined effect of θ and I
C,in

 on R
mp is shown in Figure 5.8. The variation of 

R
mp

 with θ at different values of I
C,in

 shows that as the value of I
C,in

 is increased the 

maximum in R
mp

 shifts towards lower values of θ. The value of R
mp

 starts 

decreasing with increase in θ (beyond θ
opti

) because of the decrease in the value of 

M
L
 as discussed before. An increase in either θ or I

C,in
 leads to a decrease in the 
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value of M
L
. Thus, the decrease in the value of M

L
 with increase in θ will be faster 

at higher values of I
C,in

 in comparison to that at lower values of I
C,in

. Therefore, the 

maxima in R
mp

 occurs at lower values of θ when I
C,in

 is increased. Thus, the model 

gives insight that an increase in I
C,in

 leads to a decrease in the polymer production 

rate per catalyst particle (R
mp

). The maxima in R
mp

 is achieved at lower values of θ 

if the value of I
C,in

 is increased.     

 

 

Fig. 5. 8 Variation of R
mp vs. θ at various I

C,in   

  

5.3.2 EFFECT OF HYDROGEN CONCENTRATION  

The effect of hydrogen concentration on the rate of polymerization is reported in 

the open literature [23], [143], [168]. Ha et al. [23] and Soni and Bhagwat [32] in 

their study on the ethylene polymerization in a slurry reactor observed a negligible 

impact of hydrogen on the rate of polymerization. A recent study [50] on slurry 

phase olefin polymerization also considered no effect of hydrogen on the rate of 

polymerization. It is worth mentioning that the present work considers the 
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initiation, chain propagation and chain transfer by hydrogen, similar to the kinetic 

model used by Ha et al. [23]and Soni and Bhagwat [21]. Therefore, this model also 

suggests no effect of hydrogen on the rate of polymerization as evident in the rate 

expression in Equation 3.16.   

The effect of hydrogen on the number average molecular weight, Mn, and the 

weight average molecular weight, Mw, are shown in Figure 5.9. It is observed that, 

both Mn and Mw decrease with the increase in hydrogen concentration. This is 

because hydrogen is simply a chain transfer agent and it controls the molecular 

weights. It is also observed in the figure that both Mn and Mw vary inversely with 

the square root of the hydrogen concentration. This is because, the average 

molecular weights are proportional to the ratio of rate of propagation and rate of 

chain transfer whereas, the rate of the chain transfer reaction is proportional to the 

square root of the hydrogen concentration. Thus, the variation of the average 

molecular weights with hydrogen concentration is per the kinetic model used in this 

study.  

The PDI is the ratio of Mw and Mn. It is observed in Figure 5.9 that both Mw and Mn 

show similar variations (slope ≈ 0.5) with respect to the hydrogen concentration. 

This suggests the negligible effect of the hydrogen concentration on the PDI. A 

similar observation is also reported in the open literature [23], [143], [168] for the 

effect of hydrogen concentration on the PDI.  
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Fig. 5. 9 Effect of hydrogen concentration on the number average molecular 

weight and the weight average molecular weight 

 

5.4 OPTIMIZATION RESULTS 

The single objective optimization (SOO) and multiobjective optimization problems 

are solved using the genetic algorithm (GA). The Pareto optimal solution is 

obtained using NSGA-II algorithm. The optimization toolbox of MATLABTM is 

used to obtain the Pareto optimal solution for the SOO and MOO problems. The 

computational parameters used to solve the SOO and MOO problems are given in 

Table 5.2.  

Table 5. 2 The computational parameters used in the optimization studies 

Parameter Value 

Population size 80 

Number of generations 200 

Cross over probability 0.9 

Mutation probability 1/number of variables 

  

The converged Pareto set of SOO and MOO problems, Equations (4.3)-(4.7), are 

shown in Figure 5.10.  
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Fig. 5. 10 The converged Pareto set of SOO and MOO problems, equations (4.3)-

(4.7) 

The operating cost of the HDPE slurry polymerization processes can be linked to 

the values of C,inI and  . An increase in either θ or I
C,in

 (I
C,in

 = N
E 

ρ
C
ν

C
) leads to an 

increase in the value of the total number of macroparticles present in the reactor, 

N
E
θ. A higher value of N

E
θ corresponds to a higher operating cost and vice versa.  

It is understood that the maximum values of rate and yield are desired at the 

minimum operating cost at the commercial scale. The SOO problems 1 and 2 are 

the maximization of polyR (productivity) and mpR (yield) subjected to the bounds on 

the decision variables (Equation 4.2) and a constraint on the operational safety 

(Equation 4.1). It is observed in Figure 5.10a from the solution of the SOO problem 

1 (Equation 4.3) that the maximum value of productivity is obtained at the 

maximum value of C,inI (upper bound) and the maximum value of EN   and the 

corresponding value of  is 0.945 hr. At this value of EN  , the value of polymer 

yield is observed to be minimum (Figure 5.10c). Thus, the maximum productivity 

is obtained at the maximum operating cost and the corresponding value of polymer 

yield is at the minimum value. It is also observed in Figure 5.10 (a-c) that, the 
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maximum value of the polymer yield (problem 2, Equation 4.4) is obtained at the 

minimum value of C,inI (lower bound), and the corresponding values of   is 1.50 

hr. At this value of EN  , the value of productivity is observed to be minimum 

(Figure 5.10 (a-c), problem 2). Thus, the solution of SOO problems gives only one 

set of the optimal solution. To obtain the optimal values of productivity and 

polymer yield at various operating costs, we need to solve the MOO problems. 

Therefore, the MOO is performed on conflicting objectives to obtain the whole 

range of the set of optimal solutions. This is to be noted that in all the problems 

(problem 1 to 5) the corresponding optimal value of etp is observed at its upper 

bound (0.9 bar).   

 

The MOO problems (problems 3-5) comprise of two conflicting objectives. Three 

different sets of converged optimal solutions are obtained from the three different 

objective formulations (problems 3-5). These three sets of optimal solutions are 

plotted in terms of objective functions of problem 3 in Figure 5.10(a), problem 4  

in Figure 5.10(b) and problem 5 in Figure 5.10(c). The optimal solutions obtained 

from problem 3 show a distinct behavior in Figures 5.10(b) and 5.10(c). This is 

because the second objective (minimize EN  ) can be controlled by either C,inI  or 

  as discussed above. Figure 5.10(b) clearly shows that the solutions of problem 3 

can be divided into two sets. First, when Rpoly increases due to an increase in the 

value of θ at constant C,inI (lower bound). Second, when Rpoly increases due to 

increase in C,inI . The optimal solutions of problem 3 in Figure 5.10(c) further shows 

that the increase in θ values at constant C,inI (lower bound) leads to an increase in 

Rmp. After maximum Rmp value is achieved at this value of C,inI  (lower bound), the 

value of Rpoly can not be increased by further increasing  . In other words, the 

catalyst particles are completely utilized at this maximum   . After this, the value 

of Rpoly will increase only by increasing the value of C,inI . The second set of the 

solutions of problem 3 and the entire solution set of problem 4 and problem 5 
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belongs to this category. The corresponding plots of the decision variables of these 

three problems are shown in 5.11 (a-e). These figures also verify the above 

observation of the two different sets of optimal solutions of problem 3. Since the 

first set of solutions of problem 3 represent the under-utilized catalyst particles, the 

second set of solutions of problem 3 (and the solutions of problem 4 and 5) are 

useful results for practical purposes.  
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Fig. 5. 11 The converged optimal solutions of problems 1 to 5 (a)   vs C,inI  (b) 

mpR vs EN   (c) M,inI , S,inI vs C,inI  (d) S,in M,in/I I vs C,inI  (e)  mpD vs C,inI     
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It is observed in Figure 5.10 (a) that the optimal value of polyR  increases with an 

increase in the value of EN  . Whereas, the optimal value of mpR  first increases 

with an increase in the value EN   reaches maxima and then decreases with an 

increase in the value of EN  (Figure 5.11 b). This is because the increase in the 

value of mpR  is due to an increase in the value of   at the constant value of C,inI

(controlled by its lower bound) (Figure 5.11 a). The corresponding optimal values 

of  , M,inI , S,inI , S,in M,in/I I , mpD  and C,inI   are shown in Figures 5.11 (a-e). The 

available data on the industrial HDPE slurry reactor indicates that for a given value 

of C,inI the reactor is not operated below a particular value of  . The HDPE slurry 

reactor is also not operated at a very high value of the ratio, S,in M,in/I I . A very high 

value of this ratio leads to a low monomer concentration in the liquid phase which 

affects the overall rate and yield.  This is also evident from the unrealistic optimal 

solutions of M,inI , S,inI and the ratio,  S,in M,in/I I , for problem 3 in Figures 5.11(c) 

and 5.11(d), respectively. This indicates that the minimization of EN  as objective 

in problem 3 leads to the infeasible optimal operating conditions for the lower 

values of  EN  .  Therefore, the minimization of C,inI and maximization of mpR  are 

considered as the conflicting objectives to the maximization of polyR   in problem 4 

and problem 5, respectively.   

It is observed in Figures 5.10 and 5.11 that the solution of MOO problems 4 and 5 

results in similar optimal solutions of objectives and decision variables. It is also 

observed that some optimal solutions of problem 4 (Figures 5.10 (c) and 5.11 (b)) 

are not consistent with the trend observed in other problems. Thus, problem 5 is the 

most appropriate choice of conflicting objectives out of the three MOO problems 

and provides a whole range of the set of optimal solutions. 
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5.4.1 EFFECT OF ETHYLENE PARTIAL PRESSURE 

To understand the effect of variation of ethylene partial pressure, etp , on objectives 

and decision variables the upper bound of the etp is varied. As discussed above, the 

optimal value of etp is obtained at its upper bound (0.9 bar) for problems 1 to 5. 

Figure 5.12 shows the effect of variation of etp on the optimal set of solutions of 

problem 5.  It is observed in Figure 5.12 (a) that, a decrease in the value of etp

results in the decrease in the optimal value of polyR for a given value of C,inI . This 

is because a low value of etp corresponds to a low value of the monomer 

concentration in the liquid phase and inside the macroparticles. A low value of 

monomer concentration inside the macroparticle lowers the optimal value of polyR . 

The corresponding optimal values of  are also shown in figure 5.12 (b). A decrease 

in the value of etp  leads to the decrease in the monomer concentration inside the 

macroparticle and therefore, the particle has to stay for a longer time inside the 

reactor to obtain the maximum rate of polymerization, polyR , for a given value of 

C,inI .  
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Fig. 5. 12 Effect of etp on (a) polyR vs C,inI (b)  vs C,inI   

  

 

 



107 
 
 

  

CHAPTER 6 

CONCLUSIONS   

 

Polyethylene is an important polymeric material due to its increasing presence in 

day-to-day life and industrial use. Slurry processes are most widely used for the 

production of polyethylene due to their several advantages over other processes. In 

this thesis, we have discussed the slurry phase ethylene polymerization processes 

and reviewed the mathematical modeling and simulation approaches at multi-scale 

levels. These are discussed to provide a foundation and framework to develop new 

models or to improve existing ones.   

It has been shown that several advances have been made in modeling at specific 

scales, but the development of a complete and computationally efficient multiscale 

mathematical model is still an open challenge. The kinetic model at the microscale 

level is the most essential component of any modeling work on catalytic olefin 

polymerization. A framework of kinetic modeling including all essential 

elementary steps has been presented. The level of complexity in a kinetic model is 

linked to the required computational effort to estimate a large number of kinetic 

parameters. The lumped active site model can reduce the number of kinetic 

parameters to some extent. A simplified kinetic model is proposed which can be 

used to implement the mathematical model at the multiscale level. The single-

particle models at the mesoscale level are used to obtain the rate of polymerization, 

polymer yield, polymer properties, and intraparticle concentration and temperature 

gradients. Although the existing models are quite successful in predicting the 

conditions of industrial interest, their strengths and shortcomings must be clearly 

understood during their implementation.    

It is a big challenge to develop and implement a multiscale model which requires 

lower amounts of time for the simulation of industrial reactors without 



108 
 
 

compromising much with the accuracy in its prediction capability. The 

computational time for the simulation of industrial reactors using a multiscale 

model can be reduced by supplying only the required information at every scale 

during its simulation. Considerable effort is required to develop efficient algorithms 

for the simulation of industrial reactors using existing mathematical models.   

A mathematical model can also be used as an effective tool for process optimization 

studies.  Performing multi-objective optimization (MOO) using a state-of-art 

algorithm is a computationally rigorous activity. Thus, the time consumed in 

simulation is extremely crucial for solving MOO problems. To build such a model 

which can be used for MOO studies, one has to make a trade-off between the 

computational complexity and the accuracy.  

A computationally efficient model has been developed for an isothermal industrial 

HDPE CSTR using a simplified kinetic model, diffusion, interphase mass transfer 

aspects and an overall mass balance. The PMGM is modified to be used for a given 

particle size of catalyst instead of using an average radius of microparticle after 

disintegration. This is used to model the phenomena of catalyst disintegration, 

monomer diffusion and macroparticle growth. The tuned reactor model using a 

‘training’ set of the data from an industrial reactor shows a good agreement on the 

‘validation’ set. The tuned reactor-model shows that it is more sensitive to 

variations in the diffusivity, D
1
, compared to the kinetic parameter, k

P
. Although 

the present model has been developed for catalytic polymerization in a single, 

isothermal, slurry CSTR, it can be extended to slurry-phase series of CSTRs and 

loop reactors for olefin polymerization with minor modifications. The advantage of 

a low computation time to solve this model can be exploited for further studies in 

process optimization.  

The analysis of the tuned reactor model gives an insight to a plant-operator that the 

overall rate of production ( polyR ) can be increased by increasing either  or C,inI . 

However, both the polymer production rate per catalyst particle ( mpR ) and the 

polymer yield ( mpD ) decrease with an increase in C,inI  at a constant value of θ. The 
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polymer yield could be improved by increasing the reactor residence time but at the 

cost of compromising the operational safety as well as the value of PDI . The 

present model also suggests that a maximum value of the polymer production rate 

per catalyst particle is obtained by maintaining a certain residence time. This 

residence time can be reduced by increasing the catalyst flow rate. Simulation 

results show that both the number average molecular weight and the weight average 

molecular weight are inversely proportional to the square root of the hydrogen 

concentration.   

The SOO studies indicate that the maximum value of the overall rate of 

polymerization and yield is obtained at the maximum and minimum values of the 

catalyst feed rate, respectively. The MOO problems consist of conflicting 

objectives, maximization of the overall rate of polymerization, yield, and 

minimization of the catalyst feed rate. The minimization of the catalyst feed rate 

and the maximization of yields are observed to be the same objectives and give 

similar optimal solutions. The solution of MOO problems indicates the optimal 

value of  polyR  increases with an increase in the value of EN   or C,inI . Whereas, 

the optimal value of mpR  decreases with an increase in the value of EN   or C,inI in 

the feasible region of reactor operation.   

6.1 FUTURE WORK    

To reduce the computational time, this work employed a simplified kinetic model 

with a single-site non-deactivating catalyst. The reactor model developed in this 

study was mainly focused on the prediction of the rate of polymerization and at the 

industrial scale. The prediction of broad MWD requires the use of multiple active 

sites in the kinetic model. This study needs to be extended to devise a more efficient 

simulation algorithm that requires less computational time for the use of multiple 

active sites in the kinetic model. This will also help in the consideration of the 

MWD or PDI of the final product as an objective in the MOO study. The model 
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can be further extended to series of CSTRs to predict the rate of polymerization, 

yield, and MWD at the industrial scale.  
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