Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2021

Course: Error Correcting Code

Program: B. Tech ECE

Course Code: ECEG 3037P

Semester: VI Time 03 hrs.

Max. Marks: 100

Section A

Each Question will carry 5 Marks

Type the final answer in the space provided.

S. No.		G0
Q 1	Check whether the received code (Y = 1 0 1 0 0 1 0 \equiv x ⁶ + x ⁴ + x) for a (7,4) systematic cyclic code is error free or it has any error. If there is an error, what would be the correct code? The generator polynomial for this is $x^3 + x + 1$	CO3
Q 2	The parity check matrix of a particular $(7,4)$ linear block code as given as $\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Find the syndrome for first bit in error	CO2
Q 3	Calculate the code of a non-systematic cyclic code for the message 1110. The generator polynomial for this is p^3+p+1	CO3
Q 4	Find out the number of flip-flops and Gate required in designing the encoder of a systematic cyclic code. The generator polynomial for this is $1 + x^2 + x^3 + x^6 + x^7$	CO3
Q 5	Determine the generator polynomial (in binary form) of a BCH code, which is capable of correcting triple bit error. The function of the BCH code is given as: $m_1\left(x\right)=(x^4+x+1), m_2(x)=m_1(x), m_3(x)=(x^4+x^3+x^2+x+1), \\ m_4(x)=m_2(x), m_5(x)=(x^2+1) \text{and} m_6(x)=m_3(x).$	CO2

Q 6	Calculate the average length of the code using Shannon Fano coding with 4 message having							004						
	probability of 1/8, 1/2, 1/4 and 1/8.									CO1				
Foob 4	greation will come 10 montes		Sec	tion	В									
	question will carry 10 marks ction: Write short / brief notes													
Q 1	A communication channel has a bandwidth of 3400 Hz.													
	(a) Calculate the capacity of the channel for a signal to noise ratio of 30 dB						004							
	(b) Calculate the minimum value of signal to noise ratio required to support error free						CO1							
	transmission through it at for a transmission rate of 5100 bits per second.													
Q 2	A Convolutional coder is consisting of 3 shift-registers. The code output from this encoder is													
	generated by using the design as give	n b	elow.											
	$V_1 = S_1 + S_2 + S_3$ and $V_2 = S_1$	+ S	52.											
	(a) Design the layout of the coder							CO4						
	(b) Draw the State table.													
	(c) Draw the code trellis													
	(d) Draw the code tree.													
Q 3	(a) Construct a (7, 4) cyclic code using gate and flip-flops. The generator polynomial for													
	this is given as $x^3 + x + 1$.							CO3						
	(b) Compute the code for the message 1010.						COS							
Q 4	The seven colors of Rainbow are	arr	angeo	l in a	a pic	ture	e of	10×	5 matrix as following.					
	VIB	B	R R	Y	G	V	I	R						
	O G G	j (O R	R	Y	Y	Y	G						
	V I B		ВВ	G	G	Y	Y	Y		CO1				
	V I B		G V	I	В	В	В	V		COI				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) (O G	G	Y	V	V	Ι						
	Construct Huffman tree and determin	. 41	20.00	ام ما	· D	d	D							
	Construct Humman tree and determin	e tr	ie coo	ie oi	K	ına	Ď.							

Q 5	Determine the generator matrix for the parity check matrix of a particular (7, 4) linear block							
	code given as							
	$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$	CO2						
	$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$							
	Section C							
	Question carries 20 Marks. A part of the control o							
IIISU U	ection. Write long answer.							
Q 1	Design a Viterbi decoder using trellis diagram.							
	The coder is consisting of 3 shift-registers, and the code vector from the output of shift register							
	are $V_1 = S_1 + S_2 + S_3$, $V_2 = S_1 + S_3$.							
	If the input bit sequence to this decoder is 11 10 10 10 11 00 . Then determine whether this received bit is correct or not? If there is an error, then find the correct code.							
	From the correct code, determine the message input.							