Name: Enroli	Name: Enrolment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY ST	UDIES	
P	End-Semester Examination, May 2021		
0	camme Name:B. Tech. CERPSemestse Name:Fluid MechanicsTime	er : IV : 03 hrs	
		. 05 ms Marks: 100	
	of page(s) : 02		
	uctions : Assume any missing data. Draw the diagrams, wherever necessar	у.	
	Section-A		
	$(6 \times 10 = 60 \text{ marks})$		
	(Answer all the questions)	Marks	СО
	A tubular centrifugal bowl with an inside diameter 150 mm , rotating at 800 rpm , is		0
1.	to separate chlorobenzene of density 1109 kg/m³ and aqueous wash liquid of der 1020 kg/m³ . The free-liquid surface inside the bowl is 40 mm from the axis of rota If the centrifugal bowl is to contain equal volumes of the two liquids, what should be radial distance from the rotational axis to the top of the overflow dam of heavy liquid	ion. 10 the	C01
2.	Water at 20 ^o C is being pumped from a tank to an elevated tank at a rate of 5 x 10 ⁻³ r All of the piping in figure is Schedule Number 40 pipe. The pump has an efficience 65%. Calculate the power needed by the pump. Diameter of Sc 40 4" pipe= 0.1023 density of water is 998.2 kg/m ³ , viscosity is 1x10 ⁻³ Pa.s, $\varepsilon = 4.6 \times 10^{-5}$ m, K _f = 0.75 Ws = - η Wp (J/kg), where Ws is shaft work, Wp is pump work, η is efficiency of p	y of m	
	15 m 15 m 15 m 1 for 50 m 1 for 4 in. pipe	10	CO2
3.	A pipe 450 mm in diameter branches into two pipes of diameters 300 mm & 200 mm the average velocity in 450 mm pipe is 3 m/s , find discharge through 450 mm pipe velocity in 200 mm pipe, if the average velocity in 300 mm pipe is 2.5 m/s		CO3

4.	Derive an expression for velocity distribution for viscous flow through a circular pipe	10	CO4
5.	Explain the concept of Boundary Layer Theory with neat diagram	10	CO5
6.	It is desired to agitate a liquid having viscosity of 1.5 x 10⁻³ Pa.s and a density of 969 kg/m³ in a tank having diameter of 0.91 m . The agitator will be a six-bladed open turbine having a diameter of 0.305 m operating at 180 rpm . The tank has four vertical baffles with a width J of 0.076 m and also W = 0.0381 m , Calculate the required kW Use curve 2 : D _a /W= 8, D _i /J = 12	10	CO6
	Section-B		
	Answer any two (2 x 20 = 40 marks)		
7.	 (a) Derive an expression for pressure drop in a packed bed (b) Air at 394.3 K flowing through a packed bed of cylinders having diameter of 12.7 mm and length same as the diameter. The void fraction is 0.4 and the bed height of 3.66 m. The air enter the bed at 2.2 atm abs at the rate of 2.45 kg/m² s based on the 	10	CO5
	empty cross section of bed. Calculate the pressure drop of the air in the packed bed.		
8.	(a) Explain characteristic curves of centrifugal pump	10	CO6

	(b) A heavy oil at 20^oC having a density of 900 kg/m³ and a viscosity of 6 cp is flowing in a 4" Schedule 40 pipe . When the flow rate is 0.0174 m³/s it is desired to have a pressure drop reading across the manometer equivalent to 0.93 x 105 Pa . What size orifice should be used if the orifice coefficient is assumed to be 0.61 ? What is the permanent pressure losses?	10	
9.	 a) Derive Navier-Stokes equation of motion with proper assumptions b) Solid spherical particles of coffee extract from a dryer having a diameter of 400 μ m are falling through air at a temperature of 422 K. The density of the particles is 1030 kg/m³. Calculate the terminal velocity and the distance of fall in 5 s. The pressure is 101.32 kPa Density of air at 422 K is 0.8378 kg/m³, viscosity is 0.0237 x 10⁻³ Pa.s 	10 10	CO5