Enrolment No:

UPES SAP ID:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online end Semester Examination, June 2021

Course: Renewable energy Technologies

Program: M.Tech– Energy systems

Course Code: EPEC7030

Semester: I

Duration: 3 hrs.

Max. Marks: 100

No. of Pages: 02

Note

Note:				
Section A (Attempt the following)				
Q1.	Calculate fill factor, maximum power and cell efficiency of the solar cell at an intensity of 200 W/m^2 . $V_{oc} = 0.24 \ Volt, \ I_{sc} = -9mA, \ V_{max} = 0.14 \ V, \ I_{max} = -6mA \ and cell \ area = 4 \ cm^2$	5	CO4	
Q2.	List out the factors led to the accelerated development of wind power.	5	CO2	
Q3.	A wind farm is being considered for a ridge top site. Name ten or more issues that might be considered in evaluating this site.	5	CO2	
Q4.	Comment on the status of non-conventional energy sources in India and their future prospect	5	CO1	
Q5.	Briefly discuss the following: i) solar irradiance ii) solar constant iii) extraterrestrial radiations iv) terrestrial radiations	5	CO1	
Q6.	Write the advantages and disadvantages of concentrating collectors over flat-plate types of solar collectors	5	CO1	
	Section B(Attempt the following)			
Q7.	Prove that in case horizontal axis wind turbine maximum-power can be obtained when Exit velocity= 1/3 wind velocity.	10	CO3	
Q8.	How the performance of liquid flat plate collector can be analyzed. Discuss in detail.	10	CO5	
Q9.	Explain the concept of wet steam geothermal system and its effect on environment	10	CO2	
Q10.	Draw the electrical layout of a typical solar PV system, state the functions of essential equipment. OR Taking a solar power content of 1W/cm ²	10	CO3	
	at the space-station location, calculate the			
	area of solar panels required at 20% efficiency of conversion for power of			
	2000MW, 5000MW, 10000MW and 15000MW.			

Q11	Explain the working of an open cycle and closed cycle OTEC plant.	10	CO5		
Section C (Attempt the following)					
Q12.	The low-speed shaft of a wind turbine has a length, I, of 10mand a diameter, D, of 0.5	20	CO4		
	m.				
	It is made of steel with a modulus of elasticity of E=160 GPa. It is rotating at 12.1 rpm				
	and the turbine is generating 5MW. Find:				
	(a) The applied rotor torque, assuming an overall drive train efficiency of 90%				
	(b)The angle of deflection				
	(c) The energy stored in the shaft				
	(d) The maximum stress in the shaft.				
	<u>OR</u>				
	A geothermal power plant uses geothermal water extracted at 160°C at a rate of 440 kg/s				
	as the heat source and produces 22 MW of net power. If the environment temperature				
	is 25°C, determine (a) the actual thermal efficiency, (b) the maximum possible thermal				
	efficiency, and (c) the actual rate of heat rejection from this power plant				