A Project Report
on

DIGITAL IMAGE PROCESSING TOOL USING JAVA

Submitted in partial fulfillment of the requirements for the Major Project II of

Bachelor of Technology
in
Computer Science & Engineering

Submitted by:

Abhilekh Bahuguna (R780209002)
Abhishek Kumar Singh (R780209044)
Aditya Durgapal (R780209047)
Ashish Sharma (R780209009)

Under the guidance
Mr. Anil Kumar
Assistant Professor,
CIT, UPES
DEHRADUN

E“\RE\IU ' ac

e‘i‘ u~
¥

J u 8
= &

%"”"' wian

Hrerysina tnevry throush Novadodsr

Department of Computer Science & Engineering
COLLEGE OF ENGINEERING STUDIES
UNIVERSITY OF PETROLEUM & ENERGY STUDIES

Dehradun- 248007
April 2013

CERTIFICATE

This is to certify that the Project entitled “DIGITAL IMAGE PROCESSING TOOL USING
JAVA” submitted by

Abhilekh Bahuguna (R780209002)
Abhishek Kumar Singh (R780209044)
Aditya Durgapal (R78020?047)
Ashish Sharma (R780209009)

for the partial fulfillment of the requirements of the course Ma:ior I.’roje'ct II of Bachelor of
TEChnoi)o in Computer Science & Engineering degree of University of Petroleum &
Energy S%{ldies Dehradun embodies the confide work done by above students under my

Supervision.
Q(ryw_dz '
< olou(1,
Signature of Mentor - P
Mr. Anil Kumar
Assistant Professor,
CIT, UPES
Dehradun
Approved by:
Dr. Ajay Shankar Singh m)
Project coordinator, Major Project-11
B.Tech CSE(VIII Sem) (2009-2013 batch) l /
Dr. Manish Prateek %\\3
Head of Department 7
CIT, UPES 2
Dehradun

el Sedlevud — TL—
3
2

DECLARATION

We, Abhilekh Bahuguna, Abhishek Kumar Singh, Aditya Durgapal and Ashish Sharma bearing
the Roll No: R780209002, R780209044, R780209047 and R780209009 respectively hereby
declare that this Project work entitled “DIGITAL IMAGE PROCESSING TOOL USING
JAVA” was carried out by us under the guidance and supervision of Mr.Anil Kumar. This
Project work is submitted to University of Petroleum & Energy Studies in partial fulfillment of
the requirement for the award of Bachelor of Technology in Computer Science and Engineering
during the Academic Semester January 2013 - April - 2013. We also declare that, we have not
submitted this dissertation work to any other university for the award of either degree or

diploma.

Place: Dehrad
ce: Dehradun Abhilekh Bahuguna

Abhishek Kumar Singh /%__,

Aditya Durgapal M

Ashish Sharma Q\s\w\ﬁ
Date: 8010'1‘10!3

ACKNOWLEDGEMENT

It is indeed a moment to thank all those many people who helped, supported and encouraged us

during this project work.

Firstly we express our sincere gratitude to Mr. Anil Kumar, the guide of the project who
carefully and patiently leant his valuable time and effort to give directions as well as to correct

various documents with attention and care.

It is a great honor to do this project in this esteemed institution, and we would extend our thanks
to the HOD, Dr. Manish Prateek and other faculty members who have shared their vast

knowledge and experience during our stay.

We do also like to appreciate the consideration of the Project Coordinator Dr. Ajay Shankar
Singh, our Faculties and colleagues, which enabled us to balance our work along with this

project. It was their attitude that inspired us to do such an efficient and apposite work.

We are indebted to those people across the globe who shared their knowledge and perspectives
in the form of online tutorials, forums and other resources which helped us to a great extend

whenever we met with technical obstacles during this endeavour.

We wish to avail this opportunity to express a sense of gratitude and love to all our friends and
our family for their unwavering support, strength, help and in short for everything they have

done during the crucial times of the progress of our project.

Last but not the least we thank GOD ALMIGHTY for his blessings and guidance without which

this dream project wouldn’t have been reality.

Abhilekh Bahuguna
Abhishek Kumar Singh
Aditya Durgapal
Ashish Sharma

ABSTRACT

Image processing involves changing the nature of an image in order to either improve its
pictorial information for human interpretation, render it more suitable for autonomous machine
perception. Digital image processing involves using a computer to change the nature of a digital
~ image.

The project aims to develop a tool for digital image processing. The tool performs various
operations on a digital image.

For example the button labeled Image blurring is used to blurr the image. The button labeled
compress will compress the size of the image without affecting its display quality. The color
restoration button restores colors in a black and white image. Similarly, various operations like
removing noise, morphing, deblurring, image rotation can be applied on the digital image using
the proposed tool.

The use of JAVA at the front allows us to use its inbuilt functions for developing an image

processing tool. The IDE used to develop the image processing tool is Eclipse.

TABLE OF CONTENTS

Item Description

Certificate

Declaration

Acknowledgement

Abstract

List of Figures

Chapter 1 Literature Review

Chapter 2 Introduction to Image Processing

| 2.1 Images and pictures

2.2 What is image processing?
23 Fundamental Steps Involved in Digital Image Processing
24 Images and digital images
2.5 Aspects of Image Processing

Chapter 3 Different techniques used in Image Processing
3.1 Haar Transform and Image Extraction
3.2 Image Histogram Analysis
3.3 Thresholding Technique
34

Filtering Technique using Digital Image Processing

Page No

10
14
14
14
19
21
23
24
24
30
32

32

Chapter 4
4.1
4.2
43
44
4.5
4.6
4.7
4.8
4.9
410
Conclusion

References

Image Processing using Java
RGB conversion into hue, saturation & intensity values
Enlarge image by pixel replication

Mapping grey levels into image

- Algorithm for calculation of Image histogram

Histogram analysis

Convolution applicatioﬁ with CLI
Image Rotation by Forward Mapping
Grey Level Thresholding

Connected Design Labeling

Gaussian filter

36
36
37
39
40
45
47
49
50
50

54
37

58

Figure No.
2.1
22
23
24

2.5

2.7
2.8
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39

4.1

LIST OF FIGURES

Description
Image Sharpening
Removing Noise from an image
Image Deblurring
Edge finding
Image Blurring
Steps in Image Pro;:essing
An Image as a function
Image plotted as a function of two variables
Flowchart of proposed text
Result of 2-D DWT decomposition
Traditional edge detection using mask operation
(a) Original grey image (b) DWT coefficients
(a) Original image (b) row operation of 2-D Haar DWT
Dilated image of three binary regions
Horizontal, diagonal and vertical edges dilation operators
Text extraction using logical And operator
(a) Candidate text regions (b) the extracted real text regions

Algorithm for grey level mapping

Page No.
15
16
17
17
18
19
21
22
24
25
26
27
27
28
29
29
30

37

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Algorithm for histogram equalization

Unequalized and equalized images and their histograms
Algorithm for colour image histogram

Convulation Application with GUI

Image Autorotation

Algorithm for filter method

Morphological filtering example I

Dealing with holes

Image Thresholding using Gaussian Filter

45

46

47

48

49

51

53

53

56

CHAPTER-1

Literature Review

1.1 Findings of Literature Survey:

Various methods have been proposed in the past for detection and localization of text in images
and videos. These approaches take into consideration different properties related to text in an
image such as color, intensity, connected-componerits, edges etc. These properties are used
to distinguish text regions from their background and/or other regions within the image. The
algorithm proposed by Wang and Kangas is based on color clustering. The input image is first
pre-processed to remove any noise if present. Then the image is grouped into different color
layers and a gray component. This approach utilizes the fact that usually the color data in text
characters is different from the color data in the background. The potential text regions are
localized using connected component based heuristics from these layers. Also an aligning and
merging analysis (AMA) method is used in which each row and column value is analyzed .
The experiments conducted show that the algorithm is robust in locating mostly Chinese
and English characters in images; some false alarms occurred due to uneven lighting or
reflection conditions in the test images. The text detection algorithm is also based on color
continuity. In addition it also uses multi-resolution wavelet transforms and combines low as well
as high level image features for text region extraction. The text finder algorithm proposed in
is based on the frequeﬁcy, orientation and spacing of text within an image. Texture based
segmentation is used to distinguish text from its background. Further a bottom-up ‘chip
generation’ process is carried out which uses the spatial cohesion property of text
characters. The chips are collections of pixels in the image consisting of potential text |
strokes and edges. The results show that the algorithm iS robust in most cases, except for very
small text characters that are not properly detected. Also in the case of low contrast in the image,
misclassifications occur in the texture segmentation. '

A focus of attention based system for text region localization has been proposed by Liu
and Samarabandu. The intensity profiles and spatial variance is used to deteét text regions in

Images. A Gaussian pyramid is created with the original image at different resolutions or scales.

10

The text regions are detected in the highest resolution image and then in each successive lower

resolution image in the pyramid.

The approach utilizes a support vector machine (SVM) classifier to segment text from non-
text in an image or video frame. Initially text is detected in multiscale images using edge
based techniques, morphological operations and projection profiles of the image. These
detected text regions are then verified using wavelet features and SVM. The algorithm is
robust with respect to variance in color and size of font as well aslanguage. The goal of the
research is to discover how the algorithms perform under variations of lighting, orientation,
and scale transformations of the text. The algorithms are from Liu and Samarabandu
andGllavata, Ewerth and Freisleben. The comparison is based on the accuracy of the results
obtained, and precision and recall rates. The technique is an edge-based text extraction approach,
and the technique used is a connected-component based approach. In order to test robustness
and performance the approaches used, each algorithm was first implemented in the original
proposed format. The algorithms were tested on the image data set provided by as well as
another data set which consists of a combination of indoor and outdoor images taken from a
digital camera. The results obtained were recorded based on criteria such as invariance
with respect to lighting conditions, color, rotation, and distance from the camera (scale) as
well as horizontal and/or vertical alignment of text in an image. The experiments have also
been conducted for images containing 8 different font styles and text characters belonging
to language types other than English. Also, the precision and recall rates (Equations (1) and
(2)), have been computed based on the number of correctly detected words in an image in
order to further evaluate the efficiency and robustness of each algorithm. The Precision rate
is defined as the ratio of correctly detected words to the sum of correctly detected
words plus false positives. False positives are those regions in the image which are actually
not characters of a text, but have been detected by the algorithm as text regions.

Correctlydetectedwords

Precisionrate =
Correctlydetectedwords + FalsePositives

X 100 %

The Recall rate is defined as the ratio of correctly detected words to the sum of correctly detected

words plus false negatives. False Negatives are those regions in the image which are actually text
characters, but have not been detected by the algorithm

11

Correctlydetectedwords

_ - X 1009
Recallrate Correctlydetectedwords + FalseNegatives %

Various papers presents the status of research on text extraction

1.1.1 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 8, AUGUST
1996: This correspondence discusses an extension of the well known phase correlation technique
to cover translation, rotation, a scaling. Fourier scaling properties and Fourier rotational property
are used to find scale and rotational movement. The phase correlation technique determines the

translational movement. This method show excellent robustness against random noise.

1.1.2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO4, APRIL 2010
Learning With Graph for Image Analysis: Bin Cheng, Jianchao Yang, Student Member,
IEEE, Shuicheng Yan, Senior Member, IEEE, Yun Fu, Member, IEEE, and Thomas S.
Huang, Life Fellow, IEEE: The graph construction procedure essentially determines the
potential soft hose graph-oriented learning algorithm for image analysis. In this paper, we
propose a process to build the so-called directed -graph, in which the vertices involve all the
samples and the ingoing edge weights to each vertex describe it-norm driven reconstruction from
the remaining samples and the noise. Then, a series of new algorithms for various mach in
learning tasks, e.g., data clustering, sub space learning, and semi supervised learning, are derived
upon the -graphs. Compared with the conventional -nearest-neighbor graph and —ball graph the -

graph possesses the advantages.
1) Greater robustness data noise,
2) Automatic sparsity, and

3) Adaptive neighborhood

1.1.3 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO .4, APRIL 2010:
Deform PF-MT: Particle Filter With Mode Tracker for Tracking Nonaffine Contour
Deformations NamrataVaswani, YogeshRathi, Anthony Yezzi, and Allen Tannenbaum: In
this paper proposed algorithms are for tracking the boundary contour of a deforming object from

an image sequence, when the nonaffine (local) deformation over consecutive frames is large and

12

thére is overlapping clutter, occlusions, low contrast, or outlier imagery. When the object is
arbitrarily deforming, each, or at least most, contour points can move independently. Contour
deformation then forms an infinite (in practice, very large), dimensional space. Direct application
of particle filters (PF) for large dimensional problems is impractically expensive. However in
most real problems, at any given time, most of the contour deformation occurs in a small number
of dimensions (“effective basis space”) while the residual deformation in the rest of the state
space (“residual space”) is small. This property enables us to apply the particle filtering with
mode tracking (PF-MT) idea that was proposed for such large dimensional problems in recent
work. Since most contour deformation is low spatial frequency we proposed to use the space of
deformation at a sub sambled set of locations as the effective basis space. The resulting
algorithm is called deform PF-MT. It requires significant modifications compared to the original

PF-MT because the space of contours is a non-Euclidean infinite dimensional space.

13

CHAPTER-2

Introduction to Image Processing

2.1 Images and pictures

Human Beings are predominantly visual creatures. We rely heavily on our vision to make sense
of the world around us. We not only look at things to identify and classify them, but we can scan
for differences, and obtain an overall rough feeling for a scene with a quick glance.

Humans have evolved very precise visual skills, we can identify a face in an instant, we can
differentiate colors, and we can process a large amount of visual information very quickly.

However, the world is in constant motion. Stare at something for long enough and it will change
in some way. Even a large solid structure, like a building or a mountain, will change its
appearance depending on the time of day (day or night); amount of sunlight (clear or cloudy), or
various shadows falling upon it.

For our purposes, an image is a single picture which represents something. It may be a picture of
a person, of people or animals, or of an outdoor scene, or a microphotograph of an electronic

component, or the result of medical imaging. Even if the picture is not immediately recognizable,
it will not be just a random blur.

2.2 What is image processing?

Image processing involves changing the nature of an image in order ‘to either
1. improve its pictorial information for human interpretation,
2. render it more suitable for autonomous machine perception.
We shall be concemed with digital image processing, which involves using a computer

to change the nature of a digital image (see below). It is necessary to realize that these
two aspects represent two separate but equally important aspects of image processing. A

14

procedure which satisfies condition (1)-a procedure which makes an image “look better” —
may be the very worst procedure for satisfying condition (2)- Humans like their images
to be sharp, clear and detailed; machines prefer their images to be simple and
uncluttered.

Examples of (1) may include:

e Enhancing the edges of an image to make it appear sharper; an example is shown
in figure 2.1. Note how the second image appears “cleaner”; it is a more pleasant
image. Sharpening edges is a vital component of printing: in order for an image
to appear “atits best” on the printed page; some sharpening is usually performed.

(a) The original image (b) Result after sharperning

Figure 2.1: Image sharperning

° Removing “noise” from an image; noise being random errors in the image. An
example is given in figure 2.2. Noise is a very common problem in data
transmission: all sorts of electronic components may affect data passing through
them, and the results may be undesirable.

15

e Removing motion blur from an image. An example is given in figure 2.3. Note that in
the deblurred image (b) it is easier to read the number plate, and to see the
spikes on the fence behind the car, as well as other details not at all clear in
the original image (a). Motion blur may occur when the shutter speed of the
camera is too long for the speed of the object. In photographs of fast moving
objects: athletes, vehicles for example, the problem of blur may be considerable.

Examples of (2) may include:

Obtaining the edges of an image. This may be necessary for the measurement of objects
in an image; an example is shown in figures 2.4. Once we have the edges we
can measure their spread, and the area contained within them. We can also use
edge detection algorithms as a first step in edge enhancement, as we saw above.

LAt R s T _

(a) The original image (b) After removing noise

Figure 2.2: Removing noise from an image

16

(a) The original image (b) After removing the blur

Figure 2.3: Image deblurring

From the edge result, we see that it may be necessary to enhance the original image
slightly, to make the edges clearer.

(a) The original image (b) Its edge image

Figure 2.4: Finding edges in an image

17

Removing detail from an image. For measurement or counting purposes, we may not be
interested in all the detail in an image. For example, a machine inspected items on an
assembly line, the only matters of interest may be shape, size or color. Forsuch cases,
we might want to simplify the image. Figure 2.5 shows an example: in image (a) is a
picture of an African buffalo, and image (b) shows a blurred version in which extraneous
detail (like the logs of wood in the background) have been removed. Notice that in image (b) all
the fine detail is gone; what remains is the coarse structure of the image. We could for
example, measure the size and shape of the animal without being “distracted”by unnecessary
detail.

(a) The original image (b) Blurring to remove detail

Figure 2.5: Blurring an image

18

2.3 Fundamental Steps Involved in Digital Image Processing

Outputs of these processes generally are images

Wavelets and
multiresolution
processing

Color image
processing

Morphological
processing

Compression

Image

i Segmentation
restoration ¥

Knowledge base Representation

& description

Image
enhancement

Problem &) Image o
domain acquisition

Outputs of these processes generally are image attributes

Object
recognition

{

Fig 2.6 Steps in Image processing

(i) Image Acquisition : This is the first step or process of the fundamental steps of digital
image processing. Image acquisition could be as simple as being given an image that is already

in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling
etc.

(i) Image Enhancement : Image enhancement is the process of manipulating an image so

that result is more suitable than original for specific application. This technique is meant to bring
out detail that is obscured, or simply to highlight certain features of interest in an image. Such as
changing brightness & contrast etc. |

(iii) Image Restoration : Image restoration is an area that also deals with improving the
appearance of an image. However, unlike enhancement, which is subjective, image restoration is

19

objective, in the sense that restoration techniques tend to be based on mathematical or
probabilistic models of image degradation.

(iv) Color Image Processing : Color image processing is an area that has been gaining its
importance because of the significant increase in the use of digital images over the Internet. This

may include color modeling and processing in a digital domain etc.

(v) Wavelets and Multiresolution Processing : Wavelets are the foundation for representing
images in various degrees of resolution. Images subdivision successively into smaller regions for

data compression and for pyramidal representation.

(vi) Compression : Compression deals with techniques for reducing the storage required to
save an image or the bandwidth to transmit it. Particularly in the uses of internet it is very much
necessary to compress data.

(iv) Color Image Processing : Color image processing is an area that has been gaining its
importance because of the significant increase in the use of digital images over the Internet. This
may include color modeling and processing in a digital domain etc.

(v) Wavelets and Multiresolution Processing : Wavelets are the foundation for representing
images in various degrees of resolution. Images subdivision successively into smaller regions for

data compression and for pyramidal representation.

(vi) Compression : Compression deals with techniques for reducing the storage required to
save an image or the bandwidth to transmit it. Particularly in the uses of internet it is very much

necessary to compress data.

vii) Morphological Processing : Morphological processing deals with tools for extracting image
components that are useful in the representation and description of shape.

(viii) Segmentation : Segmentation procedures partition an image into its constituent parts or
objects. In general, autonomous segmentation is one of the most difficult tasks in digital image
processing. A rugged segmentation procedure brings the process a long way toward successful
solution of imaging problems that require objects to be identified individually.

(ix) Representation and Description ; Representation and description almost always follow
the output of a segmentation stage, which usually is raw pixel data, constituting either the
boundary of a region or all the points in the region itself. Choosing a representation is only part
of the solution for transforming raw data into a form suitable for subsequent computer
processing. Description deals with extracting attributes that result in some quantitative
information of interest or are basic for differentiating one class of objects from another

20

(x) Object recognition : Recognition is the process that assigns a label, such as, “vehicle” to an
object based on its descriptors

(xi) Knowledge Base : Knowledge may be as simple as detailing regions of an image where the
information of interest is known to be located, thus limiting the search that has to be conducted
in seeking that information.

The knowledge base also can be quite complex, such as an interrelated list of all major possible
defects in a materials inspection problem or an image database containing high-resolution

satellite images of a region in connection with change-detection applications.

2.4 Images and digital images

Suppose we take an image, a photo, say. For the moment, let’s make things easy and suppose
the photo is monochromatic (that is, shades of grey only), so no color. We may
consider this image as being a two dimensional function, where the function values give
the brightness of the image at any given point, as shown in figure 2.6. We may assume
that in such an image brightness values can be any real numbers in the range 0.0(black)
to 1.0 (white). The ranges of x and y will clearly depend on the image, but they can take all
real values between their minima and maxima.

Such a function can of course be plotted, as shown in figure 2.7. However, such a plot
is of limited use to us in terms of image analysis. The concept of an image as a
function, however, will be vital for the development and implementation of image
processing techniques.

f(x,y)=0.8

Figure 2.7: An image as a function

21

Figure 2.8: The image plotted as a function of two variables

A digital image differs from a photo in that the x,y and f(x,y) values are all discrete.
Usually they take on only integer values, so the image shown will have x and y
ranging from | to 256 each, and the brightness values also ranging from 0 (black) to 255
(white). A digital image, as we have seen above, can be considered as a large array of sampled
points from the continuous image,each of which has a particular quantized brightness; these
points are the pixels which constitute the digital image.The pixels surrounding a given pixel
constitute its neighborhood. A neighborhood can be characterized by its shape in the same way
as a matrix: we can speak, for example, of a 3 x 3 neighborhood, orof a 5 x 7
neighborhood. Except in very special circumstances,neighborhoods have odd numbers of rows
and columns; this ensures that the current pixel is in thecenterof the neighborhood. If a
neighborhood has an even number of rows or columns (or both), it may be necessary to specify
which pixel in the neighborhoodis the “current pixel”.

22

.

2.5 Aspects of image processing

It is convenient to subdivide different image processing algorithms into broad subclasses.
There are different algorithms for different tasks and problems, and often we would like
to distinguish the nature of the task at hand.

Image enhancement : This refers to processing an image so that the result is more
suitable for a particular application. Example include:

o sharpening or de-blurring an out of focus image,

e highlighting edges,

e improving image contrast, or brightening an image,
e removing noise.

Image restoration : This may be considered as reversing the damage done to an image

by a known cause, for example:

¢ removing of blur caused by linear motion,
e removal of optical distortions,
e removing periodic interference.

Image segmentation : This involves subdividing an image into constituent parts, or
isolating certain aspects of an image:

e finding lines, circles, or particular shapes in an image,

e in an aerial photograph, identifying cars, trees, buildings, or roads.

These classes are not disjoint; a given algorithm may be used for both image
enhancement or for image restoration. However, we should be able to decide what it is
that we are trying to do with our image: simply make it look better (enhancement), or

removing damage (restoration).

CHAPTER-3

Different techniques used in Image Processing

3.1 Haar Transform and Image Extraction

3.1.1 Introduction to Haar Transform

In this chapter, we present a method to extract texts in images using Haar discrete wavelet
transform (Haér DWT). The edges detection is accomplished by using 2-D Haar DWT and some
of the non-text edges are removed using thresholding. After-ward, we use different
morphological dilation operators to connect the isolated candidate text edges in each detail
component sub-band of the binary image. Although the color component may differ in a text
region, the inforrhation about colors does not help extracting texts from images. If the input

image is a gray-level image, the image is processed directly starting at discrete wavelet

transform.

Ilaar DWT

Remove non-text edges by using thresholding to
each detail component sub-band

Dilate edges in 1L, LH and HII
(D(HL), D(LIT), D(HHY)

l

Logical AND of dilated HL, L1l and H1{ edges
(D(HLYAND D(LI) AND D(iHY)

Fig 3.1: Flow chart of proposed text

24

If the input image is colored, its RGB components are combined to give an intensity image Y as
follows
Y =0299R +0.587G+0.114B n
Image Y is then processed with discrete wavelet transform and the whole extraction
algorithm afterward. If the input image itself is stored in the DWT compressed form, DWT
operation can be omitted in the proposed algorithm. The flow chart of the proposed algorithm is

shown in Figure 3.1.

3.1.2 Haar discrete wavelet transform

s

The discrete wavelet transform is a very useful tool for signal analysis and image processing,
especially in multi-resolution representation. It can decompose signal inio different components
in the frequency domain. One-dimensional discrete wavelet transform (1-D DWT) decomposes
an input sequence into two components (the average component and the detail component) by
calculations with a low-pass filter and a high-pass filter. Two-dimensional discrete wavelet
transform (2-D DWT) decomposes an input image into four sub-bands, one average component
(LL) and three detail components (LH, HL, HH) as shown in Figure 3.2. In image processing,
the multi-resolution of 2-D DWT has been employed to detect edges of an original image. The
traditional‘edgc detection filters can provide'the similar result as well. However, 2-D DWT can
detect three kinds of edges at a time while traditional edge detection filters cannot. As shown in
Figure 3.3, the traditional edge detection filters detect three kinds of edges by using four kinds of
mask operators. Therefore, processing times of the traditional edge detection filters is slower

than 2-D DWT.

LL HL

LH HH

Figure 3.2 The result of 2-D DWT decomposition

25

= .

Figure 3.4 (a) shows a gray level image. The 9-7 taps DWT filters decompose this gray

image into four sub-bands as shown in Figure 3.4 (b). As we can see, three kinds of edges

present in the detail component sub-bands but look unobvious (very small coefficients). If we

replace the 9-7 taps DWT filters with Haar DWT, the detected edges become more obvious and

the processing time decreases. The operation for Haar DWT is simpler than that of any

otherwavelets. It has been applied to image processing especially in multi-resolution

representation. Harr DWT has the following important features.

Haar wavelets are real, orthogonal, and symmetric.
Its boundary conditions are the simplest among all wavelet-based methods.
The minimum support property allows arbitrary spatial grid intervals.

It can be used to analyze texture and detect edges of characters.

The high-pass filter and the low-pass filter coefficient is simple (either 1 or —1).

Figure 3.3 Traditional edge detection using mask operation

26

— 2 2 2
S
Horizon:zl Horizontzl edge
-] 2 ~1}
> -1 2 =1
-1 2 —1]
Vertical
[~ =f 2§
- {——l 2 —~Z N
| 2 -1 -1 \
= 45 k)ﬁ,
[2 -1 -] /
| 1 7) B
— =l 2 -1 Dizgonal edge
-1 -1 2]

—

¢
¥ 4y

BB FR A A AR 7

Figure 3.4 (a) Original gray image (b) DWT coefficients

Figure 3.5 (a) shows the example of a 4x4 gray-level image. The wavelet coefficients can
be obtained in gray-level image using addition and subtraction. 2-D DWT is achieved by two
ordered 1-D DWT operations (row and column). First of all, we perform the row operation to
obtain the result shown in Figure 3.5 (b). Then it is transformed by the column operation and the
final resulted 2-DHaar DWT is shown in Figure 3.5 (¢). 2-D Haar DWT decomposes a gray-level

image into one average component sub-band and three detail component sub-bands.

A B C D T(A+B) (C+D} (A-B) (C-Dy]

/E F G H H(E+F) (G+H) (E-F) (G-H)|

T3 K L (1= (K=L) (- (K-D)|

'M N O P |M+N) (0O+P) (M-N) (O-P) |
{a) (b}

(A-B)—(E~F) (C+~D)~(G~H) (A-B)y~(LE-F) (C-D)=(G-Hy |

L= =(M=N) (K+=D+0+pP) (1-DH=(M-N) (K-L)=(O-P) |

HA=B)-(E<F) (C+D)-(G=H) (A-B)-(E-H) (C-D)-(G-H) |

[(1=1)-M=N) (K+D)-O=P) (1-D-(M-N) (K-D)-(O-P) |
ic)

Figure 3.5 (a) The original image (b) the row operation of 2-D Haar DWT (c) the column

27

3.1.3 Text region extraction

In this subsection, we use morphological operators and the logical AND operator to further
removes the non-text regions. In text regions, vertical edges, horizontal edges and diagonal edges
are mingled together while they are distributed separately in non-text regions. Since text regions
are composed of vertical edges, horizontal edges and diagonal edges, we can determine the text
regions to be the regions where those three kinds of edges are intermixed. Text edges are
generally short and connected with each other in different orientation. In Figure 3.7, we use
different morphological dilation operators to connect isolated candidate text edges in each detail
component sub-band of the binary image. In this research, 3x5 for horizontal operators, 3x3 for
diagonal operators and 7x3 for vertical operators as in shown Figure 3.8 are applied. The dilation
operators for the three detail sub-bands are designed differently so as to fit the text
characteristics. The logical AND is then carried on three kinds (vertical, horizontal and diagonal)
of edges after morphological dilation. This process is indicated in Figure 3.9 Since three kinds of
edge regions are intermixed in the text regions, overlapping appears a lot after the morphological
dilation due to the expansion of each single edge. On the contrary, only one kind of edge region
or two kinds of edge regions exist separately in the non-text regions and hence there is no over-
lapping even after the dilation. Therefore, the AND operator helps us to obtain the candidate text
regions as shown in Figure 3.10 (a). Some-times the text candidate regions may contain some
non-text component regions which are too large or too small. By limiting the block size, we
obtain the final text regions. Each text region has a moderate siie w x h (pixels) in a candidate

text region image.

FURAR RO EREE?

¢

.
@2
>

2

%1

Figure 3.6 The dilated image of three binary regions

28

Horizontal Diagonal Vertical

Figure 3.7 Horizontal, Diagonal and Vertical edges dilation operators

Figure 3.8 Text extraction by using the logical AND operator

29

PBIABE R AR AR ?

(d) (b}

Figure 3.9 (a) The candidate text region (b) the extracted real text region
Removing the candidate text regions smaller than this limit, the final text region is shown
in the Figure 3.10 (b).
The dense edges are the distinct characteristics of the text blocks which are used to detect the
possible text regions. The candidate text regions are found by finding the edges in the mentioned
sub-bands and fusing the edges contained in each sub-band. The Sobel edge detector is efficient
to extract the strong edges. The Sobel edge detector is applied on each sub-band to get the
candidate text edges. In the next step, using a weighted ‘OR “operator, these candidate text edges
are used to form the edge map. A threshold is applied on the edge map to obtain the binary edge
map. Then, a morphological dilation operation is performed on the processed edge map. This

operation results in filling the gaps inside the obtained characters’ regions.

3.2 Image Histogram Analysis

3.2.1 Histogram

In statistics, a histogram is a graphical representation of the distribution of data. It is an estimate
of the probability distribution of a continuous variable and was first introduced by Karl
Pearson. A histogram in a representation of tabulated frequencies, shown as adjacent rectangles,
erected over discrete intervals (bins), with an area equal to the frequency of the observations in
the interval. The height of a rectangle is also equal to the frequency density of the interval, 1.€.,
the frequency divided by the width of the interval. The total area of the histogram is equal to the

number of data.

30

In an image processing context, the histogram of an image normally refers to a histogram of
the pixel intensity values. This histogram is a graph showing the number of pixels in an image at
each different intensity value found in that image. For an 8-bit grayscale image there are 256
different possible intensities, and so the histogram will graphically display 256 numbers showing
the distribution of pixels amongst those grayscale values. Histograms can also be taken of color
images --- either individual histograrhs of red, green and blue channels can be taken, or a 3-D
histogram can be produced, with the three axes representing the red, blue and green channels,
and brightness at each point representing the pixel count. The exact output from the operation
depends upon the implementation --- it may simply be a picture of the required histogram in a

suitable image format, or it may be a data file of some sort representing the histogram statistics.

3.2.2 Algorithm for image histogram

Create an array histogram with 2° elements
for all grey levels, i, do

histogram[i] = 0;

end for

for all pixel coordinates, x and y, do
Increment histogram([f (x,y)] by 1

end for

Histogram of un equalized Image Histogram of equalized Image

. 4P e e
. mg
o §

B e It A

g | SRR e

9 «

31

3.3 Thresholding Technique

3.3.1 Brief Description

In many vision applications, it is useful to be able to separate out the regions of the image
corresponding to objects in which we are interested, from the regions of the image that
correspond to background. Thresholding often provides an easy and convenient way to perform
this segmentation on the basis of the different intensities or colors in the foreground and

background regions of an image.

In addition, it is often useful to be able to see what areas of an image consist of pixels whose
values lie within a specified range, or band of intensities (or colors). Thresholding can be used
for this as well.

3.3.2 How It Works

The input to a thresholding operation is typically a grayscale or color image. In the simplest
implementation, the output is a binary image representing the segmentation. Black pixels
correspond to background and white pixels correspond to foreground (or vice versa). In simple
implementations, the segmentation is determined by a single parameter known as the intensity
threshold. In a single pass, each pixel in the image is compared with this threshold. If the pixel's
intensity is higher than the threshold, the pixel is set to, say, white in the output. If it is less than

the threshold, it is set to black.

In more sophisticated implementations, multiple thresholds can be specified, so that a band of
intensity values can be set to white while everything else is set to black. For color or multi-
spectral images, it may be possible to set different thresholds for each color channel, and so
select just those pixels within a specified cuboid in RGB space. Another common variant is to set
to black all those pixels corresponding to background, but leave foreground pixels at their
original color/intensity (as opposed to forcing them to white), so that that information is not lost.

3.4 Filtering Techniques used in Digital Image Processing

There are two type of filtering techniques used in digital image processing

1) Spatial filtering technique

2) Frequency filtering technique
3.4.1 Spatial filtering technique
Spatial filtering technique is one of the principal tools used in this field of broad spectrum of
applications. The name filter is obtained from frequency domain processing, where filtering

refers to accepting or rejecting certain frequency components.

32

|

———— - L

3.4.1.1 Brief Description
A spatial filter consists of (1) a neighborhood and (2) a predefined operation that is performed on

the image pixels encompassed by the neighborhood. Filtering creates a new pixel with

coordinates equal to the coordinates of the center of the neighborhood and whose value is the

result of the filtering operations.
If the operation performed on the image pixel is linear it is called linear spatial filter. Otherwise

the filter is nonlinear.

3.4.1.2 The Mechanism of Spétial Filtering

At any point(x,y) in the image, the response, g(x,), of the filter is the sum of products of the

filter coefficients and the image pixels encompassed by the filter:
gxy) = w(-1,-1)f(x-1,y-1)+ w(-1,0)f(x-1.y)+ ... +w(0,0)f(xy)+ ... w(L,1)f(x+1,y+1)
The central coefficient of the filter, w(0,0), aligns with the pixel at location (x,y). For a mask of

size mXn, we assume that m = 2a+/ and n = 2b+] where a and b are positive integers.

3.4.1.3 Gaussian Filters
In electronics and signal processing, a Gaussian filter is a filter whose impulse response is
a Gaussian function. Gaussian filters have the properties of having no overshoot to a step

function input while minimizing the rise and fall time. This behavior is closely connected to the
fact that the Gaussian filter has the minimum possible group delay. Mathematically, a Gaussian

filter modifies the input signal by convolution with a Gaussian function,; this transformation is
also known as the Weierstrass transform.

The one-dimensional Gaussian filter has an impulse response given by

a —a-z?
T)=,/—-€
g9lz) =/~
and the frequency response is given by Fourier transform
22

§(f)=e =
with [the ordinary frequency. These equations can also be expressed with the standard
deviation as parameter '

33

3.4.1.3.1 Algorithm for Gaussian Blur

Tmp1 = Input[j][il; // Fetch the next input pixel
Tmp2 = SRO + Tmpl; // Form the intermediate value
SRO = Tmpl; // Update 1st row state buffer
Tmpl = SR1 + Tmp2; // Form the row machine output
SR1 = Tmp2; ’ // Update 2nd row state buffer

// Column machine
Tmp2 = SCO[i] + Tmpl; // Form the intermediate value

SCO[i] = Tmpl; // Update 1st column state buffer
Output{j-1][i-1] = (8 + SC1[i] + Tmp2)/16; // Form the output
SC1[i] = Tmp2; // Update 2nd column state buffer

3.4.2 Frequency Filters

3.4.2.1 Brief Description

Frequency filters process an image in the frequency domain. The image is Fourier transformed,
multiplied with the filter function and then re-transformed into the spatial domain. Attenuating
high frequencies results in a smoother image in the spatial domain, attenuating low frequencies

enhances the edges.
All frequency filters can also be implemented in the spatial domain and, if there exists a simple

kernel for the desired filter effect, it is computationally less expensive to perform the filtering in
the spatial domain. Frequency filtering is more appropriate if no straightforward kernel can be

found in the spatial domain, and may also be more efficient.

3.4.2.2 How It Works

Frequency filtering is based on the Fourier Transform. (For the following discussion we assume
some knowledge about the Fourier Transform, therefore it is advantageous if you have already
read the corresponding worksheet.) The operator usually takes an image and a filter function in
the Fourier domain. This image is then multiplied with the filter function in a pixel-by-pixel

fashion:

Gik,1) = F{k,)H(k,1)

34

where, F(k,/) is the input image in the Fourier domain, H(k,/) the filter function and G(k,/) is the
filtered image. To obtain the resulting image in the spatial domain, G(k,/) has to be re-
transformed using the inverse Fourier Transform.

Since the multiplication in the Fourier space is identical to convolution in the spatial domain, all

frequency filters can in theory be implemented as a spatial filter. However, in practice, the
Fourier domain filter function can only be approximated by the filtering kernel in spatial domain.

35

Chapter 4
Image processing using Java

4.1 A program to convert RGB colors into values of hue, saturation and intensity.

A conversion method from Java’s Color class is used :

Import java.awt.Color;
Import java.text.DecimalFormat;
public class HSICalc

{

public static void main(String[] argv) {

if (argv.length > 2) {

int[] rgb = new int[3];

for (int i = 0; i < 3; ++i)

rgb[i] = Integer.parselnt(argv[i]);

float[] values = Color.RGBtoHSB(rgb[0], rgb[1], rgb[2], null);
String[] labels —- { "H=l|, "S=l|, III=|I };

DecimalFormat floatValue = new DecimalFormat("0.000");
| for (int i =0; i <3; ++)

| System.out.printIn(labels[i] + floatValue.format(values[i]));
|)

' else

! {

j System.err.println("usage: java HSICalc <r> <g> ");
System.exit(1);

}

}

36

472 Java code to enlarge an image by pixel replication:

public static BufferedImage enlarge (BufferedImage image, int n)

{

int w = n*image.getWidth();

int h = n*image.getHeight();

BufferedImage enlargedlmage = new Bufferedlmage(w, h, image.getType());
for (int y = 0; y < h; +ty)

for (int x=0; x < w; T+X)

enlargedImage.setRGB(X, ¥s image.getRGB(x/n, y/n));

return enlargedlmage;

}

e — T e a——

e

PNVl An insfficient method for grey leve mapping

coondinas

¥ oy

I-L cnd Sor
Bl

Fig 4.1 Algorithm for Grey Level Mapping

InfervalTimer timer =HEW [nterval Timer();

Timer.start();

//some code to be timed

System_OuLprintln(timer.elapsed()); //do

//more code to be timed
System,out,println(timer.stop());

import java.util. Random;

public class MapTest] {

public static void randomFill(short[] array) {
Random random = new Random();

for (int i = 0; i < array.length; ++1)

?n'ay[i] = (short) random.nextInt(256);

esn’t stop the clock

public static void main(String[] argv) {
intn =512,
if (argv.length > 0)

—fi

n = Integer.parselnt(argv[0]);

// Create image and fill it with random values

int numPixels = n*n;

short[] image = new short[numPixels];

randomFill(image);

// Perform the mapping directly

IntervalTimer timer = new IntervalTimer();

timer.start();

for(inti=0;i< numPixels; ++1) . .

image[i] = (short) Math.round(Mat’h.sqrt(myage[l]))a N
System.out.printIn("direct calculation: " + timer.stop() + " sec");
/] Perform the mapping with a lookup table

randomFill(image); '

timer. start();

short[] table = new short[256];

for (int i = 0; i < 256; ++1) .

table[i] = (short) Math.round(Mgth.sqﬂ(l));

for (int i = 0; i < numPixels; ++i)
image[i] = table[image[il};
System.out.println("lookup table:
System.exit(0);

}
}

" + timer.stop() + " sec");

38

4.3 A Java class to perform mapping of grey levels in an image:

import java.awt.image.*;

public abstract class GreyMapOp implements B}lfferedlmageOp {
protected byte[] table = new byte[256];

public int getTableEntry(int i) {

if (table[i] < 0)

return 256 + (int) table[i};

else

return (int) table[i];

}

protected void setTableEntry(int i, int value) {
if (value < 0)

table[i] = (byte) 0;

else if (value > 255)

table[i] = (byte) 255;

else

table[i] = (byte) value;

}

public void computeMapping() {
(}"OmputeMapping(O, 255);

public abstract void computeMapping(int low, int high);

public Bufferedmage filter(BufferedImage src, Bufferedimage dest) {
checkImage(src);

if (dest == null) , 0

dest = createCompatibleDestImage src, null); ..
LookupOp operation = new LookupOp(new ByteLookupTable(O, table), null);
operation. filter(src, dest);

return dest;

}
}

39

T T ey h_—m_«__—..—_—sa,

4.4 Algorithm for Calculation of an image histogram:

b
Create an array histogram with 2 elements

for all grey levels, i, do
histogram[i] = 0;
end for

for all pixel coordinates, x and y, do
Increment histogram[f (x,y)] by 1
end for

4.4.1 Program to perform image histogram:

import java.awt.*;

import java.awt.event.*;
import java.awt.image.*;
import java.io.*;

import javax.swing.*;
import javax.swing.border.*;
public class HistogramTool extends JFrame implements ActionListener {

private Histogram histogram; // histogram data to be displayed
private HistogramView[] view; // plot of the histogram

private HistogramInfoPane infoPane; // displays value and frequency
private JPanel mainPane; // contains histogram and info panel

private JMenu menu; // input/output menu

private JFileChooser fileChooser = J/ handles selection of files

new JFileChooser(System. getProperty("user.dir"));

public HistogramTool(Histogram theHistogram, String description) {
super(description); // labels the frame
// Create components to display histog
histogram = theHistogram,

infoPane = new HistogramlnfoPane(histogram);

mainPane = new JPanel(new BorderLayout());

if (histogram.getNumBands() ==13)

createMultipleViews(); J/ three views (R, G, B)ina tabbed pane
else

createSingleView();

mainPane.add(infoPane, BorderLayout.SOUTH);
setContentPane(mainPane);

// Add a menu bar to support image input an

JMenuBar menuBar = new JMenuBar();
menuBar.setBorder(new BevelBorder(BevelBorder.RAISED));

createFileMenu();

menuBar.add(menu);
set/MenuBar(menuBar);

ram and information

d histogram output

40

R e T e S -
e e -

addWindowListener(new WindowMonitor());

}

// Creates a single HistogramView object to display a
/I greyscale histogram and adds it to the GUI

public void createSingleView() {

view = new HistogramView[1];

view[0] = new HistogramView(histogram, infoPane);
mainPane.add(view[0], BorderLayout. CENTER);

}

J/ Creates three HistogramView objects for the red, green

// and blue bands of a colour histogram, places these in a

// tabbed pane and adds the tabbed pane to the GUI

public void createMultipleViews() {

view = new HistogramView[3];

Color{] bandColor = { Color.red, Color.green, Color.blue };
String[] tabLabel = { "Red", "Green", "Blue" };
JTabbedPane views = new JTabbedPane(JTabbedPane. BOTTOM);
for (int i =0; i < 3; +H) {

view[i] = new HistogramView(histogram, i, infoPane),
view[i].setColor(bandColor[i]);

views.add(tabLabel[i], view[i]);

}
mainPane.add(views, BorderLayout. CENTER);
}
// Creates a menu to support image input, histogram output
// and termination of the application
public void createFileMenu() {
menu = new JMenu("File");
menu.setMnemonic('F');
String[] itemName = { "Load image", "Save histogram”, "Exit" };
char{] shortcut = { 'L, 'S', X'}
for (int i = 0; i < 3; ++i) {
IMenultem item = new JMenultem(itemName[i], shortcut[i]);
item.addActionListener(this);
menu.add(item),
}
} .

// Handles Action events triggered by menu selections
public void actionPerformed(ActionEvent event) {
String command = event.getActionCommand();

if (command.startsWith("Load")) {
loadImage();
repaint();

else if (command.startsWith("Save")) {

saveHistogram();
repaint();

41

else if (command.equals("Exit")) {
setVisible(false);

dispose();

System.exit(0);

}

}

// Loads a new image, computes its histogram and updates the GUI

public void loadImage() { .
fileChooser.setDialogTitle("Load image");

“if (fileChooser.showOpenDialog(this) == JFileChooser. APPROVE_OPTION) {

/! Load image and compute its histogram

try {

' File file = fileChooser.getSelectedFile();

ImageDecoder input = '
ImageFile.createImageDecoder(file. getAbsolutePath());

BufferedImage image = input.decodeAsBufferedImage();
histogram.computeHistogram(image); setTitle(file.getName());

}
catch (FileNotFoundException €) {

error("File not found.");
return;

}
catch (ImageDecoderException €) {

error("Cannot read this image format.");
return;

}

catch (IOException e) {

error("Failed to read image data.");
return;

}
catch (HistogramException €) {
error("Cannot compute histogram

return;

}

// Rebuild GUI
mainPane.removeAll();

if (histogram. getNumBands() == 3)
createMultipleViews();

else

createSingleView(); o .
mainPane.add(infoPane, BorderLayout.SOUTH);

mainPane.invalidate();
validate();

pack();

}

}

// Saves current histogram to a fi
public void saveHistogram() {

for this image type.");

le selected by user

42

if (histogram.getNumBands() == 0} {
error("No histogram data to save!");
return;
} .
else {
fileChooser.setDialogTitle("Save histogram");

if (fileChooser.showSaveDialog(this) = JFileChooser. APPROVE_OPTION) {

try { _
File file = fileChooser.getSelectedFile();

if (file.exists()) { ‘ .
int response = JOptionPane.showConﬁrleglog(thls,"
"File will be overwritten! Are you sure?", "File exists’,
JOptionPane.OK_CANCEL_OPTION);

if (response != JOptionPane.OK_OPTION)

return;

}

histogram.write(new FileWriter(file));
fileChooser.rescanCurrentDirectory();

} ‘

catch (IOException €) {

error("Cannot open output file.");

}

}

}

}

// Displays an error message in a dialog box

public void error(String message) {))
JOptionPane.showMessageDialog(this, message, Error",
JOptionPane ERROR_MESSAGE);

}

public static void main(String(] argv) {

if (argv.length > 0) {

t .
I:Tyla{geDecode.r input = ImageF ile.createImageDecoder(argv[O]),

Bufferedimage image = 'mput.decodeAsBufferedImage();
Histogram hist = new Histogr am(.image);) .
HistogramTool histTool = new HistogramTool(hist, argv{0]);
histTool.pack();

histTool.setVisible(true);

}

catch (Exception €) {

System.err.printin(e);

System.exit(1);

}

}

else { . '
Histogram hist = new Histogram();

HistogramTool histTool = new HistogramTool(hist, "HistogramTool");

43

histTool.pack(); [
histTool.setVisible(true); |
} ;
} | |
} |

44

4.5 Program for Histogram Analysis:

import java.awt.image.Bufferedlmage;
import java.io.FileWriter;

public class CalcHist {

public static void main(Stringf[] argv) {
if (argv.length > 1) {

try { .
ImageDecoder input = ImageFile.createImageDecoder(argv[O]);

BufferedImage image = input.decodeAsBufferedImage();
Histogram histogram = new Histogram(image);
FileWriter histFile = new FileWriter(argv[1]);
histogram.write(histFile);

if (argv.length > 2) { .
FileWriter cumHistFile = new FileWriter(argv[2]);

histogram.writeCumulative(cumHistFile);

}
fystem.exit(O);

catch (Exception €) {
System.err.println(e);

System.exit(1);

}

else {

System.err.printin(_
"usage: java CalcHist <imageFil
System.exit(1);

}

&> <histFile> [<cumHistFile>]");

Compute 3 scaling factor, &~ 255 / oumber of pixels

Calculste histogram using Algorithm 6.3

0)=a» hisfogmml(l}

for all remaining grey levels. i, do
cij=ci-1]+as histogramli

end for

for ali pixci coordinates, x and y, do
gle, 3) =l f(x,)]

end for

Fig4.2

45

1000 —

lemgoery
g

1 G | I ilizoet
‘ ¢ ¢ 00 '8 a0 s
| iy e

ih

{a)
{a) An unequalised image. (b} Its histogra™.

(a) An equalised IM3ge: (b} Its histogram.

Fig 4.3 Unequalized and equalized images and their histograms

ALGORITHM Cakulation of a colour image histogram.

Create a 3D array histogram of direensions »x22x2

for all rod values, r. do
for all groen values, g, do
for all blue values, b, do
histogram(r)iglib} = 0
end for
ead for
end for
for all pixel coondinates, x and y, do
Find 7. the red component of f(x. y)
Find g, the green component of f(x, y)
Find b, the bluc componcat of f(x, y)
Incrernent histagramsir]g]ib] by 1
end for

Fig4.4 Algorithm for color image histogram

4.6_A convolution application with a command line interface:

Import java.awt.image.*;

Import java.io.*;

Import com. pearsoneduc.ip.io.*;
Import com.pearsoneduc.ip.op.*; .
tmport com.pearsoneduc.ip.util.IntervalTlmer;
public class Convolve {

Public static void main(String(] argv) {

if (argv.length > 5) {

try {

/I Parse command line arguments :

Im : =Ima eFile.createImageDeCOder(argv[O])’
ageDecoder input g der(argv[1]);

ImageEncoder output = ImageFile.createImageEnco

Reader kernelInput = new FileReader(arg;’[Z(]); 3] =0)
bool . = (Integer.parselnt(argy =0k
can normaliseK eme m(ax lg, Math.min(4, Integer.parselnt(argv(4])));

int borderStrategy = Math.

Int rescaleStrategy =

Math.max(1, Math.min(3, Integer.par
/I Load image and kernel .
BufferedImage inputlmage = input.decodeAsBufferedImage(),
Kerne] kernel =

StandardK ernel.createKernel(kernellnpu
// Create convolution operator and convolve image
ConvolutionOp convOp = new ConvolutionOP(kerneL
borderStrategy, ConvolutionOp.SINGLE_PASS, rescal

seInt(argv[S])));

t, normaliseKemel);

eStrategy);

47

IptewalTimer timer = new IntervalTimer();
timer.start();

BufferedImage outputlmage = convOp.filter(inputlmage, null);

System.out.println(""Convolution
/' Write results to output file
OUtput.encode(outputlmage);
System.exit(0);

catch (Exception €) {
System.err.println(e);
System.exit(1);

}

}

else {

'Sy'Stem.err. printIn("
'<infile> <outfile> <kerne
System.exit(1);

usage: java Convolve " +
|> <norm> <border> <rescale>");

A convolution appli

Fig 4.5

finished [" + timer.stop() + " sec]");

cation with a graphical user

48

interface.

|
|

4.7 Image Rotation by forward mapping:

pllblic static BufferedImage rotate(BufferedImage input, double angle) {
Int width = input.getWidth();
int height = input.getHeight();
BufferedImage output = new BufferedImage(width, height, input. getType());
double a0 = Math.cos(angle*Math.PT/180.0);

double b0 = Math.sin(angle*Math.P1/180.0);

double al = -b0, bl = a0;

mt rx, ry;

for (int y = 0; y < height; ++y)

for (int x = 0; x < width; +x){

X = (int) Math.round(a0*x +al*y);

ry = (int) Math.round(b0*x + b1*y);
if (rx >= 0 && rx < width && ry >=0 &&r1y < height)
‘;u‘Put.setRGB(rx, ry, input.getRGB(x,Y));

return output;

}

d image with pixels outside the

(b) rotate
completely visible.

(a) Sample image

Fig 4.6 Image autorotation:
th pixels

coordinate plane (c) rotated image wi

49

e -

4.8 A Java class to perform grey level thresholding:

public class ThresholdOp extends GreyMapOp {
public ThresholdOp(int threshold) {
COmputeMapping(threshold, 255);

}

public ThresholdOp(int lpw, int high) {
computeMapping(low, high);
}

public void setThreshold(int threshold) {
computeMapping(threshold, 255);
}

public void setThresholds(int low, int high) {
computeMapping(low, high);
}

public void computeMapping(int 110\;1’1)1 nt high) { .

if (1 ioh > 255 || low >= hi o ":
thr(o(zyn:\g J!Ltlag.awt.image-ImagingOPExcep“on(invalid thresholds")
int i;

for (i = 0; i < low; ++i)

table[i] = (byte) 05

for (; i <= high; ++1)

table[i] = (byte) 255;

for (; i < 256; ++)

;able[i] = (byte) 0;

}
in; ion Label
497 de to perform connected 1€ jon labelin taken from the Regl
9 Java co g g, g
class.

est) {

ed
public Bufferedlmage filter(BufferedImage SIc, Bufferedlmag

??CCkImage(src);
Il (dest == null .
degt = createCo)mpatibleDestImage(Sr ¢, null);
Width = src.getWidth();
height = src.getHeight(); ‘
WritableRaster in = src.copyData(nU“)a
WritableRaster out = dest.getRaster();
int n=1;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
if (in.getSample(x, ¥, 0) > 0) {
label(in, out, x, ¥, n);
+n;
if (n > MAX_REGIONS)

50

return dest;

}

return dest;

}

private void label(Writable
in.setSample(x, ¥, 0, 0);
put.setSample(x, y, 0, n);
intj, k;

for (int i = 0; i < connectivity; ++i) {

J1=x + delta[i].x;

!‘ A delta[i].y;

if (inlmage(j, k) && in.getSample(j, K, 0)>0)
label(in, out, j, k, n); -

}

private final boolean inImage(int X, inty) {
getum x >= 0 && x < width && y>= 0 && y < height;
}

Raster in, WritableRaster out, int x, int y, int n) {

SNSRI

ALGORITHM Region growing,

Let f be an image for hich regions are to be grown

Define a set of regions, Ry Kz

repeat

fori = | ton do

for cach pixel. p.att

for all ncighbours

Let x. v be the ne

Let /¢, be the mean grey level of p

if the neighbour is unassigned and | fx.y)

Add neighbour to R,

he border of R, do

of pdo

ighbour’s coordinates

ixels in R;

— ;| < Athen

Update i
end if
end for
end for
end for .
until no more pixels are being assigned 10 regions
- -
method.

Fig 4.7: Binary Erode Op’s filter

51

R,,. cach consisting of a single seed pixel

/

- A-Adl

R

ubli '
public Bufferedlmage filter(Bufferedlmage src, Bufferedlmage dest) {

checkImage(src);

if (dest == null)

?ristv—_createCorr}patibleDestImage(src, null);

Int w = src. getWidth();

Elt h = src.getHeight();

Wagter srcRaster = src.getRaster();

/ BteE::leRaster destRaster = dest.getRaster();

Pore Or;lplpe jange of pixels for whjch operation can be performed

b g_m = structElerpept.getOrlgin(null);

o in = Math.max(origin.x, 0);

o imm = Ma}tl?.max(origin.y, 0);

i max = origin.x + W - structElement. getWidth();
ymax = origin.y + h - structElement.getHeight(;

Xmax = Math.min(w-1, xmax);

)’/“ll:?:t = Math.min(h-1, ymax);

for structuring element into source image

for (%nt y= ymin; Y <= ymax; ++y)

i (int x = xmin; X <= Xmax, ++X)

dessthCtElement.ﬁts(srcRaster, X, ¥)
aster.setSample(X, ¥s 0, nonZeroValue);

return dest;

filter() method of BinaryOpenOp-
fferedlmage SIc Bufferedimage dest){
i Op(structElement);

public BufferedImage filter(Bu
Op(structElement);

g;garyEr.odeOp erodeOp = N€W BinaryErode
SinaryDilateOp dilateOp = neW BinaryDilate
If (dest == null) ‘
?:ti‘ = C{eateComp
\ rrldllalteOp.ﬁlter(erodeO

atibleDestImage(src, null);
p.filter(src, null), dest);

52 //

TTewY”

(a} (b)
of morphological filcering. (a) Inputimage, a cookie surrounded

Figure 4.8 Exampie
cookie image.

by ere:mi _
Y crumbs. (b) Result of opening the
, , -

{cl

(b

(a) Input IMagE: (b) Result of opening by a 9 x 9 disc.
. a9 = 9dsc

Dealing with holes
again using

d image.

Figure 4.9
(C} Re‘iiﬂt of Ck,)‘,,ﬂ‘.;{ the O_DC”@

53

4.10 Gaussian Filter:
A Gaussian filter is a filter whose impulse response is a Gaussian function. Gaussian filters

have the properties of having no overshoot to 2 step function input while minimizing the rise and
fall time. This behavior is closely connected to the fact that the Gaussian filter has the minimum

possible group delay. Mathematically, 2 Gaussian filter modifies the input signal
by convolution with a Gaussian function; own as the Weierstrass

transform.

this transformation is also kn

Class to perform Gaussian low pass filtering:

public class GaussianKemel extends StandardKemel {

Pl{blic GaussianKernel() {
§h1s(1.0f);

public GaussianK ernel(float sigma) { '
Super(getSize(sigma), getSize(sigma), createKcmelData(31gma));

Public static int getSize(ﬂoat sigma) {
Int radius = (int) Math.ceil(4.0f*sigma);

return 2*radius+1;

Public static float[] createKemelData(ﬂoat sigma) {
int n = (jnt) Math.ceil(4.0f*sigma);

nt size = 2*n+1;

float[] data = new float[size*size];

double r, s = 2.0*sigma*sigma;

float norm = 0.0f;

int 1= 0;

for (int y = -n; y <= 15 +Y)

for (intx=-n; x <=1, ++X, ++i) {

o Math.sqri(x*x * y*y);
ata[i] = (float) Math.exp(
‘}‘°fm += data[il;

-r*r/s);

20’ (i=0; i < size*size; ++i)
ata[i] /= norm;
Teturn data;

l;]ublic static void main(String[] argv) {
Hoat sigma = 1.0f;

if (argy.length > 0)

Sigma = Float.valueOf(argv[O]).ﬂoatValue(); _
Kernel(sigma);

itandardKemel kernel = new Gaussianier)
emel. write(new java.io.OutputStreamerter(System-Ou)

b

54

_.EA rogram for mean filter application:

Import java.awt.image.*;

import com. pearsoneduc.ip.io.*;

Import com.pearsoneduc.ip.op.MeanKemel;
Import com.pearsoneduc.ip.util.IntervalTimer;
Public class MeanFilter {

public static void main(String[] argv) {
if (argv.length > 3) {

4 Decoder(argv(O);

ImageDecoder input = IrﬂageFile'Createlmalge der(argv[1]);

ImageEncoder output = Image:File.createlmaf’=~eEnco
:2: ;V = Integer.parselnt(argv[2]);
= Integer.parselnt(argv[3]);
ufferedimage inputImage = input'dCCOdeASBu
tmel kernel = new MeanKernel(Ws h););
ConvolveOp blurOp = new Convolv.eop(kf?me ’
ftervalTimer timer = new IntervalTlmer(),
tl"ﬂer.star[();
l"fferedlmage outputlmage = = .
.yStem-Out.println("Mean filtering fin1
oli‘ner‘stop() +" sec]");
put.encode(outputimage);
} Ystem.exit(0);

fferedImage();

= blurOp.ﬁlter(inputImage, null);

Shed [n +

¢

S%;tCh (Exception €) {
Stem,err,println(e);

} YStem.exit(1);

}

else ¢ tfile> <w> <17

. . <ou
SyStem-en’.println ("usage: java MeanFilter <infile>

yst .
) en'LeXlt(l);

}
}

55

faeed @@v

does

b “,:’l-,’,de-,!'i s the sradient magnity
b £

4y

T -1 - " =

.‘pri_.,”. i 1.. ”"",l e coare el 1)
(] ;;-;_ ¥ “" , - " o

it 50 (b Fhreshold of 150

Fig 4.10 [mage Thresholding using Gaussian Filter

56

B S T

CONCLUSION

[tering operations on an image by using Gaussian filtering
contrast of the image using histogram analysis and to
n method. The tool can also be used to compress the

blurring and deblurring operation on an image.

The proposed tool is able to perform fi
technique. It is efficient to change the
fotate the image by using image rotatio
image size. The tool is also able to perform

friendly and easy to operate.

is very user
s the tool

rface developed for this tool
d frame to display an image make

The Graphical user inte
jons an

The use of buttons to select specified operat

attractive and at the same time easy to work upon.
rm limited tasks only. Also the

able to perfo
ified formats may

he tool are that it is
Images other than the spec

Some problems faced with t
.png, -piff.

format of the images supported is Jpgs
not work with the tool.

57

T e

REFERENCES

OMPOUND IMAGES by Dr.N.Krishnan, C. Nelson

QZnSE GMENTATION OF TEXT FROM €
nedy Babu , S.Ravi and Josphineﬂmvamani presented in International Conference on
pplications 2007.

C .
omputational Intelligence and Multimedia A

21 Fyiis
[2] Fujii, Masafumi., Wolfgang, J R, and Hoefer. 2001. File
f waveguide components

tiIne. .
MiCrdomam Haar-wavelet modeling 0
0
wave Theory and Techniques. 49, 4.
rete wavelet transform.

Igorithm for Haar disc
| Processing and Communication Systems,

d-Singularity correction in 2-D

IEEE Transactions on

[3
IE]EIS hen, P. Y. and Liao, E. C. 2002. Anewd
International Symposium 01 Intelligent Signe

21 4
144:453-457.
Richard E [2011] Digital Image Processing Pearson

(4

Ed{, Go.nza[ez, Rafael C. and Woods,
cation, Third Edition.

Technique in Image Processing: Academic Press: New York.

s
] Andrews, H.C [1970].CompUe"

