Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2019

Programme Name: B.Tech ECE Course Name: Analog Electronics I.

Course Code: ECEG 2011

Semester: III Time: 03 hrs Max. Marks: 100

Nos. of page(s): 2

S. No.	SECTION A : : Attempt all the questions	Marks	COs
Q 1	Explain why it is important to set the Q point at the middle of the DC load line. Draw the proper DC load line on output characteristics for common emitter configuration?	7	CO2
Q 2	Describe the thermal run away condition in BJTs and how it affects the operating point of an amplifier.	8	CO2
Q 3	Draw the equivalent hybrid model for N- channel JFET and mention all the h model parameters.	7	CO2 CO1
Q4	Compute the Gate capacitance CG, gate to drain capacitance CGD, gate to source capacitance for the Fig. 1. Consider the overlapping capacitances CGSO = CGDO = 5 fF/m^2 .What will be effects on these capacitances when horizontal dimension are scaled by 1/4 and vertical dimensions by 1/3. $\begin{array}{c} Ld = 100 \text{ nm} \\ \hline & Ld = 100 \text{ nm} \\ \hline & Ld = 100 \text{ nm} \\ \hline & Ld = 400 \text{ nm} \\ \hline & Harrow Fig. 1 \end{array}$	8	CO2 CO1
SECTION B : Attempt all the questions			
Q 5	The fixed-bias common source configuration having an operating point defined by $VGS_Q = 2$ V and $ID_Q = 5.625$ mA, with $ID_{SS} = 10$ mA and $VGS_{OFF} = -8$ V. The network configuration is shown in Fig. 2 with an applied input signal <i>Vi</i> . The value of <i>Yo</i> is provided as 50 µS. (a) Determine <i>gm</i> . (b) Find <i>rd</i> . (c) Determine <i>Zi</i> . (d) Calculate <i>Zo</i> . (e) Determine the voltage gain <i>Av</i> .	15	CO1 CO2

