Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

SECTION A

Course: Performance Analysis of Electrical Equipment Program: Int. B. Tech (ET) + LLB (IPR) Course Code: ETEG 322 Instructions:

Semester: VI Time 03 hrs. Max. Marks: 100

S. No.		Marks	CO
Q 1	Discuss in brief Tariff System.	4	CO1
Q 2	Explain the effect of Voltage fluctuation on performance of Induction motor	4	CO2
Q 3	Explain the effect of inlet air temperature on the performance of Compressed air system	4	CO 4
Q 4	Explain the benefits & Challenges of LED over florescent Lamps	4	CO5
Q 5	Explain the procedure to measure Room Index.	4	CO5
	SECTION B		
Q 6	 3- Phase, 415 V, 26 A, 4 pole, 50 Hz, Star connected squirrel cage induction motor has following recorded parameters: Stator Resistance per Phase = 0.1 Ohm/Phase Iron Losses = 2000 W Friction & windage Losses = 25% of Iron Losses Full load speed = 1440 RPM Calculate the Shaft Power Output 	10	CO3
Q 7	 A) Explain Energy Saving Opportunities in Refrigeration System B) A 5 Tonne refrigeration system creates a cooling effect of 25 kW and the corresponding input is 7.5 kw/tonne, calculate CoP 	5 5	CO4
Q 8	A) Explain the Power Stages through Sankey diagram in Compressed Air SystemB) In the leakage test in a process industry, following results were observed	5	
	Compressor Capacity = 50 m^3 /minute Average 'Load' time, T = 1.5 minutes Average 'Unload' time, t = 10.5 minutes Calculate the Leakage Quantity per day.	5	CO4
Q 9	State and explain Fan Law (Variation of Flow, Pressure & Power w.r.t. Speed) OR Explain the Various Energy Saving Opportunities in Fans.	10	CO4
SECTION-C			
	From the given Cooling Tower Parameters, Evaluate the following:	20	CO4

Q 10	 A) Make up water requirement per Day B) Evaporation Loss C) Blowdown loss Cooling Water Circulation Rate= 1260 m³/ hour. Cooling Water Temperature = 37 °C Outlet Water Temperature = 32 °C Drift Loss: 0.1 % No. of Concentrating Cycles : 3 OR Explain the procedure for performance assessment of Cooling Towers 		
Q 11	An Engineering industry has lighting load of 60 kVA. The incoming supply voltage is 420 Volt during daytime and 433 V during nighttime. Lighting load during day time = 30 kVA12 Hours Lighting load during night time = 60 kVA12 Hours Power factor of lighting feeder = 0.77 Energy cost = Rs. 5/kWh Energy manager has installed a 75 kVA lighting transformer. The lighting voltage is set to 200 V always. i) Find out the payback period if investment for transformer is Rs. 3,00,000 ii) Calculate the Percentage Energy Saving? <u>OR</u> A) Explain the good lighting practices. B) Explain the methodology for Lighting System Energy Efficiency Study.	20	CO5

Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Performance Analysis of Electrical Equipment Program: Int. B. Tech (ET) + LLB (IPR) Course Code: ETEG 322 Instructions:

Semester: VI Time 03 hrs. Max. Marks: 100

	SECTION A		
S. No.		Marks	CO
Q 1	Discuss in brief, types of Consumers & their Priorities	4	CO1
Q 2	Explain the effect of Harmonics on Power System	4	CO2
Q 3	Discuss the Slip, Slip Speed, RMF & Torque related to IM	4	CO3
Q 4	Explain the importance of Energy Efficiency in Industries	4	CO1
Q 5	Explain the need and importance of Speed Control of IM	4	CO3
~	SECTION B		000
Q 6	 3- Phase, 440 V, 75 A, 4 pole, 50 Hz, Star connected squirrel cage induction motor has following recorded parameters: Stator Resistance per Phase = 80 mOhm/Ph at 27°C Iron Losses = 1500 W Friction & windage Losses = 500 W Motor operating Temperature = 75°C Full load speed = 1430 RPM Calculate the operating Efficiency of Induction Motor 	10	CO3
Q 7	 A) Explain the factors affecting the performance of Refrigeration System B) A 10 Tonne refrigeration system creates a cooling effect of 45 kW and the corresponding input is 6.5 kw/tonne, calculate CoP 	10	CO4
Q 8	 A) Explain the Factors affecting Energy performance of Compressor System. B) In the leakage test in a process industry, following results were observed Compressor Capacity = 60 m³/minute 	5	5 5 CO4
	Average 'Load' time, T = 2 minutes Average 'Unload' time, t = 13 minutes Load Drawn = 225 kW Calculate the Specific Power Consumed.	5	
Q 9	With neat diagram explain the performance variation of fans and affinity law. ORORExplain the procedure to evaluate Energy Performance of Fans.	10	CO4
	SECTION-C		
Q 10	From the given Cooling Tower Parameters, Evaluate the following:	20	CO4

	A) Make up water requirement per Day		
	B) Evaporation Loss		
	C) Blowdown loss		
	Cooling Water Circulation Rate= $1500 \text{ m}^3/\text{ hour.}$		
	Cooling Water Temperature = 38 °C		
	Outlet Water Temperature = $32 ^{\circ}C$		
	Drift Loss: 0.13 %		
	No. of Concentrating Cycles : 4		
	OR		
	Explain the Energy Saving Opportunities in Cooling Towers.		
Q 11	An Engineering industry has lighting load of 80 kVA. The incoming supply voltage		
	is 415 Volt during daytime and 440 V during nighttime.		
	Lighting load during day time = 40 kVA 12 Hours		
	Lighting load during night time = 70 kVA12 Hours		
	Power factor of lighting feeder = 0.8		
	Energy $cost = Rs. 6/kWh$		
	Energy manager has installed a 100 kVA lighting transformer. The lighting voltage		
	is set to 200 V always.		
	A) Find out the payback period if investment for transformer is Rs. 4,00,000		
	B) Calculate the Percentage Energy Saving?	20	CO5
	<u>OR</u>		
	A) Explain the possible energy potential in Lighting System		
	B) Explain the methodology for good Lighting System design.		