Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination – May 2018

Program/course: M.Tech REE Subject: Small Hydro Power System Code : EPEC7018 No. of page/s: 4 Semester – II Max. Marks : 100 Duration : 3 Hrs

Section A

All questions are mandatory: (Each question: 4 marks)

Q.no.	COs	Question
1.	CO1	Distinguish between small hydro, mini hydro and micro hydro.
2.	CO2	Readings taken with a float that is made to flow along a known length of 20m along a river with a smooth bed and sides; the width and depth of the river being 15m and 2m, respectively. Calculate the flow of the river if the time taken for the float to traverse 20m is 25 seconds. Assume the velocity correction factor as 0.85.
3.	CO3	Discuss different types of hydraulic turbines used in SHP.
4.	CO4	Discuss the potential of small hydro power in India.
5.	CO6	Discuss the environmental impacts of small hydro power plant.

Section B

All questions are mandatory: (Each question: 10 marks)

Q.no.	COs	Question											
6.	CO1	Rain gauges are installed in twelve zones of Dhauliganga basin upto Tapovan											
		which covers total area of 2962.10 sq.km The individual zone areas are given											
		below:											
			Zones	Zone Areas (Sq.km)	Average Rainfall (mm)								
			Zone 1	5.33	1820								
			Zone 2	36.95	1800								
			Zone 3	73.39	1750								
			Zone 4	148.33	1720								
			Zone 5	249.76	1690								
			Zone 6	441.64	1675								
			Zone 7	705.92	1625								
			Zone 8	731.69	1580								
			Zone 9	397.94	1420								

			Zone 10	132.27	1360									
			Zone 11	33.09	1260									
			Zone 12	5.78	1505									
		Calculate t	Calculate the average rainfall over the catchment by:											
			a. Arithmetical average method [3M]											
			b. Thiese	sen polygon method ['	7M]									
7.	CO2	Explain di	ferent typ	es of spillways with n	eat diagram									
8.	CO3	Explain in	detail abo	ut the speed and voltag	ge regulation applied for	SHP plants								
		with the he	with the help of a case study.											
9.	CO5	A closed of	ycle plant	in Austria, with a g	ross head of 300m, has	a headrace								
		tunnel 4m	dia and 70	0m long. The powerho	ouse discharges directly in	n the lower								
		reservoir.	The flow v	velocity is 6.5 m/s and	I the friction factor $f = 0$.	.018. If the								
		overall effi	ciencies o	f pumping and genera	tion are 88% and 90% re	spectively,								
		estimate th	e plant eff	iciency.		- •								

Section C

All questions are mandatory: (Each question: 20 marks)

Q.no.	COs	Question													
10.	CO4	In a regional power grid of a country the weekly load curve indicates the following:													
		a. There is an	energy shortage	of 15 GWh per work	ing day spread unifor	rmly over 12									
		hours.													
		b. There is a sp	b. There is a spare energy of 9 GWh per day spread over 3 hours uniformly.												
		c. Demand is quite slack on Sundays so that enough energy can be spread for the pumps.													
		Design wind and hydro based standalone - hybrid power system to satisfy above load curve.													
		Month wise availability of renewable energy resources in the area is given below:													
		Sn	Month	Wind speed	Discharge										
			(cumec)												
		1	January	5.01	155	_									
		2	February	5.03	155	_									
		3	March	4.94	160										
		4	April	4.98	170										
		5	May	5.44	180										
		6	June	5.37	190										
		7	July	5.12	195										
		8	August	4.98	198										
		9	September	5.01	180										
		10	October	5.19	170										
		11	November	5.09	165										
		12	December	5.18	160										
						_									
		Assume the param	neters wherever re	equired.											

11. CO2 A storm gave the rainfall excess of 4 cm, 6 cm, and 5 cm at successive six-hour intervals. Workout a storm hydrograph form the six-hour storm when the unit hydro graph ordinates are given as below:

Time	Six-hour UGO
	(cumec)
0600	0
1200	150
1800	385
2400	500
0600	470
1200	390
1800	300
2400	215
0600	130
1200	80
1800	40
2400	15
0600	0

Assume a constant base flow of 15 cumec. Plot hydrograph and unit hydrograph.

(**OR**)

The average direct runoff calculated from hydrological studies is 930 m³/s. From this 800 m³/s is allowed to satisfy the agricultural need and the remaining is allowed into the hydropower channel. Calculate head loss due to friction and the desired effective thickness for the penstock of 6m diameter.

Given:

Gross head = 32.5m. $L_{horizontal} = 44.37 \text{ m.}$ Roughness k = 0.18 mm. The turbulent losses K_{entrance} = 1, K_{bend1} = 0.38, K_{bend2} = 0.38, K_{valve} = 0.1 E = 100 x 10⁹ N/m² S = 140 x 10⁶ N/m² Pressure wave velocity = 1320 m/s.

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination – May 2018

Program/course: M.Tech REE Subject: Small Hydro Power System Code : EPEC7018 No. of page/s: 3 Semester – II Max. Marks : 100 Duration : 3 Hrs

Section A

All questions are mandatory: (Each question: 4 marks)

Q.no.	COs	Question
1.	CO1	Discuss the opportunities and threats of small hydropower in India.
2.	CO2	If the angle measured by the Abney level are 34°, 28°, 32° and the distance
		between the posts are 30m, 35m and 40m respectively. Calculate the total head.
3.	CO3	Briefly explain the term <i>Voltage regulation</i> and comment on the same with
		respect to different types of transmission lines.
4.	CO4	Discuss the various financial indicators of SHP considered by the investors.
5.	CO5	a. Explain the significance of <i>specific speed</i> for turbines and pumps. [2M]
		b. If the system has a head of 100m and if 850kW turbine is coupled to a
		generator of 1500rpm. Calculate specific speed. [3M]

Section B

All questions are mandatory: (Each question: 10 marks)

Q.no.	COs	Question											
6.	CO1	a. The rainfall data for a catchment is given below:											
		Time period in hours	Time period in hours 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16										
		Rainfall in cm	5.5	3.5	10.0	5.0	3.0	0.0	8.0	3.5			
-	 Draw the rainfall hyetograph. If the Φ- index is 2.5 cm/h, calculate the runc [5] b. The infiltration capacity curve for a catchment having the initi infiltration capacity of 2.0 cm/h, which assumes almost a constant va of 0.5 cm/h after 9 hours of rainfall. Estimate the total infiltration, if Horton's constant, k, is equal to 4 per day. [5] 												
7.	CO2	Explain different types of design	t silt	basin	for sn	hall h	ydropo	wer sys	stem bas	sed on its			

8.	CO4	a.	A 12kW micro hydro project for grain milling is proposed. I	lt has a start
			up cost of Rs. 2000000. The discount rate is 20%. An energy	ergy survey
			relating to the project established that the grain milling operation	eration will
			bring in annual earnings of Rs. 700000. The operating and n	naintenance
			cost are expected to be 14000 per year. What will be the ind	come of the
			project, if the cost and earning are imagined as spread of	out over 12
			years?	[5M]
		b.	Discuss briefly on cash flow analysis related to small hy	ydro power
			system.	[5M]
9.	CO5	a.	A 100 MW reversible pump-turbine has to work under a hea	ad of 400m.
			Choose a suitable specific speed and running speed for the	machine.
			Note:	
			Assume the efficiency of machine as 88%.	[5M]
	CO6	b.	Explain the environmental impacts of hydro power plant with	h a capacity
			less than 25MW.	[5M]

Section C

All questions are mandatory: (Each question: 20 marks)

Q.no.	COs	Question										
10.	CO4	In a regional po	wer grie	d of a country	the weekly load cu	urve indicates the						
		following:										
		a. Th un	here is an energy shortage of 15 GWh per working day spread niformly over 12 hours.									
		b. Th un	here is a spare energy of 9 GWh per day spread over 3 hours niformly									
		c. De spi	Demand is quite slack on Sundays so that enough energy can be spread for the pumps.									
		Design wind and to satisfy above lo Month wise availa	and pumped storage plant based standalone - hybrid power system we load curve. availability of renewable energy resources in the area is given below:									
			1	Lanuarra	(m/s)	-						
			1		5.01	-						
			2	February	5.03	-						
			3 March 4.94									
			4 April 4.98									
			5 May 5.44									
			6	June	5.37							
			7	July	5.12							
			8	August	4.98							

			9)	Sente	nber			5.0	1					
			1(0	Octo	her			5.1	9					
			1	1	Nove	nber			5.0	9					
			12	2	Decei	nber			5.0	> 8		-			
			12	2	Deee	noei			5.1	0					
		<u>Topology</u>													
		There is a large re	There is a large reservoir on a big river to serve as lower pool. A suitable site is												
		available 1.25 km away with a high hill 300 m higher than the lower pool for													
		developing the above reservoir.													
		Assume the parameters wherever required.													
11.	CO2	The average direc	t rur	noff	calcula	ted fr	om h	ydro	ologi	cal s	tudie	es all	owe	d int	o the
		hydropower chan	hydropower channel is $0.52 \text{ m}^3/\text{s}$.												
		~													
		Given:													
		Gross head $= 284$	Gross head $= 284$ m.												
		$L_{horizontal} = 1800 \text{ m}$	1.												
		Roughness $k = 0.1$	18 m	ım.			0	•			•				
		The turbulent loss	$\frac{1}{2}$ es K	entra	nce = 1,	Kbend	=0.	.38, 1	Kbend	2 = 0	.38,	Kvalv	$v_e = 0$	0.1	
		$E = 100 \times 10^9 \text{ N/r}$	n_{2}^{2}												
		$S = 140 \times 10^{\circ} \text{ N/m}$	n²												
		Select the best per	nstoc	rk d	iameter	and i	ts thi	ckne	ess a	mone	o the	folle	owin	σ.	
		1. Penstock of	liam	eter	(d) = 0	45m	thic	knes	s = 0	165	* d	10110	<i></i>	5.	
		2. Penstock of	liam	eter	(d) = 0	35m	thic	knes	s = 0).165	* d				
		3. Penstock of	liam	eter	(d) = 0	30m:	thic	knes	s = 0).165	* d				
					(-) -	,			-						
						((DR)								
		The stream flows	due t	to th	ree suco	Peccia	e sto	rme	of 3	5 4	5 and	125	cm (of 6 ł	ours
		duration each on	a ha	isin	are giv	en he	low	The	are:	2, - a of 1	the h	∗ 2.5 asin	is 4	5.41	cm2
		Assuming a const	ant h	hase	flow of	f 10 c	ume	c an	nd an	ave	rage	stor	$n \log 10$	s of	0.25
		cm/hr. derive the	ordir	nate	s of 6-h	our u	nit h	vdro	grar	h foi	r the	basi	n.	5 01	0.25
								,	0- "h			2.401			
		Time (hr)	0 (3	6 9	12	15	18	21	24	27	30	33	36	39
		Stream flow	10	14	18 32	46	54	58	49	36	25	17	12	11	10
		(cumec)													
		Plot hydrograph a	nd u	nit l	hydrogr	aph.									