CONTENTS

Title		Page. No	
Executive Summary			
Abbreviations			
List of Figures			
List o	viii		
Chap	oter 1 INTRODUCTION	Page. No	
1.1	Conventional AGC Scenario	1	
1.2	AGC in Deregulated Environment	4	
1.3	Choice of Controller for AGC	6	
	1.3.1 PI Controller	6	
	1.3.2 Fuzzy Logic Controller	7	
1.4	Combined Intelligence Techniques	8	
1.5	Objectives of Research	9	
1.6	Outline of the Thesis	10	
Chap	oter 2 LITERATURE REVIEW		
2.1	Overview of load frequency control related to conventional AGC	12	
2.2	AGC related to Deregulation	13	
2.3	AGC related to Fuzzy Control Theory	14	
2.4	AGC (Conventional and Deregulated Scenario) related to intelligent	16	
	Techniques		
2.5	Widely used Intelligent Techniques	20	
Chap	oter 3 FREQUENCY CONTROL IN AN ISOLATED POWER		
	SYSTEM WITH INTELLIGENT CONTROLLER		
3.1	Modeling of an Isolated Power System	21	
3.2	Simulink model of single area AGC	22	
3.3	PI Controller for Single area AGC	23	
3.4	Design and implementation of a Fuzzy Logic Controller in MATLAB	24	
3.5	Comparison of PI and FLC Responses	26	

3.6	FLC tuning	g using Genetic Algorithm	27	
3.7	Some vital	GA realization issues	28	
	3.7.1	Selection of chromosome length	28	
	3.7.2	Declaration of Bounds	29	
	3.7.3	Design of Fitness function	30	
	3.7.4	Reasonable randomness in population	30	
	3.7.5	Prevention of self-mating	30	
	3.7.6	Elitism	31	
	3.7.7	GA program termination norm	31	
3.8	GA Algorithms and parameter setting			
	3.8.1	Algorithm for chromosome generation and selection	32	
	3.8.2	Algorithm for crossover	32	
	3.8.3	Algorithm for mutation	33	
	3.8.4	Parameters for GA	33	
3.9	Running the GA			
	3.9.1	Population report	34	
	3.9.2	Generation 41: Statistics	38	
	3.9.3	Few landmarks in the time response statistics	39	
3.10	Plots of frequency response under different testing conditions 40			
	3.10.1	System without disturbance	41	
	3.10.2	System with parametric disturbance	42	
	3.10.3	System with load disturbance	44	
3.11	Conclusion	1	46	
Chap	oter 4 AG	C OF INTERCONNECTED TWO AREA SYSTEM WITH		
	IN	TELLIGENT CONTROLLER		
4.1	Modeling	of a two area thermal system (Non- reheat) using integral	48	
	controller			
4.2	Design crit	erion for GA optimized PI controller	49	
	4.2.1 GA	parameters	49	
	4.2.2 Dec	claration of bounds	50	
	4.2.3 Che	pice of fitness function	50	

	4.2.4 Simulation result	51				
	4.2.5 Plots of response of GA PI Controller	52				
4.3	Modeling of a two area thermal system (Non- reheat) using Fuzzy Logic	54				
	controller					
	4.3.1 Design of Fuzzy Logic Controller	55				
	4.3.2 Membership function of FLC	56				
4.4	Optimization of the parameters of FLC using GA	57				
	4.4.1 Fitness computation	57				
	4.4.2 Size of chromosome	58				
	4.4.3 Bounds selection for parameters	58				
	4.4.4 Parameters for GA	59				
	4.4.7 Simulation results and discussions	60				
4.5	Conclusion					
Chap	eter 5 POWER SYSTEMS UNDER DEREGULATION					
5.1	Introduction to Restructured AGC	65				
5.2	Conventional VS Restructured systems	67				
5.3	Concept of Disco participation					
5.4	Simulink model of a two area AGC after Deregulation	70				
5.5	Design of Controller	73				
5.6	Design of Fuzzy Logic Controller	73				
5.7	Optimal tuning of the gains of FLC using GA	74				
	5.7.1 Running the GA	76				
5.8	System subjected to various testing conditions	78				
	5.8.1 System with nominal parameters	79				
	5.8.2 System subjected to parametric disturbances	81				
	5.8.3 System with dynamically changing Generator Model	84				
	5.8.4 System with random load disturbance	86				
5.9	Conclusion	87				

Appendix Curriculum Vitae &Publications		
6.4	Suggestions and Future Scope	93
6.3	Findings with regards to AGC system under Restructured scenario	91
6.2	Findings with regards to multi-area AGC System	90
6.1	Findings with regards to an isolated system	88