STUDY OF MAINTENANCE STRATEGY & MAINTENANCE PRACTICES AT A LARGE GAS UTILITY COMPANY IN INDIA: A CASE STUDY APPROACH

By

R S VELMURUGAN

COLLEGE OF MANAGEMENT AND ECONOMIC STUDIES

Under the Guidance of

Dr Tarun Dhingra, Assistant Dean – Research & Associate Professor,

HOD, Department of Strategic Management

Harnessing Energy through Knowledge

IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

To

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

DEHRADUN

DECEMBER, 2014

ACKNOWLEDGEMENTS

I share my sincere gratitude to University of Petroleum and Energy Studies for giving me this opportunity to do research. I am highly indebted to Dr. S.J.Chopra, Chancellor and Dr. Parag Diwan, Vice Chancellor for their words of wisdom and motivation. I am also thankful to Prof. Utpal Ghosh, PVC for his support & encouragement.

I thank Faculty Research Committee (FRC) for guiding me to do the research on a topic of my interest and providing continual support in terms of valuable suggestions for betterment of thesis. It is with immense gratitude that I acknowledge the support and help of Professor Dr. Anirban Sen Gupta, Chairman, FRC and Dean, College of Management Studies.

I would like to express the deepest appreciation to my internal guide, Dr. Tarun Dhingra, who has the attitude and the substance of a genius: he continuously and convincingly conveyed a spirit of adventure in regard to research, and an excitement in regard to teaching. Without his guidance and persistent help this dissertation would not have been possible. I would also like to thank my external guide, Dr. V.K. Gupta for being a constant source of inspiration and guidance throughout my research process.

I cannot find words to express my gratitude to Dr. D.K. Punia for providing meaningful insights to qualitative research and helping in qualitative data analysis software and also to thank Dr. K. K. Pandey, Dr. Neeraj Anand, and Dr. Atul Razdan for helping and guiding throughout my research study. I owe my deepest gratefulness to Dr. Anjali Midha & Ms. Rakhi Ruhal for their continuous support for facilitating my research by helping out with a number of administrative issues.

I thank the top management of the large gas utility company, who permitted to do this research study at the company. I am indebted to all my colleagues who provided their invaluable insights and comments about my research topic. I would like share my credit of work with the Operation & Maintenance managers of the gas utility company who shared their experiences through interview.

I thank my father, mother and family members for their determined support and encouragement for completing my research. This thesis is dedicated to my wife Charumathi and sons Keerthi & Lingesh who have always stood by me and dealt with all of my absence from many family occasions with a smile.

Dehradun, 30th December, 2014

R S Velmurugan

DECLARATION

This is to certify that thesis titled "Maintenance Strategy and Maintenance Practices at a large gas utility company in India – A Case Study Approach" is my own research work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning in India or Abroad, except where due acknowledgement has been made in the text.

R S Velmurugan 30th December, 2014

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis on **Study of Maintenance Strategy & Maintenance Practices of a Large Gas Utility Company in India: A Case Study Approach** by **R S Velmurugan** in partial completion of the requirements for the award of the Degree of Doctor of Philosophy (Management) is an original work carried out by him under our joint supervision and guidance.

It is certified that the work has not been submitted anywhere else for the award of any other diploma or degree of this or any other University.

Internal Guide

(Dr. Tarun Dhingra)

External Guide

(Dr. V K Gupta)

TABLE OF CONTENTS

Execu	tive Summary	vii
List of	f Abbreviations	xv
List of	f Figures	xvii
List of	f Tables	xix
CHAP	TER 1	
1.	Introduction	
	1.1 Background	1
	1.2 Topic & Purpose	9
	1.3 Problem Statement	16
	1.4 Potential Significance	16
	1.5 Thesis Disposition	17
	1.6 Concluding Remarks	19
CHAP	TER 2	
2.	Literature Review	
	2.1 Introduction.	21
	2.2 Maintenance	22
	2.3 Theoretical Foundations of Maintenance	24
	2.4 Maintenance – A Literature Survey	26
	2.5 Theme Based Literature Classification	36
	2.6 Initial Conceptual Constructs & Sub Constructs	50
	2.7 Maintenance Strategy Models/Frameworks	66
	2.8 Gaps in Literature	75
	2.9 Concluding Remarks	76
CHAP	TER 3	
3.	Research Design & Methodology	
	3.1 Introduction	78
	3.2 Research Objectives & Research Questions	79
	3.3 Overall Approach and Rationale	85
	3.4 Case Study Design	99

	3.5 Data Collection Methods	1
	3.6 Data Analysis Strategy	1
	3.7 Quality of Empirical Research	1
	3.8 Case Study Protocol Development Process	1
	3.9 Concluding Remarks	1
СНАР	TER 4	
4.	Maintenance Strategies & Maintenance Practices of	
	NG Pipelines	
	4.1 Introduction	1
	4.2 Data Collection]
	4.3 Maintenance Strategies & Practices in NG Pipelines	
	4.4 Maintenance Strategies Selection Process in NG Pipelines	2
	4.5 Relationship between Maintenance Strategy Selection Process and Maintenance Strategies & Practices in NG Pipelines	2
	4.6 Findings and Discussions	2
	4.7 Concluding Remarks	2
CHAP	TER 5	
5.	Maintenance Strategies & Maintenance Practices of	
	Petrochemicals	
	5.1 Introduction	2
	5.2 Data Collection	2
	5.3 Maintenance Strategies & Practices in Petrochemicals	2
	5.4 Maintenance Strategies Selection Process in Petrochemicals	
	5.5 Relationship between Maintenance Strategy Selection Process and Maintenance Strategies & Practices in Petrochemicals	2
	5.6 Findings and Discussions	2
	5.7 Concluding Remarks	1

CHAPTER 6

6.	Cross Case Analysis & Findings
	6.1 Introduction
	6.2 Similarities and Dissimilarities between Cases
	6.3 Maintenance Strategies & Maintenance Practices in Gas Utility Company
	6.4 Maintenance Strategies Selection Processes in Gas Utility Company
	6.5 Relationship between Maintenance Strategies & Practices and Maintenance Strategies Selection
	Processes in Gas Utility Company
	6.7 Concluding Remarks
HAP	TER 7
7.	Conclusions
	7.1 Introduction
	7.2 Revisiting Conceptual Framework
	7.3 Findings Summary in-terms of Research Questions
	7.4 Significance of Findings
	7.5 Limitations
	7.6 Scope for Future Research
	7.4 Signifi7.5 Limitat7.6 Scope
RENCES	
DF	NDIX

EXECUTIVE SUMMARY

Indian economy has witnessed sub-5 % growth of Gross Domestic Product (GDP) during last two years. It is poised to overcome the growth rate above 5% in the year 2014-15. One among the reasons for this slow growth rate is the performance of the industry sector. The latest GDP estimates show that industry growth rate was 1% in 2012-13 and further reduced to 0.4% in the year 2013-14. Among the industries in Index of Industrial Production (IIP), India basket, core operation intensive industries have been identified for industrial growth rate study. These industries are coal, fertilizer, electricity, crude oil, natural gas, refinery, steel, and cement. The average growth rate of these industries was 5% & 6.5% in the year 2011-12 & 2012-13 respectively. The index has grown to only 2.7% during 2013-14. This is mainly due to negative growth rate in natural gas (-13%) and crude oil (-2%). Further, due to lower growth rate in coal (0.7%), fertilizers (1.5%), and refinery products (1.7%). To achieve these targets strong initiatives & growth strategies in industrial sector are crucial.

Natural gas industry is one among the operation intensive industries which contributes to the India's industrial GDP growth. Industrial growth of natural gas industry was in negative growth rate during 2013-14 due to various economic reasons. However, to support the GDP growth of the industry in the coming years, organisations within the industry should maximise the productivity and profitability in today's competitive business environment. Operations can be used as competitive advantage to achieve business objectives of the organisations in the industry. Maintenance plays a crucial role in operations. Even organisations treat maintenance as an important function and traditionally it is considered as cost centre. In spite of the consistent efforts of maintenance managers in maintaining the assets by applying best maintenance strategies & maintenance practices in the operation intensive industry, the failures of equipment/process happen and it leads to

increase in downtime of plant operations and cost of operations & maintenance.

Given the above background, the *business problem* at an organisation level in the process/manufacturing/gas industry can be defined as:-

- Production/Operation process is continuous and any abrupt stop of whole production process cause delay and reduction in output in an organisation.
- Although organisation follows various maintenance strategies, the cost and impact (equipment safety, upstream supplier issues, and downstream customer issues) of sudden failure of equipment was found to be huge.

The above business problem motivates the researcher to perform this study. Detailed literature survey was carried out in the area of maintenance management and related processes. The detailed literature review reveals that the most of existing literatures have discussed evaluation system for setting up a particular maintenance method/approach such as Preventive Maintenance & Predictive Maintenance, linking performance with the maintenance strategy, application of specific maintenance method/approach like Preventive Maintenance, Predictive Maintenance, RCM, CBM etc. for a particular industry in a country like Italy, Belgium, Africa etc., development of Maintenance Decision Support Systems (MDSS) for selection of maintenance strategy, development of Plant level Maintenance Decision Support System (PMDSS) implementation of e-maintenance concept, maintenance polices and their impact.

Further, authors have developed frameworks/models related to maintenance strategy processes such as maintenance strategy formulation, selection of maintenance strategies and implementation of selected maintenance strategies. However, each model describes one or two processes of maintenance strategy but not in combined manner integrating all the maintenance strategy related processes. Based on these inferences, it is evident that there is a need in

Industry to develop a holistic model which combines factors such as maintenance strategy formulation, selection and implementation of formulated maintenance strategies.

It is also evident from the literature review that the maintenance strategies related frameworks established relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in an organisation, but they failed to explain how and why are these related. As explanation is essential for building theory and for improving practice, there is a need for process study of maintenance strategies & maintenance practices at an organisation level. Further, extensive literature search for maintenance strategies & maintenance practices study using qualitative research approach at an organisation level in operations intensive industry like natural gas industry in an Indian context found no references.

Business problem is further narrowed down to problem statement based on outcomes of detailed literature review and it is presented below:-

Although in the existing literature various maintenance strategies applicable for different types of operations intensive industry is well known but the process of maintenance strategies selection & maintenance practices at an organisation level have not been described in detail. Further, there is lack of holistic process model for maintenance strategies & maintenance practices planning and execution.

The research questions & research objectives formulated for this research study are presented as given under:-

Central Research Question: How the gas utility company is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as petrochemicals & pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment?

Additional RQ1:- What are the common and different maintenance strategies & practices to both the business verticals (and) how the maintenance strategy & practices differ with the specific assets available in one operation process/plant/pipeline network from others business verticals?

Additional RQ2:- How the reliability of the operation process/ equipment/ assets is ensured by the maintenance strategy used for the particular operation process/equipment/assets?

Additional RQ3: What are the benchmarks being used in petrochemicals/ NG pipelines? What is extent of achievement of benchmark parameters in practices?

Research Objectives: -

- 1. To understand and model the existing maintenance strategies & maintenance practices planning and execution in a large gas utility company in India.
 - a. To describe the common and different maintenance strategies
 & practices in the business verticals such as Petrochemicals &
 NG Pipelines of gas utility company.
 - b. To describe the extent of practices regarding reliability in maintenance of equipment/assets/processes.
- 2. To find the gaps between maintenance strategies & practices and benchmarks in maintenance.

At an organisation level in maintenance function, the tacit and explicit knowledge in the field of best practices in maintenance management are available with maintenance managers & engineers working in the organisation. We need to gather an in-depth understanding of this knowledge in formulation of maintenance strategy & practices in the organisation. Therefore, qualitative research method will be a suitable method in capturing and reusing tacit and explicit knowledge in the field of best practices in maintenance management at the organisation studied.

Therefore, the focus of this research study is to understand & describe the maintenance strategies & maintenance practices planning and execution at an organisation level in an Indian context (a large gas utility company). It is also to understand why the specific maintenance strategy has been chosen for a particular equipment/process/operation and how these formulated strategies are being practiced in the organisation. A case study approach has been selected for this research study because, the definition of the case study method say that "the central tendency among all types of case study, is that it tries to illuminate a decision or set of decisions: why they were taken, how they were implemented, and with what result" (Yin, 2003).

A large gas utility company in India has been chosen for the study on maintenance strategies & maintenance practices since it is having 70% market share in natural gas industry and it is a No. 1 gas utility company in India. It is having 7 LPG processing plants, 1 Petrochemical processing plant & 3 Natural Gas Pipeline networks & 2 LPG pipeline networks. Based on financial parameters, two business verticals such as Natural Gas Pipelines & Petrochemicals plant have been selected for this research study.

To start with the case studies in business verticals in Natural Gas Pipelines & Petrochemicals plant, the data collection was carried out at various sites in the Natural Gas Pipelines of the large gas utility company in Delhi NCR and Petrochemicals plant at PATA (UP). Data collection was done through semi-structured interviews from maintenance managers/ engineers through structured Case Study Protocol (CSP), participant observation, collection of documentary evidences, and informal discussions with the maintenance personnel in the company. All interviews were recorded and then transcribed. After completion of the transcription of interviews, one month was spent to collect the interviewees' feedback on the transcripts. Interview scripts coding was done through Qualitative Analysis software Atlas-Ti. This software enabled the data analysis process by helping with coding, linking codes, and text segments, creating memos, searching, editing and reorganising, and for

visual display of data and findings. Modified grounded theory approach (Charmaz, 2006) has been used for data analysis.

Within case analysis was carried out keeping research questions in mind. Accordingly, data analysis is aimed to identify (i) the nature of maintenance strategies & maintenance practices including benchmarking of maintenance practices and maintenance reliability of the large gas utility company, (ii) maintenance strategies selection process in the company, and (iii) the relationship between maintenance strategies selection process and the factors contributing to maintenance strategies & maintenance practices. Cross case analysis was carried out to compare and explain similarities, dissimilarities and, complimentary findings in the study of maintenance strategies and maintenance practices in the verticals NG Pipelines & Petrochemicals of the large gas utility company. Based on case comparison, the relative findings and contextual factors across the cases are brought out.

The above detailed data analysis results with the following categories which contributes to maintenance strategies selection and maintenance practices such as performance measures, planning & Scheduling, materials management, human resources, information technology, employee empowerment, maintenance tactics, reliability analysis, and maintenance policies/ maintenance budget in both the categories. Extent of application of these categories varies according to the nature and type of process/plant/equipment in NG Pipelines & Petrochemicals. One new category emerged out in both the case studies from empirical data i.e., maintenance challenges. Two new subcategories have also been emerged out for the category maintenance tactics. They are shutdown maintenance and proactive maintenance. Further, 14 propositions have been developed from cross case analysis. The extent of achievement of benchmarking practices in the large gas utility company is also studied and presented. Finally, a model on maintenance strategies & maintenance practices in planning and execution has been developed and presented. This model holistically explains the processes related to maintenance strategies such as formulation of maintenance strategies,

selection of maintenance strategies, and implementation of maintenance strategies and also with other functions of maintenance such as development of Maintenance Decision Support System (MDSS), e-maintenance, companywide integration and alignment between maintenance strategy & business strategy.

This research study showed that the large gas utility company's maintenance strategies & maintenance practices planning and execution are largely depends on targets being set by corporate operation & maintenance function. These targets are basically production targets of petrochemicals plant/NG Pipelines operations. There is no maintenance performance based targets or key performance indicators are formulated for maintenance execution. Even though the company is using basic maintenance methods such as Preventive Maintenance, Predictive Maintenance, it is not following other methods such as Reliability Centred Maintenance & Total Productive Maintenance. However, it religiously following specific maintenance strategies pertaining to particular equipment/process as recommended by Original Equipment Manufacturer (OEM) or process licensor. The large gas utility company is not using any reliability centred approach in maintenance and also not applying any maintenance benchmarks of the industry.

This research study provides rich description to the theory of processes related to maintenance strategies selection & maintenance practices in maintenance management at an organisation level in the operations intensive industry like gas industry and in general also. This study could also suggest set of maintenance guidelines & parameters for maintenance strategy formulation, selection and implementation of maintenance strategies to the maintenance managers/engineers in the industry. Such guidelines & parameters would also help them to benchmark the maintenance practices at an organisation level. It also found evidences to formalise & improve the maintenance strategy process adapted since importance attached to industry/operation/equipment specific maintenance strategies in both NG Pipelines & Petrochemicals.

LIST OF ABBREVIATIONS

PM – Preventive Maintenance

CBM - Condition Based Maintenance

TBM - Time Based Maintenance

RCM - Reliability Centred Maintenance

TPM - Total Productive Maintenance

CMMS – Computerised Maintenance Management System

BCM - Business Centred Maintenance

RCA – Root Cause Analysis

IAR - Incident Analysis Report

MOU - Memorandum of Understanding

IMOU - Internal MOU

OISD - Oil Industry Safety Directorate

PNGRB -Petroleum Natural Gas Regulatory Board

AGA – American Gas Association

ISO – International Standard Organisation

IMS – Integrated Management System

AHP - Analytical Hierarchy Process

MCDM – Multi Criteria Decision Making

C & P – Contracts & Procurement

DQM - Department Quality Manual

CSP – Case Study Protocol

SCADA – Supervisory Control And Data Acquisition System

HVJ Pipeline – Hazira- Vijaipur- Jagdishpur Pipeline

LPG – Liquefied Petroleum Gas

NG - Natural Gas

O & M – Operation & Maintenance

SOP – Standard Operating Procedures

ROU – Right of Use

OEM - Original Equipment Manufacturer

AGA - American Gas Association

API – American Petroleum Institute

OHSAS – Occupational Health Safety Audit Systems

IUSA – Inter Unit Safety Audit

OIC - Office-in-charge

ED - Executive Director

GDP - Gross Domestic Product

LIST OF FIGURES

Figure 1.1	- Sector-wise Growth of Industry GDP (%)	2
Figure 2.1	- The relation between Maintenance & Production	24
Figure 2.2	- Elements of Maintenance Excellence	26
Figure 2.3	- The Range of Maintenance Policy Sectors and Corresponding Practices	67
Figure 2.4	- A Business Centred Maintenance Methodology	68
Figure 2.5	- A Schematic View of the Work Process When Formulating a Maintenance Strategy	69
Figure 2.6	- Structure to Follow While Formulating the Maintenance Strategy	69
Figure 2.7	- Components included in the Strategy	70
Figure 3.1	- Research Process	86
Figure 3.2	- Three Different Research Approaches	93
Figure 3.3	- Summary of Research Design & Methodology	98
Figure 3.4	- Case Study Design	100
Figure 3.5	- Basics Types of Designs for Case Studies	102
Figure 3.6	- Examples of Codes	110
Figure 3.7	- Codes, Categories, and Concepts	111
Figure 3.8	- Categorisation and linking of Codes, Categories	
	& Concepts	112
Figure 3.9	- Casual Relationships Identified from Interview Statements	113
Figure 3.10	- Relationships between Concepts/Categories inherited from Codes	115
Figure 3.11	- Phases of Within Case Analysis	117
Figure 4.1	- Existing Natural Gas Pipeline Network in India	143
Figure 4.2	- Organisation Chart for NG Pipelines O & M	145
Figure 4.3	- QAN for Performance Measures & Benchmarking (NG Pipelines)	154
Figure 4.4	- QAN for Planning & Scheduling (NG Pipelines)	155
Figure 4.5	- QAN for Materials Management (NG Pipelines)	162
Figure 4.6	- QAN for Human Resources/Organisation (NG Pipelines)	168

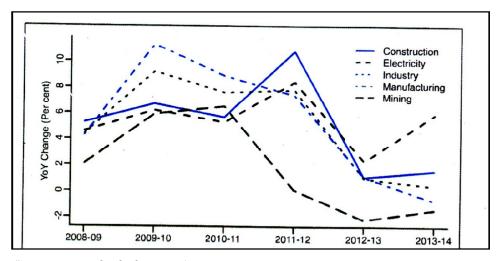
Figure 4.7	- QAN for Information Technology (NG Pipelines)	174
Figure 4.8	- QAN for Employee Empowerment (NG Pipelines)	177
Figure 4.9	- QAN for Maintenance Tactics (NG Pipelines)	184
Figure 4.10	- QAN for Reliability Analysis (NG Pipelines)	191
Figure 4.11	- QAN for Maintenance Policy (NG Pipelines)	196
Figure 4.12	- QAN for Maintenance Budget (NG Pipelines)	196
Figure 4.13	- QAN for Maintenance Challenges (NG Pipelines)	199
Figure 4.14	- QAN for Maintenance Strategy Selection Process (NG Pipelines)	205
Figure 4.15	- QAN for Case Study 1 (NG Pipelines)	207
Figure 5.1	- Organisation chart for Petrochemicals O & M	223
Figure 5.2	- QAN for Performance Measures & Benchmarking (Petrochemicals)	232
Figure 5.3	- QAN for Planning & Scheduling (Petrochemicals)	234
Figure 5.4	- QAN for Materials Management (Petrochemicals)	240
Figure 5.5	- QAN for Organisation/Human Resources (Petrochemicals)	249
Figure 5.6	- QAN for Information Technology (Petrochemicals)	253
Figure 5.7	- QAN for Employee Empowerment (Petrochemicals)	257
Figure 5.8	- QAN for Maintenance Tactics (Petrochemicals)	265
Figure 5.9	- QAN for Reliability Analysis (Petrochemicals)	273
Figure 5.10	- QAN for Maintenance Policy (Petrochemicals)	277
Figure 5.11	- QAN for Maintenance Budget (Petrochemicals)	278
Figure 5.12	- QAN for Maintenance Challenges (Petrochemicals)	286
Figure 5.13	- QAN for Maintenance Strategy Selection Process (Petrochemicals)	290
Figure 5.14	- QAN for Case Study 2 (Petrochemicals)	294
Figure 7.1	- NG Pipelines Maintenance Strategies and Practices Planning & Execution	348
Figure 7.2	- Petrochemicals Maintenance Strategies and Practices Planning & Execution	349
Figure 7.3	- Model for Maintenance Strategy & Maintenance Practices Planning & Execution	357

LIST OF TABLES

Table 2.1	- Summary of Literatures Survey in Maintenance	27
Table 2.2	- Categorisation of Literatures based on Key Themes	36
Table 2.3	- Categorisation of Initial Conceptual Constructs	50
Table 2.4	- Comparison of Maintenance Strategy Related Frameworks/Models	71
Table 3.1	- Research Questions: Types and Temporal Orientation	83
Table 3.2	- Philosophical Assumptions along with Implications	87
Table 3.3	- Comparison between Scientific Paradigms	90
Table 3.4	- Characteristics of Qualitative Research Method	94
Table 3.5	- Comparison of Qualitative and Quantitative Elements in Design	94
Table 3.6	- Main Steps in Data Collection	106
Table 3.7	- Data Evidences for Data Triangulation of Case Study 1 & 2	121
Table 3.8	- Data Collection Plan	128
Table 4.1	- Existing Gas Transportation Infrastructure in India	142
Table 4.2	- List of Interviewees of Case Study-1 (NG Pipelines)	148
Table 4.3	- Performance Measures Empirical Findings (NG Pipelines)	152
Table 4.4	- Planning & Scheduling Empirical Findings (NG Pipelines)	160
Table 4.5	- Materials Management Empirical Findings (NG Pipelines)	165
Table 4.6	- Human Resources Empirical Findings (NG Pipelines)	171
Table 4.7	- Information Technology Empirical Findings (NG Pipelines)	175
Table 4.8	- Employee Empowerment Empirical Findings (NG Pipelines)	182
Table 4.9	- Maintenance Tactics Empirical Findings (NG Pipelines)	188
Table 4.10	- Reliability Analysis Empirical Findings (NG Pipelines)	192
Table 4.11	- Maintenance Policy/Budget Empirical Findings (NG Pipelines)	197
Table 4.12	- Maintenance Challenges Empirical Findings	
	(NG Pipelines)	201

Table 4.13	-Maintenance Strategy Selection Process Empirical Findings	3
	(NG Pipelines)	204
Table 5.1	-List of Interviewees of Case study-2 (Petrochemicals)	224
Table 5.2	-Performance Measures Empirical Findings (Petrochemicals) 229
Table 5.3	-Planning & Scheduling Empirical Findings (Petrochemicals	3) 237
Table 5.4	-Materials Management Empirical Findings (Petrochemicals) 244
Table 5.5	-Organisation/ Human Resources Empirical Findings (Petrochemicals)	250
Table 5.6	-Information Technology Empirical Findings (Petrochemicals)	255
Table 5.7	-Employee Empowerment Empirical Findings (Petrochemicals)	262
Table 5.8	-Maintenance Tactics Empirical Findings (Petrochemicals)	270
Table 5.9	-Reliability Analysis Empirical Findings (Petrochemicals)	274
Table 5.10	-Maintenance Policy/ Budget Empirical Findings (Petrochemicals)	281
Table 5.11	-Maintenance Challenges and Empirical Findings (Petrochemicals)	287
Table 5.12	-Maintenance Strategy Selection Process Empirical Findings (Petrochemicals)	291
Table 6.1	-Comparison of Business Verticals of the	
	Gas Utility Company	306
Table 6.2	-Similarities & Dissimilarities between Case Study 1 & Case Study 2	307
Table 6.3	-Cross Case Comparison of Case Study 1 & Case Study 2	319
Table 6.4	-Cross Case Findings: Maintenance Strategies Selection Process	327
Table 6.5	-E-maintenance Concepts being Practiced in NG Pipelines & Petrochemicals	330
Table 6.6	-Benchmark Metrics (John S Mitchell, 2002) for Maintenance & Comparison with GAIL's Metrics	336
Table 6.7	-Benchmark Metrics (NASA, 2000) for Maintenance & Comparison with GAIL's Metrics of both the Case Studies 1 & 2	338
Table 7.1	-Categories Contributing to Maintenance Strategies & Maintenance Practices	342
Table 7.2	-Maintenance Strategies Selection Processes	353

CHAPTER 1 INTRODUCTION


The chapter begins with brief background about industrial growth in India and contribution of operations intensive industries like natural gas industry to the industrial Gross Domestic Product (GDP). It highlights that effective and efficient operation processes help operation intensive industries in sustaining their productivity and profitability. The crucial role of operations & maintenance is discussed in detail. Further, the problem discussion highlights and take into account the impact of maintenance at an organisation level in gas industry within operation intensive industries. Thereafter, it is narrowed down to present the problem formulation of this research study. Potential significance of this research study is also deliberated in this chapter. In last section, thesis deposition is presented in order to explain complete thesis chapters of this research report.

1.1 BACKGROUND

Indian economy has witnessed sub 5 % growth of Gross Domestic Product (GDP) during last two years. It is poised to overcome the growth rate above 5% in the year 2014-15. One among the reasons for this slow growth rate is the performance of the industry sector. After 2008-09, the industrial sector which includes manufacturing, mining, construction, and electricity demonstrated recovery and steady growth for consecutive three years. Thereafter, industrial growth has lost its momentum due to various supply side and demand side constraints. The latest gross domestic product (GDP) estimates show that industry growth rate was 1% in 2012-13 and further reduced to 0.4% in the year 2013-14. The projected 12th plan targets for manufacturing sector is 10% and 5.7% for mining sector in the remaining

three years. To achieve these targets strong initiatives & growth strategies in industrial sector are crucial (Source: www.indianbudget.nic.in).

Sector wise analysis of industrial performance is presented in Figure 1. It shows that the key reasons for poor performance in industrial performance are due to contraction in mining activities and deceleration in manufacturing output. In manufacturing sector, reasons for growth slowdown are reduced fixed investment, several domestic and external factors like higher interest rate, bottlenecks in infrastructure, inflationary pressure due to rising input costs, and drop in domestic and external demand. In mining sector, reasons for growth slowdown are majorly due to lower or moderate production of goal, lignite, crude petroleum, natural (Source: iron ore, and gas www.indianbudget.nic.in).

(Source: www.indianbudget.nic.in)

Figure 1.1 Sector-wise Growth of Industry GDP (%)

Among the industries in Index of Industrial Production (IIP), India basket, core operation intensive industries have been identified for industrial growth rate study. These industries are coal, fertilizer, electricity, crude oil, natural gas, refinery, steel, and cement. The average growth rate of these industries was 5% & 6.5% in the year 2011-12 & 2012-13 respectively. The index has

grown to only 2.7% during 2013-14. This is mainly due to negative growth rate in natural gas (-13%) and crude oil (-2%). Further, due to lower growth rate in coal (0.7%), fertilizers (1.5%), and refinery products (1.7%). However, Government of India promotes to achieve industrial growth to almost 14% GDP over the medium term and further by 25% GDP by 2022 from the current 15-16% GDP thorough various initiatives such as National Manufacturing Policy (Source: www.indianbudget.nic.in).

To achieve the targeted GDP growth set by GOI and also to sustain in global arena, it is crucial for Indian industries to sharpen the productivity, profitability and competitiveness. In order to maximise productivity and profitability in the industry, the world class best practices are to be adopted by organisations in the areas of operations & maintenance (Campbell, Andrew, Jardine, Marshall & Decker, 2001).

Operations in the industry constitute all of the activities that an organisation accomplishes in order to deliver value to its customers. It's the set of processes that transforms either materials or information into a product or service (Gits, 1994). There have been some exciting changes in recent years. Operations are no longer merely something that has to complete in order to proceed with business as common. Today, organisations can generate huge competitive advantage with their superior and novel operations (Ketokivi & Jokinen, 2006). In the context of globalization of business, the changing nature of operations in any organisation is due to the major developments such as information technology and technological advances in the production/maintenance technology (Waeyenbergh & Pintelon, 2004).

Operations in the industry are characterised by diversity of issues of distinct nature such as technical and operational, short and long term planning, systems management, and involvement of various stakeholders (Al-Najjar, Alsyouf, Salgoda, Khosaba & Faaborg, 2001). Therefore, organisations are facing a lot of challenges such as optimisation of operations function due to

the continual evolving world of technologies, global competitiveness, environmental and safety requirements.

Now is the time for operations of the organisation in the industry to step up to the stage and become a key player in achieving company profitability and growth goals (Kutucuoglu, 2001; Al-Najjar & Alsyouf, 2004). Sound operations management excels at meeting daily business requirements and builds competitive advantage. This is a much bigger vision than just being a cost-effective business enabler. It requires forward, innovative thinking and agile response to rapidly changing markets, technologies and global cost structures (Hayes et al., 2014)

The concern towards total quality and profitability of an organisation are crucial factors in the business. Availability of production equipment and ensuring production efficiency is essential to sustaining production capacity in continuous production plant (Pinjala, Pintelon, & Vereecke, 2006; Parida & Uday, 2009) in any industry like gas industry also. These fundamentals factors affect profitability of an organisation in the operations intensive industries. Studies have shown that the negligence in asset maintenance and its role in production processes results in consequential issues such as financial, technical, as well as safety in both internal and external environment of the organisation (Benett, 2006; Al-Najjar et al., 2001).

Further, organisations in operations intensive industries such as utilities, food and beverage processing, metals and mining, chemicals, oil and gas, and automotive recognize that asset maintenance is crucial to the successful operations of their organisations. Even though organisations provide the importance to effective and efficient maintenance practices in order to achieve the financial objectives, only 7% of organisations are completely satisfied with their maintenance performance (Source: Report on Collaborative Asset Maintenance Strategies by Aberdeen Group, 2006).

It is evident that industrial maintenance function has gained high recognition over the last few decades in various industries (Ben-daya & Duffua, 1995). Consequently, over the years, many different strategies have been developed to support maintenance management implementation in the industry (Swanson, 2003). In today's highly competitive business environment, management of physical assets (their selection, maintenance, inspection and renewal) plays a key role in determining operational performance and profitability of any business unit, manufacturing plant or industry that operate assets as a part of their core business (Henriques & Sadorsky, 1999; Al-Najjar et al., 2001; Vollmann, Berry, Whybark & Jacobs, 2005). Asset Management, being the art and science of making right decisions and optimising these processes, attempts to minimise the total life cost of assets and directly or indirectly influences manufacturing/ production/operation/service cost, processes and quality, and throughput or delivery time (Pintelon, Gelders, & Vanpuyvelde, 2000).

Especially impact of maintenance in achieving business objectives has been proven as important in recent time (Duffua, Al-Ghamdi & Al-Amer, 2002). However, more research study regarding the importance of maintenance in manufacturing environment is the requirement in the industry (Alsyouf, 2007).

The cost associated with the maintenance has increased constantly over the decades. In the present scenario, depending on the type of industry, about 15-70% of production costs are attributed towards maintenance (Ilangkumaran & Kumaran, 2012). Unfortunately, due to the uncertainties and inefficiencies involved in maintenance planning, about one third of maintenance costs are wasted (Mobley, 2002). Further, the selection of an apt maintenance strategy is important as well as complex in maintenance management and the output of maintenance is hard to measure and quantify (Chris & Wang, 2001).

In general, plant maintenance function is to keep any kind of equipment or component in a working order to prevent failures so as to perform its intended function, ensuring safety, as well as protecting the environment (Al-Najjar et al., 2001; Henriques & Sadorsky, 1999). Ensuring cost effective plant operation such as efficient & quality production, equipment availability and employee & environmental safety depends on how organisations are able to effectively integrate maintenance function with other functions in the organisation. Further, for organisation to survive in the present industrial environment, healthiness of equipment with sustainable operations should be ensured (Ben-daya & Duffuaa, 1995, Al-Najjar, 2001; Bennett, 2006).

Traditionally, maintenance management was dealt with the short term issues like resources, cost, man power etc. In recent past, maintenance management has changed its concerns towards the consideration of long-term goals like competitiveness, sustainability and strategy. The maintenance management needs to be viewed in a strategic perspective (Duffuaa et al., 2002; Crespo & Gupta, 2006; Umar, 2011). Therefore, maintenance is not just ensuring healthiness of equipment in a facility but it also plays a crucial role in achieving organisation's goals and objectives with optimum maintenance cost and maximum production (Seth & Tripathi, 2006). Once maintenance is viewed as a strategic perspective in the organisation, there is a need to formulate maintenance strategy for performing maintenance function in the organisation (Kelly, 2006; Salonen, 2011).

Maintenance strategy is defined as a systematic approach to upkeep the facilities and equipment and it may vary from facility to facility. It involves identification, researching and execution of many repairs, replace and inspect decisions and is concerned with formulating the best life plan for each unit of the plant, in coordination with production and other functions concerned (Kelly, 1997; Mckone & Elliott, 1998; Sherwin, 2000; Pintelon & Parodi, 2008). It describes what events (e.g. failure, passing of time, condition) trigger what type of maintenance action (inspection, repair, or replacement).

Backlund & Akersten (2003) found lack of maintenance management strategy to be one of the obstacles for the introduction of Reliability Centred Maintenance (RCM) in a hydropower company. Similar type of conclusions is

demonstrated in few other studies regarding implementation of Total Quality Management (TQM), Total Productive Management (TPM), etc. (Hansson, Backlund, & Lycke, 2003). Further, Rao (2009) asserts that one of the challenges of maintenance is to continuously improve the performance of maintenance. Despite the obvious importance of maintenance strategies, a survey among maintenance managers shows that 48% managers agreed for having written maintenance strategy and 28% had no maintenance strategy at all and also remarks that the quality standard ISO to be a maintenance strategy (Alsyouf, 2009).

There seems to be a less interest among the maintenance practitioners for a structured maintenance strategy formulation and implementation (Salonen, 2011). The reasons may be: maintenance approaches/methods/concepts are resource demanding so that SME organisations do not show much interest in using such maintenance approaches; organisations are reluctant to experiment with the new maintenance methods developed such as Total Productive Maintenance, Reliability Centred Maintenance etc.

Maintenance strategy process includes various activities such as formulation of maintenance strategies for the organisation, selection of particular maintenance strategy of the specific equipment or process and effective implementation of maintenance strategies selected. All these activities are required to be viewed strategically and to be monitored holistically (Umar, 2011).

It is also pertinent that maintenance function has gained crucial role over the last few decades in natural gas industry which is one of the operations intensive industries. Consequently, over the years, many different strategies have developed to support maintenance management implementation in the natural gas industry. With increasing automation and mechanization in natural gas/petrochemical process, production processes are becoming highly sensitive to machine/equipment and people (Carnero, 2006). Consequently, the role of equipment maintenance in controlling quality, quantity and reducing

costs is more evident and important than ever (Muchiri et al., 2010; Jay, Jun, Dragan, Hai, & Haito, 2006). The natural gas industry is also characterised by expensive specialised equipment and stringent environmental consideration. In the operations intensive industries as the case with gas industry, despite the best efforts of maintenance managers, equipment still fails, and plants are vulnerable to failures. Therefore, before adopting any maintenance strategy, maintenance managers must change the way they think about failures and understand its diversity. The implications in production and maintenance suggest the need to change the focus of maintenance polices & maintenance methodology adopted.

For example, gas processing plant of gas utility company must produce LPG at least 350 days per annum considering the 15 days scheduled maintenance. However, industry data shows that production is getting affected for at least 20-25 days due to scheduled plant shutdown maintenance and also due to emergency breakdown maintenance. Therefore, the plant runs for 340 days approx. (Source: Shutdown Report 2012, Gas Processing Plant, GAIL India Limited). If it is possible to reduce plant shutdown by a day, company can profit few crores of rupees.

The above descriptions on industrial growth with respect to Indian industry & contribution of operations intensive industry to industrial growth, role of operations & maintenance in the organisation's productivity and profitability can be summarised as: Natural gas industry is one among the operation intensive industries which contributes to the India's industrial GDP growth. Industrial growth of natural gas industry was in negative growth rate during 2013-14 due to various economic reasons. However, to support the GDP growth of the industry in the coming years, organisations within the industry should maximise their productivity and profitability in today's competitive business environment. Operations can be used as competitive advantage to achieve business objectives of the organisations in the industry. Maintenance plays a crucial role in operations. Even organisations treat maintenance as an important function nowadays but traditionally it was considered as cost centre.

But in today's industrial environment, strategic perspective of maintenance become an important aspect in organisation's growth. In spite of the consistent efforts of maintenance managers in maintaining the assets by applying best maintenance strategies & maintenance practices in the operation intensive industry, the failures of equipment/process happen and it leads to increase in downtime of plant operations and cost of operations & maintenance.

Given the above background, the *business problem* at an organisation level in the process/manufacturing/gas industry can be defined as:-

- Production/Operation process is continuous and any abrupt stop of whole production process cause delay and reduction in output in an organisation.
- Although organisation follows various maintenance strategies, the cost and impact (equipment safety, upstream supplier issues, and downstream customer issues) of sudden failure of equipment was found to be huge.

The above business problem motivates the researcher to perform this study. With this background, this research study undertakes study of maintenance strategies & maintenance practices at an organisation level in the industry focusing on the maintenance strategies selection processes in detail with the objective of having thick descriptions of maintenance strategy related processes at an organisation level.

1.2 TOPIC & PURPOSE

To further explore on business problem, a detailed literature review was carried out. A review of current thinking on the concepts of maintenance strategies & maintenance practices, maintenance strategies selection processes, and other maintenance management related concepts such as e-maintenance, alignment of business strategies with maintenance strategies, and

companywide integration of maintenance strategies are presented in this section. Detailed literature review is presented in Chapter 2.

1.2.1 Maintenance Strategies & Maintenance Practices

Maintenance Strategy is not well defined in the literature. Maintenance strategy term is used interchangeably with maintenance policy, maintenance approach etc. Maintenance strategy is a systematic approach to upkeep the asset/facility. Authors have categorised maintenance strategies as Time Based Maintenance (TBM), Condition Based Maintenance (CBM), Corrective Maintenance (CM), Reliability Centred Maintenance (RCM), and Total Productive Maintenance (TPM) and these are also mentioned as maintenance policies/ maintenance approaches/maintenance methods in the published papers (Gallimore & Penlesky, 1988; Pintelon & Gelders, 1992; Dekker, 1996; Kelly, 1997; Mckone & Elliott, 1998; Sherwin, 2000; Bevilacqua & Braglia, 2000; Swanson, 2001; Crespo & Gupta, 2006; Carnero, 2006; Marcello, Davide, & Marco, 2013).

Few literature have discussed about maintenance practices at an organisation level in manufacturing plant. Maintenance practices are need to be updated time to time based on the changes in plant equipment, production technology, and requirement of technical expertise to perform the maintenance activities (Swanson, 1997). Maintenance must leverage information technology and implementation of e-maintenance concepts like Computerised Maintenance Management Systems (CMMS). These systems help in strategic maintenance planning, scheduling and manpower coordination in order to improve maintenance practices of an organisation (Raouf, Ali & Duffuaa, 1993; Swanson, 2003; Elliot & Tobias, 2005; Marchi & Garetti, 2006; Jay et al., 2006; Muller et al., 2007; Phillip & Ramin, 2014). Maintenance decision making & maintenance performance depends on the maintenance policy & maintenance culture of the organisation. Customisation of maintenance organisation according to current business strategies helps the organisation in

successful maintenance strategy implementation (Pintelon & Gelders, 1992; Michael et al., 2000; Wang, 2001; Eti et al., 2006; Nima et al., 2010).

Literature has identified initial conceptual constructs such as Maintenance Tactics, Reliability Analysis, Performance Measures/Benchmarking, Planning & Scheduling, Materials Management, Organisation/Human Resources, Employee Empowerment, Information Technology, and Maintenance Polices/Budget. The maintenance tactics such as Preventive Maintenance/ Based Maintenance, Predictive Maintenance/Condition Based Maintenance, Reliability Centred Maintenance, and Total Productive Maintenance are covered in detail in the literature with specific context to industries such as Manufacturing industry, power plant, Automobile industry, etc. (Patrik, 1999; Cooke, 2003; Carnero, 2006; Mahdi, Hossein & Taha, 2010; Rolando, Mark, Villalobos & Graul, 2009; Pophaley & Vyas, 2010; Jafari, Jafarian, & Zaerpour, 2008; Chris & Wang, 2001; Ilangkumaran & Kumaran, 2012; Chitra, 2003; Mokashi, Wang, & Vermar, 2002; Gokiene, 2010; Seth & Tripathi, 2006; Sami & Ben-daya, 2010; Wilmeth & Usrey, 2000). Reliability Analysis plays a crucial role in maintenance strategy formulation, selection and implementation of the strategies into practices (Bevilacqua & Braglia, 2000; Liptrot & Palarchio, 2000; Wang, 2001; Nima, Dragan, & Jardine, 2010; Li, Ambani, & Ni, 2009; Nguyen, Brammer, & Bagajewicz, 2008). Formulation and selection of maintenance strategies are improved and modified based on the performance measures in maintenance. Maintenance performance measurement also helps to choose suitable maintenance strategy for a particular operation process/equipment Tsang, Jardine, & Kolodny, 1999; Sherwin, 2000, Kutucuoglu et al., 2001; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim, & Uday, 2010; Simoes, Gomes, & Yasin, 2011).

Planning & scheduling are the key activities of any maintenance strategies formulation & implementation in an organisation (Noemi & William, 1994; Bertolini & Bevilacqua, 2005; Rosqvist, Laakso & Reuanen, 2007; Rolando et al., 2009; Pophaley & Vyas, 2010; Ashayeri, Teelen, & Selen, 1996; Jin,

Li, & Ni, 2009; Ilangkumaran & Kumaran, 2012; Nguyen, Brammer, & Bagajewicz, 2008; Sami & Ben-daya, 2010; Verma & Suresh, 2007; Ahmadi, Gupta, Karim, & Uday, 2010; Pinjala, Pintelon, & Vereecke, 2006). Non-availability of material, emergency procurement of material, inventory control, and integration of material management with maintenance planning affect the implementation of maintenance strategies. Therefore, material management is an integral part of maintenance strategies formulation and implementation in an organisation (Carnero, 2006; Garg & Desmukh, 2006; Jafari et al., 2008; Nguyen, Brammer & Bagajewicz, 2008, Wireman, 2010). The manpower outsourcing strategy provides flexibility in the maintenance organisation so that there is no need to create fixed assets /infrastructure. To help in such kind of decisions HR function plays inclusive role in formulation of maintenance strategy, selection and implementation of maintenance strategy in an organisation (John & Amrik, 1989, Garg & Desmukh, 2006; Eti, Ogaji, & Probert, 2006; Crespo & Gupta, 2005; Pinjala, Pintelon, & Vereecke, 2006).

Empowerment of employee helps to take faster decision during performing maintenance and to manage emergency maintenance. This helps in implementation of maintenance strategies in an organisation in a better manner (Campbell, Jardine, Marshall, & Decker, 2001; Eti, Ogaji, & Probert, 2006; Wireman, 2010). Information Technology (IT) can lead to higher work productivity, machine availability, maintenance personnel effectiveness etc. Therefore, IT can impact maintenance decision making such as formulation of maintenance strategy and this helps to optimise the maintenance cost and the equipment/asset reliability. A well formulated maintenance strategies and practices supported with the maintenance policies and maintenance culture in an organisation plays a critical role in maintenance function. Therefore, this function impacts the implementation of maintenance strategies & selection of maintenance strategies (Wang, 2001; Cooke, 2003; Carnero, 2006; Garg & Desmukh, 2006; Pintelon & Gelders, 1992; Pinjala, Pintelon, & Vereecke, 2006; Michael, Kwasi, & Jack, 2000).

1.2.2 Maintenance Strategies Selection Process

Maintenance strategies selection process includes the activities such as formulation of maintenance strategies, selection of maintenance strategies, and implementation of maintenance strategies. Frameworks related to maintenance strategy formulation have been brought out from the literature. A key point in formulation of maintenance strategy is to link the maintenance strategies to operational strategies and further to business strategies. While formulating the maintenance strategies, such strategies have to be assessed & evaluated based on major system & organisational elements. Maintenance performance measures provide key inputs to formulation of maintenance strategies (McAllister, Armstrong, & Wilson, 1999; Waeyenbergh & Pintelon, 2002; Cooke, 2003; Kelly, 2006; Campbell & Picknell, 2006; Rosqvist, Laakso, & Reuanen, 2007; Salonen, 2011).

Selection of maintenance strategies is the choice among the maintenance approaches such as TBM, CBM, RCM, TPM etc. Selection of maintenance strategy is treated by authors' as Multiple Criteria Decision Making (MCDM) problem. The MCDM problem can be solved with the techniques such as Analytical Hierarchy Process (AHP), Fuzzy AHP, VIKOR, etc. (Dekker, 1996; Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Murthy, Atrens, & Eccleston, 2002; Bertolini & Bravilacqua, 2005; Li et al., 2009; Jinqiu & Laibin, 2014).

Decision Support System (DSS) models are used for selecting suitable maintenance methodology for specific operation/process/equipment. The maintenance method selected through DSS model helps in improvement of maintenance function and optimisation the operational/ maintenance costs. Reliability assessment, risk levels and failure management in maintenance can be effectively handled with the help of these models using tools such as fuzzy Bayesian methods, fuzzy modelling, Analytical Hierarchy Processing (AHP) etc.(Knezevic, 1994; Ashayeri et al., 1996; Crespo, 2005; Li et al., 2009; Rolando et al., 2009; Ayadi, Chaib, & Verzea, 2014).

Implementation of preventive/predictive maintenance strategies leads to improvement in maintenance function such as reduced maintenance cost, increased equipment's reliability. Corrective maintenance costs become higher than the preventive maintenance costs in a long term period. Few literature suggest for Plant-level Maintenance Decision Support System (PMDSS) for implementation of optimum maintenance strategies mix suitable to particular operation/process/equipment. (Jayabalan & Chaudhuri, 1992; David & Shahram, 1993; Crespco, 2005; Pinjala, Pintelon, & Vereecke, 2006; Ling, Jian, & Wang, 2006; Gokiene, 2010; Sami & Ben-daya, 2010; Veldman, Klingenberg, & Wortmann, 2011; Jain, Bhatti, & Singh, 2014).

The detailed literature review reveals that the most of existing literature have discussed evaluation system for setting up a particular maintenance method/approach such as Preventive Maintenance & Predictive Maintenance, linking performance with the maintenance strategy, application of specific maintenance method/approach like Preventive Maintenance, Predictive Maintenance, RCM, CBM etc. for a particular industry in a country like Italy, Belgium, Africa etc., development of Maintenance Decision Support Systems (MDSS) for selection of maintenance strategy, development of Plant level Maintenance Decision Support System (PMDSS) implementation of e-maintenance concept, maintenance polices and their impact.

Further, authors have developed frameworks/models related to maintenance strategy processes such as maintenance strategy formulation, selection of maintenance strategies and implementation of selected maintenance strategies (McAllister et al., 1999; Pintelon & Gelders, 2002; Kelly, 2006; Eti et al., 2006; Pintelon & Parodi, 2008; Muchiri et al., 2011; Umar, 2011). However, each model describes one or two processes of maintenance strategy but not in combined manner integrating all the maintenance strategy related processes. Based on these inferences, it is evident that there is a need in Industry to develop a holistic model which combines factors such as maintenance strategy formulation, selection and implementation of formulated maintenance strategies.

Literature could not explain about how the maintenance managers/engineers are ensuring smooth operation of plant by effective use of maintenance strategies in planning & execution at an organisation level. Further, no literature could reveal about why the specific maintenance strategy is selected for a particular equipment/process and how these maintenance strategies are different in different plant processes/equipment. Therefore, maintenance strategies related processes study is to be carried out to incorporate existing maintenance practices of an organisation so that maintenance strategies & maintenance practices can be described in a holistic manner.

It is evident from the literature review that the maintenance strategies related frameworks established relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in an organisation, but they failed to explain how and why are these related. As explanation is essential for building theory and for improving practice, there is a need for process study of maintenance strategies & maintenance practices at an organisation level. Further, extensive literature search for maintenance strategies & maintenance practices study using qualitative research approach at an organisation level in operations intensive industry like natural gas industry in an Indian context found no references. (As on 02-05-2014, literature in databases such as EBSCO (Business Source Premier & Business Source Elite+), Emerald, Elsevier's Business Management & Accounting Collection (Science Direct), Blackwell's HSS Collection, IEEE Online, ACM Digital Library with the following key words maintenance, maintenance strategy, preventive maintenance, predictive maintenance, condition based reliability centred maintenance, maintenance maintenance, maintenance practices, Selection of maintenance strategy, Indian gas industry, maintenance decision making, maintenance effectiveness, maintenance scheduling, maintenance planning, corrective maintenance, reliability, decision support system, maintenance flexibility, maintenance management, computerised maintenance management, maintenance performance, study of maintenance practices) which lead to the identification of research problem as described in the next section.

1.3 PROBLEM STATEMENT

Although in the existing literature various maintenance strategies applicable for different types of operations intensive industry is well known but the process of maintenance strategies selection & maintenance practices at an organisation level have not been described in detail. Further, there is lack of holistic process model for maintenance strategies & maintenance practices planning and execution.

1.4 POTENTIAL SIGNIFICANCE

There is a need to describe the processes of maintenance strategies selection and maintenance practices at an organisation level in operations intensive industry like natural gas industry in an Indian context, as little work has been done in this area. Maintenance strategy formulation and selection aspects have been studied & described in few models/frameworks. (Cooke, 2003; Kelly, 2006; Campbell & Picknell, 2006). Selection of maintenance strategies is the selection among the maintenance approaches such as TBM, CBM, etc. Selection of maintenance strategy is treated by authors' as Multiple Criteria Decision Making (MCDM) problem. This problem is solved with the mathematical techniques AHP, FAHP, VIKOR, etc. (Dekker, 1996; Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Murthy, Atrens, & Eccleston, 2002; Bertolini & Bravilacqua, 2005; Li, Ambani, & Ni, 2009). However, these models do not have feedback from maintenance performance & existing maintenance practices at an organisation level. Maintenance practices of usage of mathematical modelling for maintenance strategies selection at an organisation level found no references in literature. There is a need to understand whether mathematic modelling is practically being used in the industry & also in Indian context, if yes then how.

Implementation of maintenance strategies depends on various resources such as manpower, material etc. Few literatures suggest the Plant-level Maintenance Decision Support System (PMDSS) for optimising the resources

in order to implement suitable maintenance methodology (Li, Ambani, & Ni, 2009; Ronaldo et al., 2009; Ashayeri, Teelen, & Selen, 1996; Knezevic, 1994; Crespo, 2005; Ayadi et al., 2014). However, literature in integrated study of maintenance strategy implementation along with maintenance strategy formulation, selection and maintenance performance in natural gas industry of Indian context is found no references. Based on these inferences from literature, it is evident that an immense requirement to understand on maintenance strategy formulation, selection of maintenance strategies and implementation and maintenance practices from the experiences of maintenance mangers in the industry at an organisation level and such kind of study will definitely be useful to understand the gap between the common maintenance strategies studied and proposed in the literature and maintenance strategies being actually adopted and practiced by maintenance managers in the industry.

This research study would be useful to both the academicians and practitioners. For academicians, this research would provide a new insight in terms of unit of analysis (maintenance in process plant/pipelines), empirical research methodology, and a rich description of maintenance strategies and maintenance practices in process plant and natural gas pipelines at an organisation level in operations intensive industry.

For practitioners such as maintenance managers/engineers in process plant/natural gas pipelines, this research would suggest some ways of improving maintenance strategies formulation, selection and maintenance practices in the industry, which can be tested in real life situations.

1.5 THESIS DISPOSITION

This research work is discerned in the parts of Introduction, Literature Review, and Research Design & Research Methodology. This is followed by the individual case analysis, cross case analysis, and conclusions.

This chapter discussed the context and background of this research study. Next chapter presents the detailed literature review and conceptual framework used in this research and related literature. In Chapter 2, theoretical foundations of maintenance, a literature survey on maintenance are discussed in detail and then literature have been categorised & presented on Key themes based on maintenance management processes. Thereafter, discussed on Initial Conceptual Constructs (ICC) & Sub-Constructs derived from literature and finally comparisons of various maintenance related models are also presented. Overall, Chapter 2 describes how the conceptual lens & ICC have been derived by systematically categorising literature and further analysing, synthesising the literature in a logical manner to arrive at literature gaps.

Chapter 3 discusses about research design and research methodology of this research study. It will include the sections such as research objectives and research questions, over-all research approach and rationale, case study design, data collection method, data analysis strategy, and quality of empirical research. Finally, this chapter discusses about the development of Case Study Protocol (CSP) and a copy of complete Case Study Protocol document is also presented in chapter 3 for ready reference.

In Chapter 4 & Chapter 5 analysis of data and outcomes of data analysis are presented in detail for both the case studies (Case Study 1 – Natural Gas Pipelines & Case Study 2- Petrochemicals) on maintenance strategies and maintenance practices of a large gas utility company in India. These chapters include the following sections: introduction on case, data collection, data analysis, findings of data analysis, discussion on data analysis outcomes and conclusions.

Chapter 6 explains about cross case analysis and findings. This chapter describes the similarities and dissimilarities between the two cases NG Pipelines and petrochemicals. Then, cross case comparison is discussed in detail. The findings of cross case analysis are presented along with the findings related to benchmarking in maintenance. Further, fourteen

propositions have been developed from the cross case analysis and all these propositions are presented and discussed in detail.

The last chapter (Chapter 7) discusses the conclusions and significance of the findings of this research study, and then presents the limitations of the study. A model for maintenance strategy selection & maintenance practices planning and execution has been developed based on data analysis. This model is presented & explained in detail. Further, the scope for future research in the area of maintenance strategies and maintenance practices is also presented in the last chapter.

1.6 CONCLUDING REMARKS

This chapter discussed the context and background. Asset maintenance in core operations intensive industry like natural gas industry becomes the challenge at an organisation level. As described in the background, asset maintenance plays a crucial role in achieving enhanced productivity and higher profitability and this will help core operations intensive industry to achieve the targeted GDP growth. In asset maintenance, managers/engineers face a major challenge of production loss due to plant shutdown/ equipment failure/accidents. Based on this background, business problem has been developed and presented in this chapter.

This business problem leads further exploration on literature. In-depth literature review shows that literature are available on selection of maintenance strategies such as preventive maintenance, predictive maintenance, reliability centred maintenance, total productive maintenance etc. using mathematical models, maintenance performance measurements, of maintenance performance maintenance strategies impact on implementation, impact of e-maintenance, impact of maintenance policies in maintenance. Further, maintenance strategies related models/frameworks discusses on maintenance strategies formulation and implementation. The key highlights of information available on maintenance strategies selection and

maintenance strategies & maintenance practices are presented in this section. Lack of literature on study of maintenance strategies related processes at an organisation level in an Indian context to understand on how the maintenance managers formulate the maintenance strategies and why they select specific strategies for a particular equipment/ process. Problem statement for this research study has been formulated based on literature gap and business problem & presented in this chapter.

Potential significances of this research study and thesis disposition are also presented in this chapter. Next, chapter presents the detailed literature review and theoretical framework/conceptual lens.

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

A detailed literature review has been carried out to understand about maintenance and the processes of maintenance strategy formulation, selection of maintenance strategies, maintenance practices and implementation of maintenance strategies in the operation intensive industries. Based on literature review, definition of maintenance is explained section 2.2. Theoretical foundations of maintenance like maintenance productivity, maintenance challenges, and maintenance excellence concepts are discussed in section 2.3.

Literature related to maintenance have been reviewed, analysed, synthesised and presented in Section 2.4. These literature are further categorised into key themes such as maintenance strategy, maintenance strategy formulation, maintenance strategies selection, implementation of maintenance strategies, maintenance performance, maintenance approaches/methods development of Maintenance Decision Support System (MDSS) for selection of optimal maintenance strategy, E-maintenance & IT tools/software for maintenance strategy selection & implementation, and impact of maintenance policies, maintenance culture in maintenance. The key themes are discussed along with literature in section 2.5.

Outcome of this extensive literature review is initial conceptual constructs. The constructs conceptualised from the literature review are Maintenance Tactics, Reliability Analysis, Performance Measures/Benchmarking, Planning

& Scheduling, Materials Management, Organisation/Human Resources, Employee Empowerment, Information Technology, and Maintenance Polices/Budget. These initial conceptual constructs and sub-constructs are discussed thoroughly in section 2.6.

Various models/ frameworks on maintenance strategies formulation, selection, and implementation are identified from literature and the inferences from these frameworks/ models are explained in section 2.7 along with gaps. It can be used as a foundation of knowledge within the area of maintenance in order to develop a holistic & integrated model for maintenance strategies & maintenance practices planning and execution. Section 2.8 details about literature gaps.

2.2 MAINTENANCE

The term maintenance is well-defined in the published literature. However, the maintenance related terms are not defined properly. Few terms such as maintenance strategy, maintenance policy, maintenance tactics/approaches, maintenance concepts are used by the authors in different ways and also interchangeably.

Maintenance has been defined as the combination of technical and associated administrative actions intended to retain an item or system in, or restore it to, a state in which it can perform its required function (ISO 14224: 2004). Further, Dhillon (2002) defined maintenance as all actions appropriate for retaining an item/ part/equipment in or restoring it to, a given condition.

A proper maintenance needs technical skills, techniques, methods to properly utilize the assets like factories, power plants, vehicles, equipment and machines. The key objective of maintenance is to ensure system function (availability, efficiency and product quality), system life (asset management), and system safety with low energy consumption. Poorly maintained machines

or equipment may lead to random breakdowns causing unavailability for production or service (Alsyouf, 2007).

"The main purpose of maintenance engineering is to reduce the adverse effects of breakdown and to increase the availability at a low cost, in order to increase performance and improve the dependability level" (Simeu-Abazi & Sassine, 2001).

In a manufacturing plant, task of production unit is to produce goods/products. The maintenance systems and policies influence the production capacity of the equipment used for producing these products. Therefore, maintenance function can be considered as an organisational function that working in parallel with production function (Alsyouf, 2007). Maintenance is viewed as an area of concern by the production engineers in an organisation because meeting the production target is objective of the production department. Thus, the integration of maintenance and production is very crucial for any organisation (Ben-Daya & Duffuaa, 1995).

Maintenance function is now become part of the integrated business concept. There is a shift from failure based maintenance to use based maintenance and further towards condition based maintenance. Now, organisations provide more emphasize on the key areas of maintenance functions such as availability, reliability, and safety in the production plants (Waeyenbergh & Pintelon, 2002).

Today, most of the organisations' strategy is to replace the current reactive, fire-fighting maintenance strategy with proactive strategies such as Time Based Maintenance (TBM), Condition Based Maintenance (CBM), and also with the aggressive strategies such as Reliability Centred Maintenance (RCM), Total Productive Maintenance (TPM) in order to achieve world-class maintenance performance (Swanson, 2001). In next section, theoretical foundations of maintenance are discussed in detail.

2.3 THEORETICAL FOUNDATIONS OF MAINTENANCE

Maintenance, especially industrial maintenance is the function which supports the operations/ production function. Operation/production is the primary process which transforms material with the help of manpower (input) into final products (outputs). Maintenance is the secondary process which helps operation/production function to achieve its targets as per requirement (Gits, 1994). Therefore, maintenance plays a crucial role in achieving the production targets. Maintenance function is to be transformed into smooth production/operation by ensuring the physical assets/equipment in healthy condition.

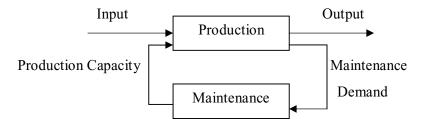
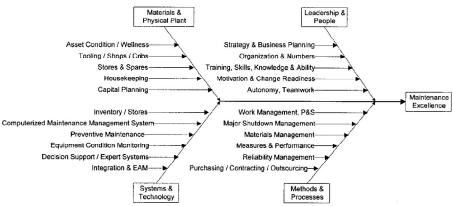


Figure 2.1: The relation between maintenance & production (Gits, 1994)

2.3.1 Maintenance Productivity

As shown above in Figure 2.1, economics of production majorly depends on maintenance productivity. However, maintenance productivity is often ignored and the production process is treated as primary function (Singh et al., 2000). The impact of maintenance productivity has been recognized by the industry and also been considered as integral part of the business since it add values to the business process (Liyanage & Kumar, 2003). Maintenance productivity is required to be measured properly and the same is being followed in several years by the industry (Andersen & Fagerhaug, 2007). The challenge in keeping high maintenance productivity is depending upon the holistic and integrated measurement approach of maintenance performance.

2.3.2 Challenges in Maintenance


Nowadays, organisations view maintenance as a critical support function which helps to sustain productivity and promote growth in organisation. Effective maintenance targets the following: maximisation of uptime, reduction in cost, improvisation in accuracy, prevention of safety hazards, risk mitigation, and more environment friendly orientation. These are the strategic needs of business in any organisation. Maintenance challenges are to optimise the maintenance decisions. The ultimate aim is to accomplish control over maintenance decisions (Campbell et al., 2001).

Continual effort is required to manage and control maintenance decisions otherwise random failures of assets/equipment controls costs. Such huge costs are not affordable in today's competitive business environment. In many organisations, maintenance managers/engineers are performing maintenance activities in a "fire fighting" mode. Without proactive maintenance actions, the organisations can only respond after the occurrence of the failure only. The results of such approach lead to low reliability, availability, and productivity which are the factors responsible to lower profitability (Campbell & Picknell, 2001)

2.3.3 Maintenance Excellence

Optimisation of maintenance effectiveness cannot be achieved by uncontrolled environment in the organisation. This can be accomplished with informed and intelligent decisions by the managers in the organisation. For the same, accurate and relevant data are required. Therefore, it is essential that maintenance system and process must under control in order to optimise the maintenance performance. The necessary elements for maintenance excellence are, (i) best leadership practices, (ii) control over day-to-day maintenance activities, and (iii) after having control, application of continuous improvement methods. The factors contributing to maintenance excellence and sub-elements are shown in Figure 2.2.

Elements of Excellence

New elements are added and performance of existing elements improves as excellence is achieved

Figure 2.2 Elements of Maintenance Excellence (Campbell et al., 2001)

2.4 Maintenance – A Literature Survey

A detailed literature survey was carried out in the databases such as EBSCO (Business Source Premier & Business Source Elite+), Emerald, Elsevier's Business Management & Accounting Collection (Science Direct), Blackwell's HSS Collection, IEEE Online, ACM Digital Library with the following key words maintenance, maintenance strategy, preventive maintenance, predictive maintenance, condition based maintenance, reliability centred maintenance, maintenance policy, maintenance practices, Selection of maintenance strategy, Indian gas industry, maintenance decision making, maintenance effectiveness, maintenance scheduling, maintenance planning, corrective maintenance, reliability, decision support system, maintenance flexibility, maintenance management, computerised maintenance management, maintenance performance, study of maintenance practices. The summary of literature related to maintenance methods/approaches/strategies, formulation of maintenance strategies, selection and implementation of maintenance strategies, e-maintenance etc. is presented in the Table 2.1.

Table 2.1 Summary of Literature Survey on Maintenance

Study/Authors	Year	Context	Themes/Messages
		(Country/Industry)	
Patrik, J.	1999	Manufacturing firms	Companywide integration and long
		from Swedish	term plans of maintenance both have
		Industry	impact on preventive maintenance and
			quality improvement in manufacturing
			capabilities.
Bevilacqua, M.,	2000	Italian Refrigeration	Failure modes and effects on
& Braglia, M.		Manufacturing firm	maintenance in a refrigerator
			manufacturing firm using fuzzy logic
			AHP are identified. Failures of
			maintenance can be reduced using this
			model at firm level.
Wang, H.	2002	Single unit & Multi	Optimal maintenance policy in single
		unit systems	unit & multi-unit systems impact the
			system maintenance cost rate and
			system reliability measures.
Waeyenbergh, G.,	2002	Automobile industry	A framework for maintenance concept
& Pinetelon, L.			development proposes five modules for
			establishing maintenance concepts. The
			modules include identification of
			objectives and resources, identification
			of most important systems (criticality
			analysis), maintenance policy decision,
			performance measurement, and
			continuous improvement.
Bertolini, M., &	2005	Oil Refinery	'Lexicographic' Goal Programming
Bevilacqua, M.	2003	on remery	(LGP) methodology is used to select
Be viiaequa, ivi			optimum maintenance strategy for
			critical centrifugal pumps in an oil
			refinery.
Carnero, M. C.	2006	Petrochemical	Developed an evaluation system for
Currioro, ivi. C.	2000	Plant/food industry in	setting up preventive maintenance
		Spain	program & tested the evaluation system
		Spain	in a petrochemical plant & food
			industry. This helps to take practical decision in the firm.
Line W. Firm	2007	Down what is Ohio	
Ling, W., Jian,	2006	Power plant in China	Selection of maintenance strategies for
C., & Wang, J.			power plant boilers using Analytical
			Hierarchy Process is demonstrated. It
			is an effective tool to solve uncertainty
			and imprecision associated with

			Multiple Criteria Decision Making	
2.5.45			(MCDM) Problem.	
Muller, A.,	2007	Spanish Industry	E-maintenance concepts & and issues	
Crespo, M. A., &		based study	are becoming more important in	
Lung, B.			technical, organisational & managerial	
			aspects of maintenance function.	
Mahdi, B.,	2010	NA	Maintenance strategies can be ranked	
Hossein, B., &			through mathematical modelling using	
Taha, H. H.			qualitative & quantitative data related	
			to maintenance function.	
Rolando, Q.,	2009	Mexico based	Maintenance Brigade System (MBS), a	
Mark, T. L.,		company	team based mechanic assignment	
Villalobos, J. R.,			system can be used to achieve higher	
& Graul, M.			reliability of machine/equipment in a	
			production unit.	
Nima, S., Dragan,	2010	Cellular	Use based maintenance policy in a	
B., & Jardine, K.	2010	Manufacturing	cellular organisation helps to optimise	
S.		Industry	the maintenance activities.	
5.		maustry	the maintenance activities.	
Pophaley, M., &	2010	Automobile Industry	Theory of Constraints (TOC) principle	
Vyas, R. K.			in an Automobile company helps to	
			improve maintenance planning and	
			execution.	
Li, L., Ambani,	2009	Automotive Assembly	Plant level Maintenance Decision	
S., & Ni, J.		line of Automobile	Support System (PMDSS) is developed	
		Industry	by combining the short term and long	
			term decision making process to	
			improve overall system performance	
			with profit maximization in short term	
			for a local automotive corporation. i.e.,	
			improvement in throughput comparing	
			with the conventional maintenance	
	2006	77.1	policies.	
Garg, A., &	2006	Telecommunication/	Organisational case is proving that	
Deshmukh, S. G.		Military	flexibility in maintenance management	
			helps to streamline maintenance process	
			in telecommunication industry.	
Eti, M. C., Ogaji,	2006	Nigerian Industry	Organisations with a good maintenance	
S. O., & Probert,			culture will incur relatively low running	
S. D.			cost with respect to the end-product	
			costs.	
Eti, M. C., Ogaji,	2006	Nigerian Industry	Preventive maintenance is based on	

S. O., & Probert,			condition of equipment/assets. Inputs
S. D.			from equipment/assets conditions are
			basis for development and
			implementation of PM practices in the
			industry.
Marchi, M., &	2006	E-maintenance	•
	2006	E-maintenance	Provided benchmark study in complex
Garetti, M.			production systems using e-
			maintenance strategic maintenance
			planning
Crespo, M. A., &	2005	Spanish Industry	A framework for managing the
Gupta, J. N.			maintenance function with the tools,
			trappings, practices & prescriptions in
			maintenance management is
			demonstrated.
Jay, L., Jun, N.,	2006	Prognostic tool like	Intelligent prognostics tools and e-
Dragan, D., Hai,		watchdog agent	maintenance can be used effectively in
Q., & Haito, L.			maintenance function to asses planning
			and execution of activities in that area.
Pintelon, L. M.,	1992	Maintenance	Maintenance management has been
& Gelders, L. F.		Management	neglected for a long time even though
			company business gets affected due to
			poor maintenance management. Good
			knowledge on operation research
			techniques will help to understand
			maintenance practices in an
			organisation.
Ashayeri, J.,	1996	Belgium Process	A Production and Maintenance
Teelen, A., &		Industry	Planning Model for the Process
Selen, W.		industry .	Industry in Belgium suggests the
Scien, W.			integration of both production &
			maintenance function for betterment of
			maintenance.
Carrange I	2002	Deign om van etelev e	
Swanson, L.	2003	Primary metals; a	Computerised Maintenance
		fabricated metal	Management System (CMMS) is used
		products; industrial &	to understand complexity in
		metal working;	maintenance so as to provide better
		precision instruments;	solutions in maintenance. Further,
		chemical & food	coordination among work force can
		processing (US	also be achieved.
		Industries)	
Swanson, L.	2001	US Industries	There is a strong positive relationship
			exists between proactive & aggressive
			maintenance strategies and also
L	1	I.	L

	1		performance of the plant can be	
	1000		improved by studying such relationship.	
Jayabalan, V., &	1992	Transport Industry	The number of PM interventions and	
Chaudhuri, D.			their time schedules could minimize the	
			expected mean cost rate over an infinite	
			time horizon for the preventive	
			maintenance policies. The same was	
			tested for the bus engines of a transport	
			network.	
Umar, A.	2011	Strategic Maintenance	A framework for strategic maintenance	
		Planning	planning suggests for involvement of	
			all stakeholders and top management	
			commitment are crucial factors in	
			strategic maintenance planning.	
Jafari, A.,	2008	Manufacturing	Maintenance Strategy Selection	
Jafarian, Z. M., &		Industry	Problem (MSSP) has been dealt with	
Zaerpour, F. A.			the new approach fuzzy Delphi method	
			using Simple Additive Weighing	
			(SAW). Accuracy in MSSP is	
			demonstrated based on determining the	
			correct maintenance goals in the	
			decision making process.	
Jin, Z., Li, L., &	2009	Manufacturing	Coordination between Production &	
Ni, J.		Industry	Preventive maintenance systems helps	
			to improve maintenance performance in	
			the manufacturing industry.	
Chris, K. M., &	2001	Maintenance Strategy	Fuzzy Linguistics is used to select	
Wang, Z.		Selection	optimum & condition based	
wang, z.			maintenance strategies in the industry.	
Ilangkumaran,	2012	Textile Industry	Selection of maintenance strategy using	
M., & Kumaran,	2012	Textile illustry	Hybrid VIKOR model is an effective	
S.				
S.			method in applications of textile	
Cli	2002	Tic D 1	industry.	
Chitra	2003	Life-Based	Life Based Maintenance policy ensures	
		Maintenance Policy	better reliability & reduce maintenance	
			cost in maintenance management of the	
26.1.1.1.1.	2002		industry.	
Mokashi, A. J.,	2002	Maritime Operations	Application of Reliability Centred	
Wang, J., &			Maintenance (RCM) as a maintenance	
Vermar, A. K.			methodology in maritime operations	
			helped to improve their maintenance	
			performance. It is suggested that RCM	
I	1	I	should be taught as philosophy to the	

			seafarers.	
Gokiene, R.	2010	Automobile Industry	Discussed about cost benefits of two	
			main asset maintenance strategies such	
			as preventive maintenance & predictive	
			maintenance. Over the long run	
			corrective maintenance costs become	
			higher than the preventive maintenance	
			costs.	
Muchiri, P. N.,	2010	Belgium	Key Performance Indicators (KPI) for	
Pintelon, L.,		Industry/Manufacturi	maintenance activities have been	
Martin, H., Anne,		ng companies	developed and tested based on	
M., & De, M.			industrial survey from Belgian	
			industries. It shows a strong positive	
			relation between satisfaction and	
			process changes through KPI.	
Liu, Y., Li, Y. F.,	2010	Power Generators	Usefulness of optimal preventive	
Huang, H. Z.,			maintenance strategy under a fuzzy	
Zuo, M. J., &			Bayesian environment for power	
Sun, Z.			generators is demonstrated.	
Dekker, R.	1996	Maintenance	Maintenance optimisation models are	
		Optimisation Models	very effective in maintenance decision	
			making. However, the usage of these	
			models in maintenance organisations is	
			limited.	
Kodali, R., &	2001	Indian Industry	Application Total Productive	
Chandra, S.			Maintenance (TPM) for Indian	
			industries have been described through	
			multi attribute decision model using	
			AHP.	
Alsyouf, I.	2009	Swedish Paper	Changes in productivity affect the	
		Industry	profitability of the organisation.	
			Maintenance is shown as profit	
			generating function instead of cost	
			centre through a case study of a	
			Swedish paper mill.	
Seth, D., &	2006	Indian Manufacturing	Total Quality Management (TQM) &	
Tripathi, D.		Industry	Total Production Management (TPM)	
			application could improve business	
			performance in Indian manufacturing	
			industry mainly with automobile,	
			engineering & process industries.	
Nguyen, D. Q.,	2008	Chemical Processing	Using Monte Carlo based simulation	

Brammer, C., &		Plant	method, benefits of preventive	
Bagajewicz, M.			maintenance scheduling in chemical	
			process plants has been proved.	
Sami, E., & Ben-	2010	Batch process	A proposed integrated maintenance	
daya, M.		industry	model would help the batch process	
			industry to perform PM activities	
			effectively. Here, the PM activities are	
			carried out at the end of the production	
			operation.	
Wilmeth, R. G.,	2000	Battery	The RCM analysis of Battery Supplier	
& Usrey, M. W.		Manufacturing	illustrates that the existing battery	
		Industry	maintenance program can be improved	
			by applying RCM.	
Verma, A. K., &	2007	Shipping Industry	Higher Modular Assemblies (HMA) in	
Suresh, P. G.	2307		shipping industry preventive	
Suresii, 1. G.			maintenance scheduling optimisation	
			problem could be solved effectively	
			using Genetic Algorithm (GA).	
Ahmadi, A.,	2010	Air Craft System in	MCDM problem of Air Craft System	
Gupta, S., Karim,	2010	_	can be solved using mathematical	
		Aviation Industry	_	
R., & Kumar, U.			techniques such as AHP, TOPSIS &	
			VIKOR in order to select suitable	
Cinna I M	2011	Maintanana	maintenance methodology. Based on literature review related to	
Simoes, J. M.,	2011	Maintenance		
Gomes, C. F., &		Performance	maintenance performance, it is	
Yasin, M. M.			concluded that the more systematic	
			research is required to identify the	
			theoretical constructs and testing of	
			these constructs in the area of	
			maintenance performance.	
Murthy, D. N.,	2002	Australian Industry	Strategic Maintenance Management	
Atrens, A., &			(SMM) approach is used to demonstrate	
Eccleston, J. A.			the key decisions in maintenance such	
			as selection of optimal maintenance	
			strategy, continuous improvement in	
			business performance.	
Sherwin, D.	2000	Maintenance	Review of maintenance management	
		Performance	models shows that the Life Cycle Profit	
			(LCP) perspective is a fair measure in	
			assessing maintenance performance.	
Liptrot, D., &	2000	Maintenance	Using information technology	
Palarchio, G.		Practices/Canada	advances, a Canadian steel company	
		Steel Industry	had implemented the Intelligent	
		L	<u>l</u>	

			Condition Monitoring System (ICMS)	
			with integration through Computerised	
			Maintenance Management System	
			(CMMS). Increase in profit has been	
			achieved by the company.	
Complete LD	2001	NA		
Campbell, J. D.,	2001	NA NA	Book on Maintenance Excellence,	
Jardine, A.,			Optimizing Equipment lifecycle	
Marshall, K. S.,			decisions.	
& Decker, A. G.				
Rosqvist, T.,	2007	Finland gasification	Value Driven Maintenance Planning	
Laakso, K., &		plant	(VDMP) approach is used to support	
Reunanen, M.			continuous improvement and better	
			maintenance planning in order to	
			achieve the maintenance cost	
			effectiveness. The same is	
			demonstrated with Finland gasification	
			plant.	
Crespo, M. A.	2005	Mining Industry	Using maintenance modelling tools,	
			simulation model for mining industry	
			has been developed & validated. This	
			model helps to optimise the	
			maintenance practices in the industry.	
Pinjala, S. K.,	2006	Manufacturing	More proactive maintenance policies,	
Pintelon, L., &		Industries in Belgium	better planning and control systems	
Verreecke, A.		& Netherlands	have been implemented by quality	
			competitors in the manufacturing	
			industry in Belgium/Netherlands. This	
			is achieved by using Advanced	
			Maintenance Technologies (AMT),	
			Automation, more budget spending and	
			effective maintenance personnel.	
Cooke, F. L.	2003	British Manufacturing	The case study on British processing	
		/Processing Industry	companies shows that pressure in	
			achieving production targets leads to	
			reactive maintenance in the companies.	
			This is counterproductive in long-term	
			performance of the process plant in	
			those companies.	
Veldman, J.,	2011	Process Industry/	Empirical perspective of condition	
Klingenberg, W.,	2011	Netherlands	based maintenance strategy in the	
		recincitatius		
& Wortmann, H.			industry shows that implementation of	
			prognostic condition-based	
			maintenance will help maintenance	

			mangers to improve maintenance	
			performance in their organisations.	
Waeyenbergh, G.,	2002	Manufacturing	Maintenance concept development has	
& Pinetelon, L.		company	been done for a manufacturing	
			company using 7-step modular	
			framework. This framework helps	
			maintenance managers to understand	
			the maintenance of their own company	
			and manage resources effectively.	
Parida, A., &	2009	Maintenance	Maintenance Performance Indicators	
Uday, K.		Performance	(MPI) is useful measures to assess the	
			maintenance performance in operations	
			intensive industries. Maintenance	
			Performance Measurement (MPM) in	
			the organisations can be done with	
			various multi-criteria frameworks	
			suggested in this paper.	
Benchmark Study	2002	Benchmark study has be	een conducted by M/S. A T KERNEY for	
Report of GAIL		various operating param	neters in operations of Natural Gas	
India Limited		pipelines, LPG Plants &	Petrochemicals. The proposed	
		Benchmark parameters	by M/S. A T KERNEY are Fuel Gas	
		Consumption (2.4% of Gas Delivered in Energy Terms),		
		Maintenance Cost (0.83% Gross Block), G & A Cost (2.62% of		
		Gross Block), Unaccounted Gas (0.3% of Gas Handled in terms		
		of volume & energy), L	oss of Liquid Hydrocarbons (0% of	
		production in the units i	measured & sold)	

Based on above literature survey few key inferences regarding maintenance approaches/ methods, maintenance strategies and maintenance practices are discussed below.

In general the maintenance of any system is classified under two categories: Failure based maintenance (i.e., corrective maintenance, CM) and Life based maintenance (i.e. Regular Preventive Maintenance, RPM). However, the CM cannot be avoided when a random failure of a component occurs and cost depends on the number of components replaced during the entire operating period of system and the respective cost involved in maintenance actions (Chitra, 2003; Wang, 2001, Patrik, 1999; Jayabalan & Chaudhuri, 1992).

The original maintenance strategy is failure based which indicate that equipment would be repaired each time it breaks down and no action is performed to detect or prevent the failure. However, in this case the cost of maintenance is usually high but sometimes it is cost effective also (Jafari et al., 2008).

In the case of Regular Preventive Maintenance (RPM), maintenance activities are executed as per time schedule or based on predetermined running of equipment/machine. Spare parts are changed before the end of their service life. The maintenance cost remains high. Therefore, to avoid the frequent failure of equipment/machine, RPM is used regardless of the condition of equipment (Eti et al., 2006). It may appear to be unnecessary cost in doing maintenance.

Even though preventive maintenance does not immediately reflect in terms of breakdown cost or production down time cost, it can be considered as counterproductive. RPM cost is actually an investment to prevent against emergency shutdown of plant/equipment and major damages to individual equipment. This method will be more advantageous in following conditions (i) if failure rate increases with the age; (ii) RPM downtime is less compare to repair after failure (Gokiene, 2010).

Nowadays, many manufacturing organisations have shifted to a new methodology known as Predictive Maintenance (PM). However, predictive maintenance costs are higher while results are difficult to predict (Carnero, 2006). A PM approach attempts to detect equipment degradation online. Maintenance requirements are based on the actual condition (normally measured quantitatively or qualitatively) of the equipment/machine. It is not based on some predetermined schedule. It involves predicting the failure before it occurs by identifying the root causes for those failure symptoms. Failures are avoided before they cause extensive damage to equipment (Jafari et al., 2008). In contrast, condition-based maintenance can be a better and more cost effective than time-based maintenance (Parida, 2007).

To evaluate different maintenance strategies (such as corrective maintenance, time-based preventive maintenance, condition-based maintenance, and predictive maintenance) for various equipment/machine, mathematical modelling methods such as Analytical Hierarchy Process (AHP), Fuzzy AHP, Lexicographic' Goal Programming (LGP), and VIKOR models are being used in the industry. These techniques are used to select best maintenance strategy for a particular industry/ equipment/ process (Bevilacqua & Braglia, 2000; Bertolini & Bevilacqua, 2005; Mahdi, Hossein, & Taha, 2010). Further, these techniques are also used to tackle uncertainty & imprecision associated with MCDM problems (Ling, Jian, & Wang, 2006).

E-maintenance becomes one of the important aspects of maintenance. Even though implementation of this new concept in the industry during last decade has lot of challenges, e-maintenance is an inevitable system to perform the maintenance activities in the industry (Muller, Crespo, & Lung, 2007). Further details on e-maintenance are discussed in the next section.

Literatures are further classified based on key themes and is presented in next section. Each key theme is discussed in detail.

2.5 Theme Based Literature Classification

The literature have been categorised into different key themes with respect to maintenance strategies and maintenance practices in the industry. The details are presented in the below given Table 2.2.

Table 2.2 Categorisation of literature based on Key Themes

S	Key Themes	Select Author(s)	Inferences	Gaps
No.				
1	Maintenance	Gallimore & Penlesky,	Maintenance strategy	Maintenance strategy
	Strategy	1988; Pintelon &	is not well defined in	is treated by authors
		Gelders, 1992; Dekker,	the literature.	in various contexts
		1996; Kelly, 1997;	Maintenance strategy	such maintenance
		Mckone & Elliott,	term is used	approach/

		1998; Sherwin, 2000;	interchangeably with	maintenance method/
		Swanson, 2001;	maintenance policy,	maintenance policy
		Bevilacqua & Braglia,	maintenance approach	etc. How maintenance
		2000; Cooke, 2003;	etc.; Maintenance	strategy is treated at
		Crespo & Gupta, 2006;	strategy is a	an organisation level
		Veldman, Klingenberg,	systematic approach	in operations
		& Wortmann, 2011;	to upkeep the	intensive industry like
		Pinjala, Pintelon &	asset/facility; Authors	natural gas industry is
		Vereecke, 2006; Yung-	have categorised	unknown?
		Hisang & Hou-Lei,	maintenance	
		2014	strategies as Time	
			Based Maintenance	
			(TBM), Condition	
			Based Maintenance	
			(CBM), etc. and these	
			are also mentioned as	
			maintenance policies/	
			maintenance	
			approaches by few	
			authors in the	
			published papers.	
2	Formulation of	McAlister, 1999;	Three frameworks	Maintenance strategy
	Maintenance	Waeyenbergh &	related to	formulation aspects
	Strategy	Pintelon, 2002; Cooke,	maintenance strategy	have been studied in
		2003; Kelly, 2006;	formulation brought	few models as
		Campbell & Picknell,	out from the	described above.
		2006; Rosqvist, Laakso	literature; A key point	However, these
		& Reuanen, 2007;	in formulation	models do not have
		Salonen, 2011	maintenance strategy	feedback from
			is to link the	maintenance
			maintenance strategy	performance &
			to operational &	existing maintenance
			business strategies;	practices at an
			While formulating the	organisation level.
			maintenance	
			strategies, these	
			strategies have to be	
			assessed & evaluated	
			based on major	
			systems specific to	
			organisations &	
			organisational	
			elements;	
	l .			

			Maintenance	
			performance measures	
			provide key inputs in	
			formulation of	
			maintenance	
			strategies.	
3	Maintenance	Dekker, 1996;	Selection of	Maintenance Practices
	Strategy	Bevilacqua & Braglia,	maintenance	of usage of
	Selection	2000; Kodali &	strategies is the	mathematical
	Selection	Chandra, 2001; Murthy	selection among the	modelling for
		, Atrens, & Eccleston,	maintenance	maintenance
		2002; Bertolini &		strategies selection at
			approaches such as	-
		Bravilacqua, 2005; Li et	TBM, CBM, etc.;	an organisation level
		al., 2009; Jinqiu &	Selection of	found no references in
		Laibin, 2014	maintenance strategy	literature. There is a
			is treated by authors'	need to understand
			as Multiple Criteria	whether mathematic
			Decision Making	modelling is
			(MCDM) problem.	practically being used
			The same was solved	in the industry & also
			with the techniques	in Indian context, if
			AHP, FAHP, VIKOR,	yes then how.
			etc.	
4	Implementation	Campbell & Picknell,	Implementation of	Lack of literature in
	of Maintenance	2006; Eti et al., 2006;	maintenance	integrated study of
	Strategy	Crespco, 2005; Pinjala,	strategies depends on	maintenance strategy
		Pintelon, & Vereecke,	various resources	implementation along
		2006; Veldman,	such manpower,	with maintenance
		Klingenberg, &	material etc.; Few	strategy formulation,
		Wortmann, 2011; Jain,	literature suggest the	selection and
		Bhatti, & Singh, 2014	Plant-level	maintenance
			Maintenance Decision	performance.
			Support System	
			(PMDSS) for	
			implementation of	
			suitable maintenance	
			methodology.	
5	Maintenance	Tsang, Jardine, &	Key Performance	Lack of study on
	Performance	Kolodny, 1999;	Indicators (KPIs) are	implementation of
		Sherwin, 2000;	helpful in measuring	maintenance
		Swanson, 2001;	maintenance	performance measures
		Kutucuoglu et al., 2001;	performance gaps;	in operations
		Visser & Pretorious,	Balance Scored Card	intensive industry like
	I .	I	l	

		2003; Weber &	(BSC) approach helps	natural gas industry in
		Thomas, 2006; Parida	organisations to	Indian context.
		& Chattopadhyay,	translate the business	
		2007; Parida & Uday,	strategies into	
		2009; Muchiri et al.,	operational strategies;	
		2011; Simoes, Gomes,	Benchmarking is	
		& Yasin, 2011	integral part of	
		2011	maintenance	
			performance	
			measurement.	
6	Maintenance	Jayabalan & Chaudhuri,	Implementation of	No reference is found
	Approaches/	1992; David &	Preventive/ Predictive	in the literature
	Tactics/ Policies	Shahram, 1993; Cooke,	Maintenance strategy	regarding selection of
	Tactics/ Tolletes	2003; Carnero, 2006;	leads to improvement	optimum mix of
		Ling, Jian, & Wang,	in maintenance	maintenance methods
			function such as	
		2006; Gokiene, 2010;	reduced maintenance	in operations
		Sami & Ben-daya,		intensive industry like
		2010; Jin, Li, & Ni,	cost, increased	natural gas industry in
		2009; Angelica & Jose	equipment's	Indian context.
		Luis, 2014	Reliability; Corrective	
			maintenance costs	
			become higher than	
			the preventive	
			maintenance costs in a	
			long term period.	
7	Development of	Li, Ambani & Ni,	Decision Support	Study on practical
	Maintenance	2009; Ronaldo et al.,	System models prove	implications of
	Decision	2009; Ashayeri,	that the	Maintenance Decision
	Support	Teelen, & Selen, 1996;	implementation of	Support Systems
	Systems	Knezevic, 1994;	suitable maintenance	(MDSS) in operations
	(MDSS) for	Crespo, 2005; Ayadi,	methodology helps in	intensive industry like
	selection of	Chaib, & Verzea, 2014	improving	natural gas industry in
	Optimal		maintenance function	Indian context found
	maintenance		& optimise the	no references.
	strategy		operational/	
			maintenance costs;	
			Reliability	
			assessment, risk levels	
			and failure	
			management in	
			maintenance can be	
			effectively handled	
			with the help of	
	l	L	l	

			models using tools	
			such as fuzzy	
			Bayesian methods,	
			fuzzy modelling,	
			Analytical Hierarchy	
			Processing etc.	
8	E-maintenance	Raouf , Ali, & Duffuaa,	Maintenance	Lack of study on
8	& IT	1993; Liptrot &		practical implications
	****	_	Environment responds	
	tools/software	Palarchio, 2000;	to the IT environment	& maintenance
	for maintenance	Marchi & Garetti, 2006;	& implementation of	practices with
	strategy	Muller, Crespo, &	e-maintenance	reference to e-
	selection &	Lung, 2007; Jay et al.,	concepts like CMMS	maintenance
	implementation	2006; Swanson, 2003;	helps in strategic	implementations in
		Elliot & Tobias, 2005;	maintenance	operations intensive
		Phillip & Ramin, 2014	planning, scheduling	industry like natural
			and work force	gas industry in Indian
			coordination.	context.
9	Impact of	Pintelon & Gelders,	Maintenance decision	Study on impact of
	Maintenance	1992; Eti, Ogaji &	making &	maintenance policies
	Policies,	Probert, 2006; Wang,	maintenance	and maintenance
	Maintenance	2001; Charles & Alan,	performance depends	culture in operations
	Culture in	2005; Michael, Kwasi	on the maintenance	intensive industry like
	maintenance	& Jack, 2000; Pinjala,	policy & maintenance	natural gas industry in
	strategy	Pintelon & Vereecke,	culture of the	Indian context has
	implementation	2006; Nima, Dragan &	organisation;	found no references.
		Jardine, 2010	Customization of	
			maintenance	
			organisation	
			according to current	
			business strategies	
			helps organisation for	
			successful	
			maintenance strategy	
			implementation.	
			imprementation.	

2.5.1 Maintenance Strategy

Maintenance strategy is not well-defined in the literature. Few authors define the maintenance strategy as the selection between the Condition Based Maintenance and Time-Based Maintenance. However, definitions & meaning of maintenance strategy collected from various literatures are as given under:-

Maintenance strategy is a systematic approach to upkeep the facilities and equipment and it varies from facility to facility. It involves identification, researching and execution of many repairs, replace and inspect decisions and is concerned with formulating the best life plan for each unit of the plant, in coordination with production and other functions concerned (Kelly, 1997). It describes what events (e.g. failure, passing of time, condition) trigger what type of maintenance action (inspection, repair, or replacement). Thus, selecting the best sustainable maintenance strategy depends on several factors such as the goals of maintenance, the nature of the facility or the equipment to be maintained, work flow patterns (process focus, product focus), and the work environment (Gallimore & Penlesky, 1988; Pintelon & Gelders, 1992). Maintenance strategy consists of mix of maintenance policies and maintenance techniques which vary from facility to facility (Dekker, 1996).

The maintenance strategy requires to be supported by tactical plans. These tactical plans must be the executable plans (Campbell & Picknell, 2006). Further, maintenance strategy needs to be reviewed periodically due to the changing environment and business requirements (Waeyenbergh & Pintelon, 2002).

Presently, most widely used maintenance strategies (maintenance approaches/tactics) includes Reliability Cantered Maintenance (RCM), Total Productive Maintenance (TPM), Business Cantered Maintenance (BCM), Capital Asset Management (CAM), and Integrated Logistic Support (ILS). Review and more description of some of these maintenance concepts are available with the literature (Al-Najjar, 1999; Waeyenbergh & Pintelon, 2002; Carnero, 2006; Gokiene, 2010; Nima et al., 2010).

Stakeholder involvement may lead to an undisputed view of achieving the expected deliveries to the production. This will lead to higher cooperation between production and maintenance function. Therefore, such kind of maintenance strategy would lead to higher productivity and organisation will in turn benefit from this (Salonen, 2009).

2.5.2 Formulation of Maintenance Strategy

Formulation of maintenance strategy must consider the following points (Campbell & Picknell, 2006).

- Organisation should know the base line of maintenance strategy so that the vision of the organisation can be rebuilt in line with the successful practices.
- 2. Once the vision of the organisation is formulated, then the employees must be encouraged to understand the vision and think big to achieve the vision.

The key points in formulation of maintenance strategy are (Waeyenbergh & Pintelon, 2002) as given under:-

- 1. Holistic approach is required to formulate maintenance strategy.
- 2. Structured development of maintenance strategy is must in almost every case.
- 3. Apart from the structure maintenance strategy, flexible strategy is must so that it allows feedback, improvement and adjusts to changes in requirement of maintenance.

2.5.3 Selection of Maintenance Strategies

In published literature, many authors presented the selection of maintenance strategy as a selection suitable maintenance tactic/approach for an organisation i.e., about selection or evaluation of maintenance strategies such as Corrective Maintenance, Time Based Maintenance, Condition Based Maintenance etc. (Even though CM, TBM & CBM are termed as maintenance tactics/approaches by many authors, in case of maintenance strategy selection related papers these are termed maintenance strategies).

To select/choose these maintenance strategies for different equipment or system for particular industry, various models have been developed by researchers in this field. Selection of maintenance strategies for particular equipment/system in any industry is a typical Multiple Criteria Decision Making (MCDM) problem (Ahmadi et al., 2010). To deal with such kind of problem authors used Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP) etc. (Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Bertolini & Bevilacqua, 2005; Ling et al., 2006; Li, Ambani, & Ni, 2009; Rolando et al., 2009).

2.5.4 Maintenance Approaches/Methods

In early literature, several maintenance approaches i.e., strategies and concepts, have been discussed by various authors (Dekker, 1996; Moubray, 1997; Mckone & Elliott, 1998; Sherwin, 2000; Swanson 2001). Commonly reviewing maintenance strategies referred in published literature are such classification of maintenance strategies: Corrective Maintenance, Preventive Maintenance, and Predictive Maintenance. Swanson (2001) in his paper differentiates Reactive Maintenance (Corrective Maintenance), Planned Maintenance (Preventive Maintenance & Predictive Maintenance), and other maintenance types such as Total Productive Maintenance (TPM). Bevilacqua & Braglia (2000) consider each maintenance strategy as a separate strategy.

Maintenance Management concepts have to be reviewed with perspectives of business activities such as Operational, Tactical and Strategic. Therefore, maintenance strategies are the methods of transforming business objectives into maintenance objectives. A maintenance plan can be developed by identifying the current potential gaps in maintenance performance (Crespo & Gupta, 2006).

Maintenance Tactics or Approaches are the activities required to implement the strategy. This deals with the management processes, human resource, and physical asset infrastructure (Campbell & Picknell, 2006). The maintenance strategy is to create a direction of how to accomplish the maintenance objectives such as availability, reliability with a structured approach (Waeyenbergh & Pintelon, 2002). Further, they points out critical success

factors such as maintenance personnel must have through knowledge to prevent failures in early stages, management skills including planning, human resource management and task management, ability to exploit maintenance history trends and opportunities.

A maintenance concept can be defined as the set of maintenance interventions such as Corrective Maintenance, Preventive Maintenance, and Condition Based Maintenance etc. and these interventions provide general framework from which the maintenance strategies are developed (Waeyenbergh & Pintelon, 2002).

2.5.5 Maintenance Decision Support Systems

Further, few literature discuss about Decision Support System (DSS) models which will help for implementation of suitable maintenance methodology so that improving maintenance performance & optimizing the operational/maintenance costs. For example, such kind of plant level maintenance decision support system (PMDSS) proposed (Lin, Ambani, & Ni, 2009; Mahdi et al., 2010) by combining the short term and long term decision making process in maintenance function reduces the unplanned down time, increases the equipment availability, and ensures the allocation of resources for maximum throughput of equipment.

Maintenance optimisation is considered as a mathematical discipline within operation research and it may be considered as an effective tool for maintenance strategy selection & optimisation by maintenance managers. But, presently its impact on decision making within maintenance organisations is limited so far (Dekker, 1996).

2.5.6 Maintenance Strategies Implementation

Implementation of maintenance strategy is the great challenge for the maintenance managers in the organisation. Every organisation has its own

challenges and face different problem depends on its maintenance philosophy. Further, organisation puts best efforts to follow maintenance standards but it is difficult due to the environment exists in maintenance function (Alsyouf, 2007). There is a need to adopt different maintenance practices when the technology of process changes or when new equipment replaces the old equipment. Further, technical expertise of maintenance staff in the new process/equipment plays a crucial role in maintenance practices (Swanson, 1997).

Implementation of maintenance strategy consists of three steps (Eti et al., 2006) as given under:-

- 1. Maintenance program formulation of each equipment/component i.e., work identification
- 2. Resources for executing particular maintenance strategy effectively such as manpower, spares, tools etc.
- 3. Executing of the maintenance strategy by properly deploying the manpower, operate the systems required to manage all the resources efficiently.

The major obstacles in strategy implementation (Aaltonen & Ikavalko, 2002) are as given under:-

1. A lack of understanding of maintenance strategy among the maintenance organisation. This can be explained in a way that the importance of applying the strategic issues in every day decision making is a major obstacle in the organisation.

Other obstacles are conflicting activities, lack of time, lack of alignment between strategy and organisational compensation systems.

2.5.7 Maintenance Performance

Performance measurement is a fundamental principle of management. The measurement of performance is important because it identifies current

performance gaps between current and desired performance and provides indication of progress towards closing the gaps. Carefully selected key performance indicators identify precisely where to take action to improve performance. Maintenance performance contributes to manufacturing performance. The key Performance Indicators for maintenance are factors of the manufacturing key performance indicators. Key Performance Indicators (KPI) of maintenance is selected ensuring a direct correlation between the maintenance activity and the Key Performance Indicator measuring it (Muchiri et al., 2011).

Swanson (2001), in his paper presented the results of a study of the relationship between maintenance strategies and performance. This paper also analysed the relationship between proactive and aggressive maintenance strategies and performance. This analysis showed positive result. Maintenance performance is the result of how the performance objectives are aligned with the business objectives. Therefore, effective maintenance performance measurement systems (PMS) plays a vital role in achieving the business needs. (Kutucuoglu et al., 2001). Further, Balance Score Card (BSC) that translates the business strategy into operational measures in order to achieve organisation's success by highlighting the pitfalls in using maintenance performance indicators (Tsang, Jardine, & Kolodny, 1999).

Maintenance performance measures of maintenance process are multifaceted as it involves various inputs, outputs and stakeholders. Further, measuring the contribution and performance of maintenance will always be a complex issue especially when intangibles such as quality of service, repair and maintenance are involved (Parida & Uday, 2009). The most important step in developing maintenance performance metrics is involving the maintenance personnel who are responsible for the work to be measured because they are the most knowledgeable people about the work (Brown, 1996).

In maintenance performance, benchmarking integral part of the maintenance performance measurement framework (Muchiri et al., 2011). Benchmarking is

the process to adopt the best practices from the best performers in order to achieve world class maintenance. In addition to that benchmarking help the organisations to identify the critical maintenance issues also. The successful implementation of predictive maintenance based plans will help the organisation to achieve its break through improvement in the identified benchmarks of that particular plant operations & maintenance (Richard & Murdock, 2001). Maintenance performance measurement is dominated by lagging indicators such as equipment cost, maintenance cost and safety performance. But, it was found that there is lesser use of leading indicators such as maintenance work process in maintenance performance measurement (Muchiri et al., 2011).

2.5.8 e-Maintenance

The important of the maintenance function has increased in operations/production because it plays an important role in keeping and improving equipment/system availability, safety, product quality and e-procurement. To support this role, the new maintenance concept e-maintenance has emerged from the development of communication & information technologies (Elliot & Tobias, 2005; Karim & Parida, 2010).

To prevent equipment breakdowns, proactive e-maintenance system using intelligent prognostic technologies and tools is to be the part of maintenance strategy implementation. These tools are being used for continuous assessment and prediction of a particular product performance (Jay et al., 2006). A better performance of equipment can be achieved through reduced number of preventive maintenance stops with the planning of an e-maintenance service in order to properly device the maintenance logistic support (Marchi & Garetti, 2006).

Today, e-maintenance is a new scientific discipline and plays a vital role in maintenance function. There are various industrial/academic actors involved in the technological, organisational or management issues related to the development of e-maintenance. Therefore, implementation of e-maintenance concept involves a lot of challenges in this area (Muller, Crespo & Lung, 2007).

In maintenance function, gathering and analysing data manually requires a tremendous efforts in terms of both time and cost. Due to this recently, many organisations develop computer applications to perform the data collection and analysis. These computer applications are named as Computerised Maintenance Management System (CMMS) and these applications are deigned to gather all data related to maintenance and record the data corresponding to the asset/equipment in computer so as to retrieve the historical data any time when requires (Wireman, 2010).

The key observations from literature review on implementation of emaintenance concept in maintenance function with a reference to various industries are as given under:-

- e- maintenance is not only helps in implementation of a maintenance strategy; it can be implied as a maintenance plan or a maintenance type.
- (ii) The identified needs for information flow of e-maintenance service are, a) information flow from the plant management level, to production system level, for analysis; b) information is required with regard to the production logistic operation and the costs of logistic inefficiencies of the production system.

2.5.9 Impact of Maintenance Policies, Maintenance Culture

Maintenance and production interface is emphasised because of importance of integration of organisation design and strategic planning with strategic maintenance. Based on data gathered from Swedish Maintenance managers, integration and long term planning of maintenance both affect prevention, quality improvement and manufacturing capabilities of the firm. This means

that companywide integrated maintenance and long term maintenance plans is important for most firms (Patrik, 1999).

Crespo & Gupta (2005), in their research paper presented a holistic framework for managing the maintenance function. Maintenance Management concepts are reviewed with perspectives of business activities such as Operational, Tactical and Strategic. The maintenance management characterized and supported with three main pillars like Information Technology (IT), Maintenance Engineering (ME) and Organisational Techniques (OT).

The key observations on impact of maintenance policies, maintenance culture in maintenance function based on literature review are as given under:-

- (i) Maintenance organisation needs to be customized based on company's evolving business strategies as product mix, supply chain scenarios, technologies or product development opportunities change.
- (ii) Condition and failure monitoring needs to be integrated with emaintenance framework so that comprehensive model for failures could be developed. Based on this model, maintenance policy can be formulated for the company.
- (iii) Optimal Maintenance policy should cover the following objectives such as minimization of maintenance cost, maximization of system reliability, minimization of maintenance cost while system reliability requirements are satisfied and maximization of reliability when the requirements for the system maintenance costs are satisfied.
- (iv) Long term maintenance plans and companywide integrated maintenance plays vital role on manufacturing capabilities of an organisation.

2.6 Initial Conceptual Constructs & Sub-constructs

Major constructs contributing to maintenance strategy formulation, selection, and implementation are drawn from the frameworks related maintenance strategy formulation presented in the previous section (Kelly, 2006; McAllister, Armstrong, & Wilson, 1999; Salonen, 2011) and other published literature (Shown in Table 2.2). The constructs conceptualised from the literature review are Maintenance Tactics, Reliability Analysis, Performance Measures/Benchmarking, Planning & Scheduling, Materials Management, Organisation/Human Resources, Employee Empowerment, Information Technology, and Maintenance Polices/Budget. Sub-constructs related to all these constructs have also been drawn from the published literature.

Table 2.3 Categorisation of Initial Conceptual Constructs identified from literature

Authors/	Constructs & Sub-	Context	Inference
References	constructs	(Country/Industry)	
Patrik, 1999; Cooke,	Maintenance Tactics:	Manufacturing firms	Maintenance Tactics
2003; Carnero, 2006;	Predictive	from Swedish Industry;	(MT) is the techniques
Mahdi et al., 2010;	Maintenance/	Petrochemical	that guide how
Rolando et al., 2009;	Condition Based	Plant/food industry in	maintenance activities are
Pophaley & Vyas,	Maintenance (CBM);	Spain; Power plant in	implemented; The right
2010; Jafari, Jafarian	Preventive	China; Mexico based	approach to determining
& Zaerpour, 2008;	Maintenance/ Time	company; Automobile	maintenance tactics is to
Chris & Wang,	Based Maintenance	Industry; Manufacturing	better understand exactly
2001 ; Ilangkumaran	(TBM); Total	Industry; Textile	how equipment failed.
& Kumaran, 2012;	maintenance hours	Industry; Maritime	Then, based on these
Chitra, 2003;	devoted to Predictive	Operations; Indian	understanding of failure
Mokashi , Wang &	Maintenance /	Manufacturing Industry;	modes, what the effects
Vermar, 2002;	Preventive	Batch Process Industry;	and consequences of the
Gokiene, 2010; Seth	Maintenance;	Battery Manufacturing	failure would be and
&Tripathi, 2006;	Compliance of PM	Industry	hence determine the most
Sami & Ben-daya,	Schedules; OEM		appropriate maintenance
2010; Wilmeth &	(Original Equipment		tactics to manage those
Usrey, 2000	Manufacturer)		failure consequences; The
	Recommendations;		maintenance tactics are
	Reliability Based		methods which decide an
	Maintenance (RBM);		appropriate maintenance

	Total Productive		strategy for a firm in an
	Maintenance (TPM);		industry.
	Emergency/breakdown		
	maintenance		
Bevilacqua &	Reliability Analysis:	Italian Refrigeration	Reliability can be defined
Braglia, 2000;	Documentation of	Manufacturing firm;	as the probability that a
Liptrot & Palarchio,	Equipment History;	Single unit & Multi unit	given item will perform
2000; Wang , 2001;	Equipment Criticality;	systems; Cellular	its intended function for a
Nima, Dragan, &	Root Cause Analysis	Manufacturing Industry;	given period of time
Jardine , 2010; Li,	(RCA)/Incident	Automobile Industry;	under a given set of
Ambani & Ni, 2009;			
	Analysis (IA); Mean	Power Industry;	conditions; Reliability
Jayabalan &	Time Between Failures	Chemical Processing	analysis is to identify
Chaudhuri, 1992;	(MTBF); Value Risk	plant	failures, root cause of the
Jafari, Jafarian, &	Study of maintenance		failures and maintenance
Zaerpour, 2008;	program; Reliability		issues related to these
Chitra, 2003; Liu, Li,	statistics of		failures; Reliability
Huang, Zuo, &	equipment/assets;		Analysis plays a crucial
Sun, 2010; Nguyen,	Reliability Centred		role in maintenance
Brammer, &	Maintenance (RCM)		strategy formulation,
Bagajewicz, 2008	based analysis		selection &
			implementation of the
			strategies into practices.
Tsang et al., 1999;	Performance	Automobile Industry; e-	Maintenance performance
Tsang et al., 1999; Sherwin, 2000,	Performance Measures: Labour and	Automobile Industry; e- maintenance; US	Maintenance performance measures reflect
_		-	_
Sherwin, 2000,	Measures: Labour and	maintenance; US	measures reflect
Sherwin, 2000, Kutucuoglu et al.,	Measures: Labour and material cost;	maintenance; US Manufacturing	measures reflect achievement and progress
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani	Measures: Labour and material cost; Maintenance	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi	Measures: Labour and material cost; Maintenance Performance	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark;
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006;	Measures: Labour and material cost; Maintenance Performance Measures; Key	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance
Sherwin, 2000, Kutucuoglu et al., 2001; Li, Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim &	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job
Sherwin, 2000, Kutucuoglu et al., 2001; Li, Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms;	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation & Selection of
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation & Selection of Maintenance strategy
Sherwin, 2000, Kutucuoglu et al., 2001; Li, Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin,	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking	maintenance; US Manufacturing industries; Aviation	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation & Selection of Maintenance strategy based on the factors of
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin, 2011	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking measures & targets	maintenance; US Manufacturing industries; Aviation Industry	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation & Selection of Maintenance strategy based on the factors of maintenance performance.
Sherwin, 2000, Kutucuoglu et al., 2001; Li , Ambani & Ni, 2009; Marchi & Garetti, 2006; Parida & Uday, 2009; Swanson, 2001; Gokiene, 2010; Ahmadi, Gupta, Karim & Uday, 2010; Simoes, Gomes, & Yasin, 2011	Measures: Labour and material cost; Maintenance Performance Measures; Key Performance Indicators; Downtime Records; Training man hours of maintenance staff; Internal Norms & Industry Norms; Benchmarking measures & targets	maintenance; US Manufacturing industries; Aviation Industry Oil Refinery;	measures reflect achievement and progress in meeting an agreed maintenance benchmark; in measuring maintenance performance, it is concerned not only with doing good maintenance job. It is also concerned that the maintenance job successfully removes risk of failure of plant and equipment; Formulation & Selection of Maintenance strategy based on the factors of maintenance performance. The objectives of

Rosqvist, Laakso & Standard written work Belgian Process minimizing the idle time Reuanen, 2007; order; Availability of Industry; Textile of maintenance workers, Rolando et al., 2009; PM Schedules; Industry; Belgium maximizing the efficient Priorities of work Pophaley & Vyas, Industry/Manufacturing use of work time, 2010; Ashayeri, order; Availability of material, and equipment companies; Chemical Teelen & Selen. Work schedule for a Processing Plant; Batch & maintaining the 1996; Jin, Li & Ni, week ahead; process industry; operating equipment at a 2009; Ilangkumaran Shutdown Shipping Industry; responsive level to the & Kumaran, 2012; Maintenance Aviation Industry need of production in Muchiri et al., 2010; Schedule: terms of delivery schedule Nguyen, Brammer Measurement of work and quality; Planning & & Bagajewicz, 2008; backlog; Long Term scheduling are the key Sami & Ben-daya, Plans to forecast major activities of any 2010; Verma & shutdown/maintenance maintenance strategy. Suresh, 2007; work Therefore, formulation of Ahmadi, Gupta, maintenance strategy Karim & Uday, depends on this function. 2010; Pinjala, Pintelon & Vereecke, 2006 Carnero, 2006; Garg Materials Petrochemical Materials management is & Desmukh, 2006; Management: Spares Plant/food industry in the process of planning, Jafari et al., 2008; availability; Identified organizing and controlling Spain; Nguyen, Brammer & spares; Inventory Telecommunication of the procurement and Bagajewicz, 2008; analysis; Emergency manufacturing industry; availability of spare parts; Yung-Hisang & purchase of spares; Manufacturing Industry; In proactive maintenance environment, while fire Hou-Lei, 2014 Average Inventory Chemical Processing Turnover; Availability Plant fighting and panics are of Stores; Inventory much rarer, the same fast control through speed of response and computerised system; repair is often required Integration of when a critical item goes Inventory Control with down. Again, spares availability is top priority; maintenance planning Non-availability of material may delay the executing of maintenance strategy. Therefore, material management is an integral part of development of maintenance strategy.

John & Amrik, 1989,	Organisation/	Telecommunication	In order to meet the
Garg & Desmukh,	Human Resources:	manufacturing industry;	changing corporate
2006; Eti, Ogaji &	Maintenance staff	Nigerian Industry;	philosophy and
Probert, 2006;	level; Maintenance	Spanish Manufacturing	manufacturing strategy,
Crespo & Gupta,	organisation;	Industry; Nigerian	the outsourcing of
2005; Pinjala,	Responsibility of first	Power Industry	maintenance jobs/
Pintelon &	line supervisors;	,	activities can be adopted
Vereecke, 2006	Adequacy of support		by an organisation; The
,	staff; Regular		outsourcing strategy
	Technical training;		provides flexibility in the
	Apprenticeship		maintenance organisation
	program; Deployment		so that there is no need to
	of Contractors		create fixed assets
			/infrastructure. Therefore,
			HR function plays
			inclusive role in
			formulation of
			maintenance strategy,
			selection and
			implementation of
			maintenance strategy in
			an organisation.
Campbell et al.,	Employee	Organisation level	Empowerment of
2001; Eti, Ogaji &	Empowerment:	Organisation level	employee helps to take
Probert, 2006;	Multi-skilled Trade		faster decision during
Wireman, 2010	People; Operators		performing maintenance
Wireman, 2010	Based Maintenance;		and to manage emergency
	Regular discussion		maintenance. This helps
	with the staff by		in implementation of
	supervisors; Self-		maintenance strategies in
	directed work teams;		an organisation in a better
	Minor modifications		manner.
			manner.
	done by maintenance		manner.
	done by maintenance teams; Partnership		mamer.
	done by maintenance teams; Partnership with key		mamer.
Ling Jian & Wang	done by maintenance teams; Partnership with key suppliers/contractors	Power plant in China	
Ling, Jian, & Wang,	done by maintenance teams; Partnership with key suppliers/contractors Information	Power plant in China;	The improvements in
2006; Muller,	done by maintenance teams; Partnership with key suppliers/contractors Information Technology:	Spanish manufacturing	The improvements in work processes are such
2006; Muller, Crespo, & Lung,	done by maintenance teams; Partnership with key suppliers/contractors Information Technology: Availability of	Spanish manufacturing Industry; Prognostic	The improvements in work processes are such as methods to perform
2006; Muller, Crespo, & Lung, 2007; Crespo &	done by maintenance teams; Partnership with key suppliers/contractors Information Technology: Availability of computerised system	Spanish manufacturing Industry; Prognostic tool like watchdog	The improvements in work processes are such as methods to perform work, communication
2006; Muller, Crespo, & Lung, 2007; Crespo & Gupta, 2005; Jay et	done by maintenance teams; Partnership with key suppliers/contractors Information Technology: Availability of computerised system for maintenance	Spanish manufacturing Industry; Prognostic tool like watchdog agent; Primary metals; a	The improvements in work processes are such as methods to perform work, communication about work, decision
2006; Muller, Crespo, & Lung, 2007; Crespo &	done by maintenance teams; Partnership with key suppliers/contractors Information Technology: Availability of computerised system	Spanish manufacturing Industry; Prognostic tool like watchdog	The improvements in work processes are such as methods to perform work, communication

1993, Elliot &	computerised system	metal working;	activities by employees.
Tobias, 2005;	for materials	precision instruments;	This improvement in
Liptrot & Palarchio,	management;	chemical & food	work process can be
2000; Phillip &	Integration of	processing (US	achieved by Information
Ramin, 2014	maintenance	Industries)	Technology; IT can lead
,	management &	,	to higher work
	materials management		productivity, machine
	modules; Scheduling		availability, maintenance
	of major Shutdown		personnel effectiveness
	using project		etc. Therefore, IT also
	management system;		impact maintenance
	CBM supported with		decision making such as
	automated programs		formulation of
	for data analysis;		maintenance strategy and
	Expert systems for		this helps to optimise the
	diagnosis		maintenance cost and the
			equipment/asset
			reliability.
Wang, 2001; Cooke,	Maintenance Policies/	Single unit & Multi unit	A well formulated
2003;Carnero, 2006;	Maintenance Budget:	systems; Petrochemical	maintenance strategies
Garg & Desmukh,	Maintenance mission	Plant/food industry in	and practices supported
2006; Pintelon &	& objectives; Long	Spain;	with the maintenance
Gelders, 1992;	term maintenance	Telecommunication	policies and maintenance
Pinjala, Pintelon &	plans integrated with	manufacturing industry	culture in an organisation
Vereecke, 2006;	business plans;		plays a critical role in
Michael, Kwasi &	Maintenance Policies;		maintenance function.
Jack, 2000,	Maintenance budget		Therefore, this function
Wireman, 2010			impacts the
			implementation of
			maintenance strategies
			and selection of
			maintenance strategies.
			mamorianee strategies.

The construct and sub-constructs derived each construct altogether form basis for formulation of maintenance strategies formulation selection and implementation are shown in the Table 2.2. The definitions and literature inferences including critical observations are discussed in detail below for all these constructs & sub-constructs.

2.6.1 Maintenance Tactics

The maintenance tactics aspects are covered in detail in the literature in past few years with specific context to industries such as Manufacturing industry, power plant, Automobile industry, etc. The sub-constructs identified (Refer Table 2.2) from the literature are discussed as given below.

Condition Based Maintenance (CBM) or predictive maintenance is a technology that strives to identify initial faults before they become critical. CBM is a set of maintenance actions based on real-time assessment of equipment condition which is obtained from embedded sensors and/or external tests & measurements taken by portable equipment and then processed through software. CBM enables more accurate planning of preventive maintenance. The traditional inspection based maintenance is in fact a primitive form of CBM. Kelly (1993) detailed out the widely used CBM techniques.

Preventive Maintenance (PM) is the planned maintenance of plant infrastructure and equipment with the goal of improving equipment life by preventing excess depreciation and impairment. This maintenance includes, but is not limited to, adjustments, cleaning, lubrication, repairs, replacements, and the extension of equipment life (Verma & Suresh, 2007).

Both option based mathematical based preventive maintenance model and basic preventive maintenance model can eliminated the risk of equipment stoppage from operating status and also reduce the shortage or overage of demand (Jin, Li & Ni, 2009). Further, optimal preventive maintenance can be used to develop preventive maintenance strategy using fuzzy Bayesian tools for power generator maintenance (Liu et al., 2010). Therefore, these examples of study show that the mathematical models are used in developing preventive maintenance strategies in plant maintenance.

Nowadays, many manufacturing organisations have shifted to a new methodology known as Predictive Maintenance. However, its installation is often costly while results are difficult to predict. A Predictive Maintenance approach strives to detect the onset of equipment degradation and to address the problems as they are identified. Thus, in Predictive Maintenance, maintenance needs are based on the actual condition (normally measured quantitatively or qualitatively) of the equipment, rather than on some predetermined schedule. Hence, it involves predicting the failure before it occurs, identifying the root causes for those failure symptoms and eliminating those before they result in extensive damage to equipment. In contrast, condition-based maintenance can be a better and more cost effective than time-based maintenance (Jafari et al., 2008).

Reliability-Based Maintenance (RBM) is an advanced maintenance philosophy which prioritizes plant systems in terms of their impacts on capacity and availability. RBM balances the available strategies such as reactive, preventive, predictive, and proactive so as to ensure maximum capacity and availability while minimizing costs. The seven primary breakthrough concepts provided by Reliability Based Maintenance include: prioritization of plant systems and failure modes in terms of their impact on capacity and availability, business decision of where to invest maintenance resources, infusion of available maintenance technologies, developing core competency in maintenance function, redefinition of the maintenance function whose mission is to pursue productivity and capacity improvement solutions, increased awareness throughout the plant of the implications of maintenance decisions, and establishment and acceptance of suitable business performance metrics for maintenance (Smith, 1993).

TPM (Total Productive Maintenance) is a maintenance philosophy designed to integrate equipment maintenance into the manufacturing process. The goal of any TPM program is to eliminate losses tied to equipment maintenance or, in other words, keep equipment producing only good product, as fast as possible with no unplanned downtime. Maintenance has traditionally been viewed as a

separate entity outside of the manufacturing process. As companies began to identify the role of maintenance in the production process a gradual shift in thinking occurred. TPM emerged out of the need to integrate maintenance with manufacturing to improve productivity and asset availability. The culmination of change from a reactive/corrective maintenance environment to one that is based on preventative maintenance through predictive maintenance is the process of TPM. TPM is used to drive waste out of the manufacturing process by reducing or eliminating production time lost to machine failures. The goal of any TPM program is to ensure that machinery and equipment is always available to manufacture products for the end customer. By minimizing rework, slow running equipment and downtime, maximum value is added at the minimum cost (Kelly, 1993).

Seth & Tripathi (2006) highlighted in their paper that a combined application of TPM along with Total Quality Management (TQM) brings out significantly higher improvements than application of individual. This paper also provides empirical evidence on the contributions of these two principles TQM & TPM to improve business performance in the context of Indian manufacturing industry. TPM framework concepts like Overall Equipment Effectiveness (OEE) impact the TPM implementation practices (Ahuja & Khamba, 2008).

OEM recommendations are the maintenance procedures/methods suggested by Original Equipment Manufacturer (OEM) of particular equipment. The details of OEM recommendations regarding maintenance of the particular equipment are available in operation & maintenance manuals supplied by OEM along with the equipment.

2.6.2 Reliability Analysis

Reliability Analysis is a necessity when you want to maximise your operational plant availability and uptime. The tools and techniques of reliability analysis provide insights on why events happen and on the options that you have available to you in order to address them. This construct have

been further classified in to sub constructs (Refer Table 2.2), the key subconstructs have been discussed subsequently.

A root cause is a factor that caused a non-conformance and should be permanently eliminated through process improvement. Root Cause Analysis (RCA) is a collective term that describes a wide range of approaches, tools, and techniques used to uncover causes of problems.

RCM process has been effective analysis tool to identify the root cause problem of failures. Once RCM program is implemented, the maintenance activities need to be revisited periodically. Based on failure modes and failure causes identified through RCM program, exiting Preventive Maintenance should be adjusted accordingly. To realise the benefits of RCM, Computerised Maintenance Management System (CMMS) needs to be in place (Wilmeth & Usrey, 2000).

Further, Reliability Centred Maintenance (RCM) can be defined as an industrial improvement approach focused on identifying and establishing the operational, maintenance, and capital improvement policies that will manage the risks of equipment failure most effectively (Mokashi et al., 2002).

"Mean Time Between Failure" (MTBF) is a reliability term used to provide the amount of failures per million hours for a product. This is the most common investigation about a product's life span, and is important in the decision-making process of the end user. MTBF is more important for industries and integrators than for consumers. Most consumers are price driven and will not take MTBF into consideration, nor is the data often readily available. Based on the reliability criteria and choice of decision maker, work load threshold of each equipment type is a linear function of its MTBF with a coefficient (Nima et al., 2010).

The equipment criticality can be defined as, a system or equipment is a function of the system's or equipment's impact on the business when the

system or equipment fails, regardless of how often the failure occurs. For example, a set of criticality ranking numbers might range from 1 to 10. Criticality rank number 10 represents the highest rank while number 1 represents the lowest.

Equipment History is one of the most required records that help to maintenance department of each equipment details & its history to understand when equipment was breakdown, why it was happen & what was done to repair, how much cost calculated for this particular maintenance on that equipment.

History of breakdown help to prepare preventive maintenance schedule, consumed parts inspection or expands inspections with extra required criteria, re-analysis on part if breaking again & again or breaking part due to other equipment parts (Knezevic, 1994). Provide training to technicians, maintenance engineers, service operators, equipment operators, electrical personnel & helpers who are associated with the equipment maintenance.

2.6.3 Performance Measures/Benchmarking

Performance measure is an importance conceptual construct in developing maintenance strategy. In this section various sub constructs related to performance measures (Refer Table 2.2) are discussed.

Developing useful maintenance KPIs starts by creating KPI strategies from top to bottom of the organisation so that activities across the operation integrates together with a corporate purpose (Visser & Pretorious, 2003).

A useful maintenance KPI is to collect and present why failures of equipment/operation are occurring. These failures have root causes in the past and across maintenance functions. Collecting the causes of failures (i.e. corrective and breakdown maintenance) under separate life cycle categories helps to identify focus area for reliability improvement efforts by maintenance

personnel. This is a business quality system and life cycle management indicator that drives failure avoidance and the adoption of better asset life cycle practices (Patrik, 1999). Benchmarking is a basis of establishing rational performance goals through the search for best industry practices that will lead to superior performance.

2.6.4 Planning & Scheduling

Planning & Scheduling is the conceptual construct are classified in sub constructs based on literature review (Refer Table 2.2) and each of these sub constructs is discussed in detail as given under:-

Maintenance efficiency of machines can be improved through proper maintenance planning and scheduling in an automobile industry using the maintenance approach Total Productive Maintenance (TPM). TPM tools helps to accomplish improved efficiency by enabling optimum use of machine capabilities (Pophaley & Vyas, 2010).

In process industry the planning of production and maintenance within an integrated process manufacturing system plays a vital role. Now a day, the implementation of Computer Integrated Manufacturing (CIM) concepts in the industry provides better solutions. In addition to that preventive maintenance decisions impact the available plant capacity and company profits in the production/manufacturing industry. Ashayeri et al., (1996) developed a model to minimize such production and maintenance related cost factors during long or medium term planning horizons which would also take care of probability of break downs.

Planning is the process by which the elements required to perform a task are determined in advance of the job start. It comprises all the functions related to the preparation of Work order, Bill of material, Purchase requisition, Necessary drawings, Labour planning sheet including standard times, All data

needed prior to scheduling and releasing the work order. Good planning is a prerequisite for sound scheduling (Wireman, 1990).

Scheduling in very crucial in implementation of maintenance plan and it leads to achieve the maintenance to manufacturing competence of an industry (Noemi & William, 1994). Scheduling is the process by which jobs are matched with resources and sequenced to be executed at a certain points in time. Scheduling deals with the specific time and phasing of planned jobs together with the orders to perform the work, monitoring the work, controlling it, and reporting on job progress. Successful planning needs a feedback from scheduling (Wireman, 2010).

2.6.5 Material Management

Material management aspects are covered in detail in the literature in past few years. In this section, various sub constructs related to material management (Refer Table 2.2) identified from the literature are discussed in detail.

Maintenance Material Management consists of identifying, scheduling, purchasing, managing stock and the supply of materials according to plant (manufacturing unit) requirements. The processes that make up this service line are stores management, purchasing process of management of materials, stock management and scheduling of materials, optimisation and rationalization of material processes, flows and stock (Jardine & Tsang, 2005). The above identified sub constructs are dealt with such materials management processes. Based on these sub constructs, the assessment of an organisation can be done with respect to implementation of maintenance strategy. In order to fulfil the maintenance plan of a production plant, it is very critical to assign one among the maintenance resource i.e., material at tactical level of maintenance work (Crespo & Gupta, 2005).

In maintenance, there is no greater priority than ensuring the ready availability of spare parts. Competent materials management is a precondition of maintenance management success. Because of the complexity of the challenge in maintenance management, an integrated materials management system is essential (Pintelon & Van, 1990).

2.6.6 Organisation/Human Resources (HR)

Organisation/ Human Resource(s) are a crucial construct derived from literature which is contributing majorly for maintenance performance. This construct is further classified into sub constructs (Refer Table 2.2) and each of these sub constructs is discussed in detail.

In order to meet the changing corporate philosophy and manufacturing strategy, the outsourcing of maintenance jobs/activities can be adopted by an organisation. This provides flexibility in the maintenance organisation so that there is no need to create fixed assets/infrastructure. (Garg & Desmukh, 2006). Further, in their paper it is discussed that the maintenance staff should be capable of dealing with multi-functional activities in maintenance.

Knowledge can be acquired through training and this knowledge is used to do job in an effective and efficient manner. If jobs are being done with the thorough knowledge, person doing job become skilled. The skills acquired by maintenance personnel will be further used to improve the performance of assets and equipment's. Therefore, it is the maintenance personnel who improve the maintenance performance. Every industry should consider Training as one of the most important and strongest areas in any organisation (John & Amrik, 1989). It must never be the subject of any cost reduction efforts.

Maintenance Organisation depends on many determinants such as Maintenance capacity, Centralization Vs. De-centralization & In-house maintenance Vs. Outsourcing. Further, Human Resources planning for maintenance organisation also depend on many criteria. The criteria include defined roles and responsibilities, effective span of control, facilitation of good

supervision and effective reporting structure and minimization of costs (Eti et al., 2006)

In addition to above, creating division of labour for maintenance tasks to be performed and coordination of results to achieve a common maintenance goal must be capabilities of maintenance managers (Campbell et al., 2001). Therefore, selection of right maintenance personnel with the appropriate capabilities supported by continuous training and good incentive schemes is must for an organisation to achieve performance effectiveness and efficiency.

2.6.7 Employee Empowerment

The first area of change towards employee motivation should be employee empowerment. In the traditional maintenance departments, maintenance managers carry out the planning & controlling of all maintenance activities. Nowadays, this tradition changes that the maintenance supervisors are responsible for maintenance task management, budgeting and maintenance scheduling. To achieve this objective, maintenance mangers should delegate the micro detailing of maintenance jobs such job order allocation, scheduling preventive maintenance etc. Instead, managers should provide directions and point out the desired results, empowering maintenance supervisors to achieve the desired results within their capacity. There are limited research literatures available in the area of maintenance which discussed about maintenance aspect of employee empowerment. However, maintenance management related books are discussing about employee related concepts (Wireman, 2010).

Operator based maintenance is nothing but the operators of the plant/equipment are trained to perform regular maintenance of that particular plant/equipment. This will help the organisation to create multi skilling work environment among the operators so that plant operation efficient can be improved. Further, supervisors should have regular discussing with the maintenance staff and also with the operators so that the work team can

become self-directed work teams. This finally provides the more empowerment to the maintenance staff and operators (Campbell & Picknell, 2006).

2.6.8 Information Technology

Information Technology functionalities are to be leveraged in maintenance function. Therefore, IT has been identified as an initial conceptual construct for a maintenance strategy selection. In this section various sub constructs (Refer Table 2.2) related to Information Technology identified from the literature are discussed in detail.

Raouf et al. (1993), in their paper discussed in detail about evaluation of various Computerised Maintenance Management Systems (CMMS) available and explained their functions. Further, they have shown the importance of implementing such kind of systems in the industry for effective utilization of manpower & material. CMMS helps maintenance function to respond more quickly and also helps in improving maintenance performance by managing the equipment. Further, it also allows production and maintenance departments to improve their communication and coordination in their activities (Swanson, 2003). In addition to that his research also showed that the CMMS and lateral relations suggest the successful implementation of new manufacturing technologies leads to world class maintenance practices.

Nguyen et al. (2008), in their paper presented a new methodology to assess the economic value of scheduling rules for preventive maintenance in a chemical process plant. This methodology was tested in a chemical process plant and the results confirmed the benefits of using preventive maintenance. Therefore, such kind of new tools and methods are useful in data analysis and diagnostics. This paper further investigated the effect of maintenance performance in terms spare parts inventory policy, maintenance policy etc.

Recent days many organisations in the industry become more competitive by reduction of maintenance/production costs and increasing productive through the improvement in work processes by using e-maintenance tools (Muller et al., 2007). The improvements in work processes are such as methods to perform work, communication about work, decision making process and monitoring of work activities by employees. This improvement in work process can be achieved by Information Technology. IT can lead to higher work productivity, machine availability, maintenance personnel effectiveness etc. Therefore, IT also impact maintenance decision making and this helps to optimise the maintenance cost and the equipment/asset reliability.

Advanced Information and Communication Technology provides benefits such as improved communication among plant workers and outside experts and supports the team approach in problem solving even though distances often separate maintenance personnel/vendors/service providers.

2.6.9 Maintenance Policies/Maintenance Budget

Maintenance Policy and Maintenance Budget related aspects are covered in detail in the literature in past few years. In this section various sub constructs (Refer Table 2.2) related to Maintenance Policies are discussed in detail.

It is very importance for an organisation to have a robust and effective maintenance and maintenance policy in place (Wang, 2001). Maintenance of an organisation ensures the following (Michael et al., 2000):-

- Equipment's are always in ready and reliable condition. i.e., company is able respond to any sudden change in demand.
- Equipment's are always calibrated to provide good quality products and competitive advantage. i.e., there are no sudden and frequent breakdowns and reduce production of defective products.
- There are no major breakdowns. i.e., there is no losing of inventory or market share for companies following JIT philosophy.

Maintenance costs are always controlled.

The central importance of maintenance budgeting is related to the formulation of maintenance strategy of an organisation. The maintenance budget should be an expression of the forecasted short term (i.e. annual) and long term maintenance jobs in terms of the cost of internal manpower, contract manpower and the materials needed to deal with them. It is also emphasized that in plants requiring major shutdowns there is also the need for a specific turnaround budget. Budgeting procedures appropriate for large process plants are compared with those for individual manufacturing units and, finally, it is explained that, all too often, maintenance budgeting is rarely as rational as described, senior management seeing maintenance only as a cost and ignoring the linkage between maintenance expenditure and production output (Mobley, 2008). Further, the need for a maintenance budget arises from the overall budgeting need of corporate management and involves estimation of the cost of the resources (manpower, spares etc.) that will be needed in the next financial year to meet the expected maintenance jobs.

2.7 MAINTENANCE STRATEGY MODELS/FRAMEWORKS

In this part of literature review various maintenance strategy models/ frameworks are presented below. In these frameworks/models, authors have included major components related to maintenance strategy such as maintenance strategies formulation, maintenance strategies selection, and implementation of selected maintenance strategies.

According to McAllister, Armstrong, & Wilson (1999), an asset mainteannce strategy is based on a set of objectives and maintenance polices of the plant operation. These objectives are having targets and goals to achieve better mainteance. Few related points to this model are as given below:-

- 1. Business targets for plant performance, product quality, cost savings, etc., are based on customer needs
- 2. Resources must be available to fulfill the strategy objectives

- 3. Outputs of functional capabilities and maintenance personnel needs to be monitored & measured for their expected delivery
- 4. Adoptability of maintenance function to quick changes in the environment

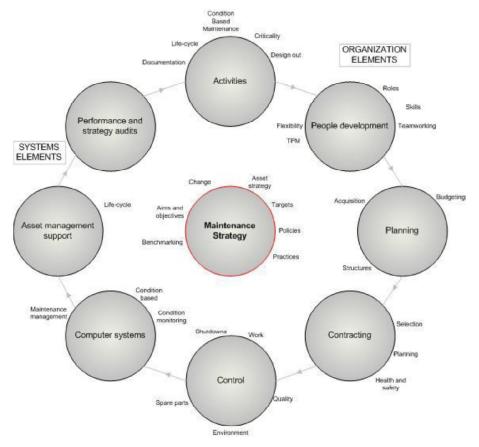


Figure 2.3- The range of maintenance policy sectors and corresponding practices (McAllister et al., 1999)

McAllister, Armstrong, & Wilson (1999), has also presented a model for the formulation and review of a maintenance strategy. In his paper, it is described that the maintenance must be considered a partner within the business so that overall objective of the organisation is shared in order to achieve production with an acceptable margin of profit. For achieving this objective, there is a need to integrate all the functions in the organisation. Thus, maintenance strategy should be aligned with the business or corporate strategy (Figure 2.3). He also suggested the following steps in formulating effective maintenance strategy.

Step 1: Maintenance strategy development starts with the maintenance philosophy which describes the roles of maintenance

Step 2: Maintenance philosophy chosen should fulfil the maintenance objectives/aims developed for the organisation which are derived from corporate/production objectives.

Step 3: Assess & evaluate the maintenance practices and issues in the maintenance

Kelly (2006) presented a BCM (Business Centred Model) for the formulation of maintenance strategy. The same is shown in the Figure 2.4 given below. This model depicts that the business objectives of the organisation are identified and then the same are translated into maintenance and this supports the formulation of maintenance strategy. It is critical to under the operation of the plant and its relation with the market. Thus, maintenance objectives are derived from the production & business objectives. The large circle in figure below shows that the strategic thought process of the maintenance manager starts with the maintenance objective.

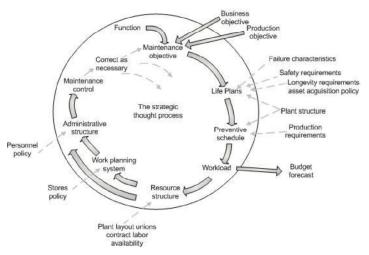


Figure 2.4- A Business Centred Maintenance Methodology (Kelly, 2006)

For formulation of a maintenance strategy a model proposed by Salonen (2011) is shown in the below given Figure 2.5. This model is a schematic view of the maintenance processes when formulating a maintenance strategy.

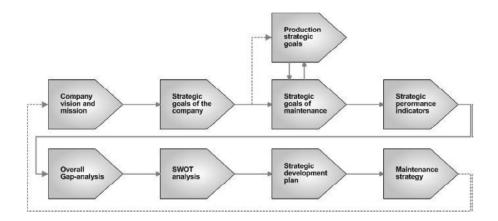


Figure- 2.5 A Schematic view of the Work Process when formulating a Maintenance Strategy (Salonen, 2011)

Further, Salonen (2011) proposes a structure to follow while formulating the maintenance strategy. The same is shown in the below Figure 2.6.



Figure 2.6 Structure to follow while formulating the Maintenance Strategy

The maintenance strategy must be a road map for maintenance which includes alternatives, provides direction, flexible enough to adjust with the changing

environment. This road map has to be created from benchmarking and the practices of the organisation's own plant/ operation process.

According to Campbell & Picknell (2006) the implementation on the tactical level is based on the maintenance strategy. This includes various components such as mission, vision, maintenance tactics, targets and rules. The same is depicted in the Figure 2.7 given below:-

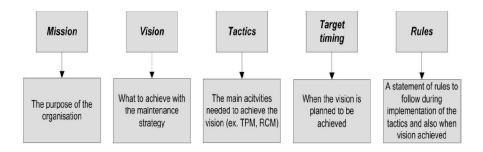


Figure 2.7 Components included in the Strategy (Campbell & Picknell, 2006)

The comparison of above frameworks/models is detailed out in Table 2.4 along with key concepts, inferences and gaps. A common thread in all these frameworks is alignment between business strategies and maintenance strategies. Few gaps in these frameworks are what the outcomes of maintenance strategy formulation are?; How to select the best among the maintenance strategy methods/approaches formulated?; How to optimise among the selected maintenance strategy methods/approaches?; How to measure the impact on maintenance function after implementing the specific maintenance strategy? Even these aspects are discussed specifically in the framework but the same is not discussed integrating all the maintenance strategy related processes in a holistic manner.

Table 2.4 Comparison of Maintenance Strategy Models

Author(s)	Description about	Key concepts from the	Inferences & Gaps
	maintenance	framework/model	
	strategy related		
	framework/ model		
McAllister	Authors proposed a	Maintenance strategy is	Overall framework suggests
et al.,	model for the	based on the factors asset	for proper business targets,
1999	formulation and	strategy, targets, policies,	sufficient resources,
	review of	practices, aims &	monitoring of outputs and
	maintenance	objectives, and	adoptability to quick
	strategy	benchmarking;	changes in the environment;
		Maintenance strategy as	This model does not support
		on overall depends on	the maintenance strategies
		various maintenance	selection & optimisation
		policy sectors & practices	among maintenance
		which consists of system	function
		elements such as asset	
		management support,	
		performance and strategy	
		audits, etc. & organisation	
		elements such as people	
		development, planning	
		etc.	
Kelly,	A business centred	This model supports	The key point is alignment
2006	maintenance	translation of business	of business objectives,
	methodology	objectives into	production objectives with
		maintenance objectives so	the maintenance objectives;
		that formulation of	This model does not
		maintenance strategy can	describe about the outcomes
		be done effectively; It	of the maintenance strategic
		also provides various	process such as
		factors that make	maintenance tactics and
		maintenance strategic in	selection of maintenance
		an efficient manner. The	strategies selected for
		factors are life plan,	implementation; This model
		preventive schedule,	is not having performance
		resources, work planning	measurement aspects of
		system, administrative	maintenance.
		structure, maintenance	
		control etc.	
Salonen,	This model	The key elements in this	Maintenance strategy
		mandal and atmata.ass	alignment with business
2011	provides schematic	model are strategy	alignment with business

	maintenance	indicators for	formulating maintenance
	processes when	maintenance performance,	strategy; This model does
	formulating a	target action plan along	not explain about
	maintenance	with time frames.	implementation of
	strategy & structure		maintenance strategies and
	while formulating		optimisation of the
	the maintenance		maintenance strategies.
	strategy		However, it describes about
			maintenance performance
			indicators.
Pintelon	Maintenance	This model describes	The key concept in this
&	management	about system design	model is decision making
Gelders,	framework	aspects such as	process in maintenance
2002		maintenance philosophies,	involves strategic planning,
		production control	tactical planning and
		systems, etc., planning	operational planning.
		and control such as	Integration & optimisation
		maintenance objectives,	of these planning processes
		resources, performance	are critical; This model does
		reporting etc., and	not explain about the
		managerial tool kit such	maintenance strategies
		as failure modelling	formulation, selection &
		techniques and computer	performance evaluation of
		support.	maintenance function.
Eti et al.,	Strategic	This model describes	Authors suggests few key
2006	Maintenance	about the alignment of	elements related to
	Performance	maintenance strategy with	maintenance strategy such
	Management	the corporate strategy;	as maintenance
	framework	This model also explains	organisation, measure of
		implementation plans,	effectiveness, work control,
		performance	maintenance management
		measurement and	information system,
		feedback to corporate	personnel records, logistic
		strategy.	support, maintenance tasks
			& maintenance engineering;
			This model does not explain
			about outcomes of
			maintenance strategies &
			optimisation of maintenance
			strategies. It does not also
			explain about the
			implementation aspect of
			maintenance strategies.
			maniconance strategres.

Muchiri et	The performance	This framework also	This framework is much
al., 2011	measurement	describes about alignment	related to maintenance
	framework for the	of corporate strategy with	performance. However, the
	maintenance	the maintenance strategy	concept of maintenance
	function	while formulating the	strategy formulation is
		maintenance strategy;	included in this framework;
		This framework proposes	This framework does not
		leading performance	explain about maintenance
		indicators such as work	strategies outcomes such as
		execution, scheduling,	maintenance tactics,
		planning and work	maintenance policy etc.
		identification. It also	
		proposes lagging	
		performance indicators	
		such as performance	
		targets, benchmarks,	
		maintenance results like	
		equipment performance	
		and maintenance cost.	
Pintelon	Gap between	Author in his paper	The framework describes of
& Parodi,	maintenance and	describes about the link	outcomes of maintenance
2008	business strategy	between maintenance and	strategy as maintenance
		business strategy; Main	concepts such as RCM,
		focus on maintenance	TPM, BCM, LCC, etc.,
		management is still on the	maintenance policies as
		tactical and operation	PM, Pd.M., FBM, etc.; This
		planning; Bridging the	framework does not explain
		gap between business	about selection of
		strategy and maintenance	maintenance strategies,
		strategy is the key	optimisation and
		challenge in maintenance.	implementation aspects in
			maintenance function.
Umar,	A framework for	This framework describes	This framework covers the
2011	maintenance	about the nine functions	all major elements related to
	strategic planning	such as identification of	strategic issues of
		major stakeholders,	maintenance strategy
		formulation mission	formulation to
		statement, setting of the	implementation. However,
		strategic objectives of	it does not explain in-depth
		maintenance, analysis of	about maintenance decision
		the current situation,	support systems used for
		identification of the	maintenance strategy
		strategic issues, strategic	selection, outcomes of

	options, strategy	maintenance strategies and
	selection, development of	underlying factors
	performance measures,	contributing for
	and implementation	maintenance strategy
	planning.	formulation in the
		operational & tactical level.

The inferences from the above detailed literature review can be summarised as given under:-

The detailed literature review reveals that the most of existing literature have discussed evaluation system for setting up a particular maintenance method/approach such as Preventive Maintenance & Predictive Maintenance, linking performance with the maintenance strategy, application of specific maintenance method/approach like Preventive Maintenance, Predictive Maintenance, RCM, CBM etc. for a particular industry in a country like Italy, Belgium, Africa etc., development of Maintenance Decision Support Systems (MDSS) for selection of maintenance strategy, development of Plant level Maintenance Decision Support System (PMDSS) implementation of e-maintenance concept, maintenance polices and their impact.

Further, authors have developed frameworks/models related to maintenance strategy processes such as maintenance strategy formulation, selection of maintenance strategies and implementation of selected maintenance strategies (McAllister et al., 1999; Pintelon & Gelders, 2002; Kelly, 2006; Eti et al., 2006; Pintelon & Parodi, 2008; Muchiri et al., 2011; Salonen, 2011; Umar, 2011; Sohrab et al., 2013). However, each model describes one or two processes of maintenance strategy but not in combined manner integrating all the maintenance strategy related processes. Based on these inferences, it is evident that there is a need in Industry to develop a holistic model which combines the maintenance strategy related processes such as maintenance strategy formulation, selection and implementation of formulated maintenance strategies.

Literature could not explain about how the maintenance managers/engineers are ensuring smooth operation of plant by effective use of maintenance strategies in planning & execution at an organisation level. Further, no literature could reveal about why the specific maintenance strategy is selected for a particular equipment/process and how these maintenance strategies are different in different plant processes/equipment. Therefore, maintenance strategies related processes study is to be carried out to incorporate existing maintenance practices of an organisation so that maintenance strategies & maintenance practices can be described in a holistic manner.

2.8 GAPS IN LITERATURE

It is evident from the literature review that the maintenance strategies related frameworks established relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in an organisation, but they failed to explain how and why are these related. As explanation is essential for building theory and for improving practice, there is a need for process study of maintenance strategies & maintenance practices at an organisation level.

Extensive literature search for maintenance strategies & maintenance practices study providing rich description based on tacit and implicit knowledge available with maintenance managers at an organisation level in operations intensive industry like natural gas industry in an Indian context found no references to the best of researcher knowledge. (As on 02-05-2014, literature in databases such as EBSCO (Business Source Premier & Business Source Elite+), Emerald, Elsevier's Business Management & Accounting Collection (Science Direct), Blackwell's HSS Collection, IEEE Online, ACM Digital Library with the following key words maintenance, maintenance strategy, preventive maintenance, predictive maintenance, condition based maintenance, reliability centred maintenance, maintenance policy, maintenance practices, Selection of maintenance strategy, Indian gas industry, maintenance decision making, maintenance effectiveness, maintenance

scheduling, maintenance planning, corrective maintenance, reliability, decision support system, maintenance flexibility, maintenance management, computerised maintenance management, maintenance performance, study of maintenance practices).

Based on above literature review, the gaps in literature can be summarised as given below:-

- ▶ Study on maintenance strategies & practices related to processes of maintenance strategies selection & maintenance practices at an organisation level in operations intensive industry like natural gas industry in Indian context found no literature references.
- ▶ Lacking in literature related to study of tacit knowledge & implicit knowledge available with the maintenance managers in order to provide rich description on maintenance strategies selection processes & maintenance practices.
- Lack of holistic & integrated maintenance model which describes the processes & relations of all the aspects of maintenance strategies & maintenance practices planning and execution.

2.9 CONCLUDING REMARKS

As first step in literature review, a detailed literature survey was carried out related to maintenance management. Then, literature were analysed and categorised based on key themes such as maintenance strategy, maintenance strategies formulation, selection of maintenance strategies, implementation of maintenance strategies, maintenance performance, maintenance approaches /tactics, development of Maintenance Decision Support Systems for optimal maintenance strategy selection, e-maintenance, and impact of maintenance policies in maintenance management. Further, nine constructs have been conceptualised from literature such as Maintenance Tactics, Reliability Analysis, Performance Measures/Benchmarking, Planning & Scheduling, Materials Management, Organisation/Human Resources, Employee Empowerment, Information Technology, and Maintenance Polices/Budget.

Detailed comparison of various maintenance strategy related frameworks/models identified from literature is also presented in this chapter. Finally, literature gaps are arrived from this detailed literature review and presented.

Next section discusses on research design & research methodology adopted for this research study.

CHAPTER 3

RESEARCH DESIGN AND METHODOLOGY

3.1 INTRODUCTION

This chapter details the research design and methodology for conducting the research study. Research design describes the connection between empirical data to the study's initial research questions logically and finally to the conclusions of the research study (Yin, 2003). It specifically addresses various scientific paradigms, scientific approaches, research approaches, research methods, research strategy, data collection method and data analysis strategy. Next to this section the research focus, research questions, research objectives, and the nature of research questions are presented. Section 3.3 describes overall approach and rationale for the selection of case study research strategy. Further, it discusses about the specific methods used in conducting this research and their relevance to the study. Section 3.4 discusses the case study design aspects such as number of cases, selection of cases, structure of case study design, and sampling. Section 3.5 explains the data collection methods followed in this research study. Section 3.6 describes about data analysis strategy which includes data analysis using grounded theory (Charmaz, 2006), within case analysis (Tsang, 1997), and cross-case analysis (Miles & Huberman, 1994). Further, in section 3.7 quality of empirical research is discussed in terms of four tests relevant to qualitative research method such as construct validity, internal validity, external validity, and reliability (Yin, 2003). Finally, section 3.8 discusses the use of Case Study Protocol (CSP) during data collection and presents complete protocol document used in this research study.

3.2 RESEARCH OBJECTIVES & RESEARCH QUESTIONS

3.2.1 RESEARCH FOCUS

The focus of research is on maintenance strategies related processes such as formulation, selection, implementation of maintenance strategies, and maintenance practices at an organisation level in Indian gas industry context. In early literature, several maintenance approaches i.e., maintenance strategies/concepts/methods have been discussed by various authors (Dekker, 1996; Moubray, 1997; Mckone & Elliott, 1998; Sherwin, 2000; Swanson 2001; Crespo & Gupta, 2006; Carnero, 2006; Marcello et.al., 2013). Further, the researchers have conceptualised maintenance strategy processes and various maintenance strategy related frameworks/models have also been developed (McAllister et al., 1999; Kelly, 2006; Salonen, 2011; Pintelon & Gelders, 2002; Eti et al., 2006; Muchiri et al., 2011; Pintelon & Parodi, 2008; Umar, 2011; Salonen, 2011). To select/choose these maintenance strategies for different equipment or system for particular industry, various mathematical models have been developed by researchers in this field. Selection of maintenance strategies for particular equipment/system in any industry is treated as typical Multiple Criteria Decision Making (MCDM) problem (Ahmadi et al., 2010). To deal with such kind of problem, the analytical techniques have been used such as Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), VIKOR etc. by researchers in their papers (Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Bertolini & Bevilacqua, 2005; Ling et al., 2006; Li et al., 2009; Rolando et al., 2009; Murthy, Atrens & Eccleston, 2002).

It is evident from the literature review that the maintenance strategies related frameworks established relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in an organisation, but they failed to explain how and why are these related. As explanation is essential for building theory and for improving practice, there is a need for process study of maintenance strategies & maintenance practices at

an organisation level. Further, extensive literature search for maintenance strategies & maintenance practices study using qualitative research approach at an organisation level in operations intensive industry like natural gas industry in an Indian context found no references. (As on 02-05-2014, literature in databases such as EBSCO (Business Source Premier & Business Source Elite+), Emerald, Elsevier's Business Management & Accounting Collection (Science Direct), Blackwell's HSS Collection, IEEE Online, ACM Digital Library with the following key words maintenance, maintenance strategy, preventive maintenance, predictive maintenance, condition based maintenance, reliability centred maintenance, maintenance maintenance practices, Selection of maintenance strategy, Indian gas industry, maintenance decision making, maintenance effectiveness, maintenance scheduling, maintenance planning, corrective maintenance, reliability, decision support system, maintenance flexibility, maintenance management, computerised maintenance management, maintenance performance, study of maintenance practices).

Therefore, the focus of this research study is to understand & describe the maintenance strategies & maintenance practices planning and execution at an organisation level in an Indian context (a large gas utility company). It is also to understand why the specific maintenance strategy has been chosen for a particular equipment/process/operation and how these formulated strategies are being practiced in the organisation. A case study approach has been selected for this research study because, the definition of the case study method say that "the central tendency among all types of case study, is that it tries to illuminate a decision or set of decisions: why they were taken, how they were implemented, and with what result" (Yin, 2003).

At an organisation level in maintenance function, the tacit and explicit knowledge in the field of best practices in maintenance management are available with maintenance managers & engineers working in the organisation. We need to gather an in-depth understanding of this knowledge in formulation of maintenance strategy & practices in the organisation.

Therefore, qualitative research method will be a suitable method in capturing and reusing tacit and explicit knowledge in the field of best practices in maintenance management at the organisation studied. For this research, to study on maintenance strategies & maintenance practices related processes at organisation level in an Indian context; a large gas utility company is selected for this study. Selection of the company and business verticals discussed in detail Section 3.4.

3.2.2 PROBLEM STATEMENT

Although in the existing literature various maintenance strategies applicable for different types of operations intensive industry is well known but the process of maintenance strategies selection & maintenance practices at an organisation level have not been described in detail. Further, there is lack of holistic process model for maintenance strategies & maintenance practices planning and execution.

3.2.3 RESEARCH QUESTIONS

How the gas utility company is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as petrochemicals & pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment?

This question is exploratory and it seeks to explore and find out the existing maintenance practices of a large gas utility company i.e., GAIL (India) Limited and the formulation of maintenance strategies by maintenance managers of the company in two business verticals such as petrochemicals & NG Pipeline systems. Further, it seeks to understand the selection of specific maintenance strategy for a particular operation process/equipment.

From the main research question one can derive a more exploratory and descriptive sub question of the "what" type (Yin, 1994).

Additional RQ1:- What are the common and different maintenance strategies & practices to both the business verticals (and) how the maintenance strategy & practices differ with the specific assets available in one operation process/plant/pipeline network from others business verticals?

This question is definitional and exploratory in nature. It seeks to find out the similarities and dissimilarities among the various maintenance strategies and maintenance practices being used in the business verticals of a large gas utility company. Further, it is to understand the specific maintenance strategies being in practice for a particular equipment/process/operation.

Additional RQ2:- How the reliability of the operation process/ equipment/ assets is ensured by the maintenance strategy used for the particular operation process/equipment/assets?

This question focuses not only on exploring and describing effect of reliability in maintenance strategies & maintenance practices, but seeks to understand a more causal pattern of impacts. We seek to build a theory that explains the process of impacting, the impacts themselves (i.e., effects), and how people respond to these impacts.

Additional RQ3: What are the benchmarks being used in petrochemicals/ NG pipelines? What is extent of achievement of benchmark parameters in practices?

This question is exploratory and descriptive. It seeks to develop an understanding of casual relationships, if any between benchmarking in maintenance and maintenance strategy planning & execution in business verticals of the company.

3.2.4 Nature of research questions

The central research question is exploratory in nature as it seeks to understand a pattern of relationships and impacts (Yin, 2003). To support this question, the first sub question is definitional and exploratory. The second & third subquestions are exploratory and descriptive, oriented towards making an inventory of effects.

Research Questions are exploratory in nature and seeks to understand the pattern of relationship among maintenance strategies and maintenance practices planning & execution, reliability in maintenance, and benchmarking in maintenance. The study is aimed to study the existing maintenance processes of an Indian large gas utility company. Therefore, the temporal focus of the study is a current situation as shown in the below given Table 4.1 (Highlighted in Grey Colour)

Table 3.1 Research Questions: Type and Temporal Orientation

	Temporal Orientation of Research Questions		
Type of research	Backward looking	Current	Forward looking
question			
Exploratory	Exploratory	Exploratory	Exploratory forward
	backward looking	current	Looking
Less factual,			
more oriented	What could have been	What could be done	What will happen?
towards	done?	in this situation?	
understanding a			What will be the
trend/ pattern	What would have	What is the	impact of
	made	background of this	this initiative?
	more	trend?	
	effective?		How will people
		Yin (2003)	respond?
	Yin (2003)	Exploratory what	
	Exploratory what	Questions	Yin (2003)
	questions		Exploratory what
			Questions
Descriptive and	Descriptive	Descriptive	Descriptive forward
Predictive	backward looking	current	Looking

What were the outcomes of this strategy?	How many firms employ these processes?	What will be the outcome of adopting the processes?
How many projects	Who are currently	
have met	involved in this	Yin (2003)
expectations?	project?	Inventory what
		questions,
Yin (2003)		Who what where
Inventory what	Yin (2003)	Questions
questions, Who what	Inventory what	
where questions	questions, Who	
	what	
	where questions	
Explanatory	Explanatory	N.A.
backward looking	current	
What happened?		
Why did it happen?	What happened?	
What is the current	Why did it happen?	
status?	What is the current	
	status?	
Yin (2003)		
How, why questions	Yin (2003)	
	How, why questions	
	outcomes of this strategy? How many projects have met expectations? Yin (2003) Inventory what questions, Who what where questions Explanatory backward looking What happened? Why did it happen? What is the current status? Yin (2003)	outcomes of this strategy? How many projects have met involved in this expectations? Yin (2003) Inventory what yin (2003) Inventory what questions, Who what where questions Explanatory backward looking What happened? Why did it happen? What is the current status? Yin (2003) How, why questions employ these processes? Who are currently involved in this project? Explanatory what questions, Who what where questions Explanatory current What happened? What is the current status? Yin (2003) How, why questions Yin (2003)

(Source: Fenema, 2002; Yin, 2003)

3.2.5 OBJECTIVES OF THE STUDY

The specific objectives of the research work are:

- 1. To understand and model the existing maintenance strategies & maintenance practices planning and execution in a large gas utility company in India.
 - a. To describe the common and different maintenance strategies
 & practices in the business verticals such as Petrochemicals &
 NG Pipelines of gas utility company.
 - b. To describe the extent of practices regarding reliability in maintenance of equipment/assets/processes.

2. To find the gaps between maintenance strategies & practices and benchmarks in maintenance.

3.3 OVERALL APPROACH AND RATIONALE

In the research process, researcher defines the problem in practice. Then, the researcher explores and understands the nature of problem completely through a systematic study (Maxwell, 1996). Research questions and research design are developed so as to methodically understand the problem in study. Next, existing theory related to the problem statement is explored and integrated using the theory development methodology. Based on the existing theory, "conceptual lens" is developed to study the problem.

Further, empirical research design and data analysis approach are developed with the basis of conceptual lens framework & research questions. Then, the researcher starts data collection as per defined design methodology in research study. The data collected is analysed based on conceptual lens framework and the outcomes of data analysis are the findings of the research study. These findings might lead to existing theory extension and helps to understand and specify recommendations to the problem. This overall research design is shown in the Figure 3.1.

This research study aims to understand the existing maintenance strategies and maintenance practices of Indian gas utility company to understand the processes of maintenance strategies formulation, selection, implementation and maintenance performance. Objective of this research approach is to provide rich description about processes of maintenance strategies & maintenance practices planning and execution including underlying factors contributing for maintenance strategy formulation in the operational and tactical level. Therefore, this research approach helps to understand how the formulation of maintenance strategies is carried out in the company and why the specific maintenance strategies are selected for particular operation/equipment etc.

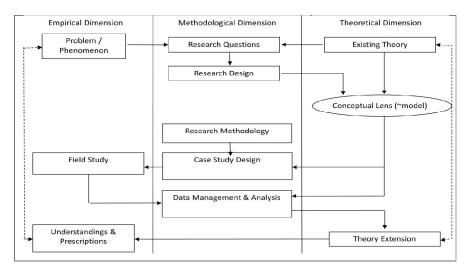


Figure 3.1 – Research Process (Maxwell, 1996)

Further, extensive literature are available in the area of maintenance strategies; but, there is a lack in study on how the maintenance managers/engineers are ensuring smooth operation of plant by effective use of maintenance strategies in planning & execution at an organisation level in an Indian context. Maintenance Strategy related frameworks cover the major elements related to maintenance strategy formulation to implementation of maintenance strategies (McAllister et al., 1999; Kelly, 2006; Salonen, 2011; Pintelon & Gelders, 2002; Eti et al., 2006; Muchiri et al., 2011; Pintelon & Parodi, 2008; Umar, 2011). However, these frameworks/models do not explain in-depth about maintenance strategy selection, outcomes of maintenance strategies based on maintenance practices being carried out at an organisation level.

In view of above background and research questions, it has been decided to undertake a study on maintenance strategies and maintenance practices at an organisation level in an Indian context (A large Indian gas utility company). Qualitative research method and Case-study method as research strategy have been used in this research study. The reasons for adopting these research methods are well explained in the subsequent sections. Next section discusses in detail about philosophical assumptions underlying this choice and reasons for adopting this approach.

3.3.1 Philosophical Assumptions

The appropriate research methods, constituents' of valid research, and assumptions about the nature of reality are few factors the research study depends on (Myers, 2013). These philosophical assumptions consist of a position toward the nature of the reality and how it should be constructed (ontology), how the researcher knows about the reality and what is the basis for his/her knowledge (epistemology), what are the values put into the research (axiology), how the researcher writes about it (rhetoric), and the methods used in the research process (methodology). These are explained by Creswell, 2007. The below given Table 3.2 summarises the above assumptions related to this research study and their implications on this research.

Table 3.2 Philosophical Assumptions along with implications for this Research Study

Assumptions	Question	Characteristics	Implication in this
			research study
Ontological	What is the nature of	As described by	Quotations & Concepts
	reality and how it	participants in the	are described in words
	should be	research study, reality	of participants and
	constructed?	is subjective and	evidences have been
		multiple in nature. The	provided to explain
		nature of the world and	different perspectives.
		what we can know	
		about it.	
Epistemological	What is the nature of	Researcher attempts to	Researcher spent time
	knowledge and the	understand thoroughly	of 30 days in various
	relationship between	and be in continuous	sites of gas utility
	the knower and the	touch with subjects	company and observed
	would-be known?	being studied in this	the maintenance
		research work.	practices &
			implementation of
			maintenance strategies
Axiological	What values go in to	Researcher	Inferences and
	research?	acknowledges the	interpretations of
		value addition in this	researcher are validated
		research study	with the interpretations

			of interview participants
Rhetorical	How the researchers	The writing style	First person pronoun is
	write about his/her	adopted in this research	used in the research;
	research study?	study is of literary and	Provided rich
		informal style using the	description of the
		personal voice. It also	problem
		uses qualitative terms	
		and limited definitions.	
Methodological	What is the process of	To study the topic	Research has described
	research? (or) How	within its context	the context of
	can the knower go	inductive logic with	maintenance strategy
	about obtaining the	good design is used.	and practices at an
	desired knowledge &		organisation level.
	understandings?		Conceptual lens has
			been revisited based on
			the findings from case
			studies.

(Source: Creswell, 2007; Ritchie & Lewis, 2003; Guba & Lincoln, 2005)

These assumptions reflect a particular paradigm that researchers make when selecting qualitative research methods. A paradigm is "a broad view or perspective of something" (Taylor, Kermode & Roberts, 2007). Research could be affected and guided by a certain paradigm and it can be defined as "patterns of beliefs and practices that regulate inquiry within a discipline by providing lenses, frames and processes through which investigation is accomplished (Weaver & Olson's, 2006)". Therefore, to clarify the researcher's structure of investigation and methodological choices, the paradigm adopted for this research study has to be discussed prior to any discussion about the specific methodologies utilized in this study. This study used interpretive paradigm (Orlikowski & Baroudi, 1991; Knowles & Cole, 2008), the details are provided in the subsequent section.

3.3.2 Scientific Paradigms

There are five underlying paradigms are available for qualitative research. They are positivism, post-positivism, critical theory, constructivism, and participatory (Guba & Lincoln, 2005). Another theory provides four

paradigms such as post-positivism, constructivism, advocacy/participatory, and pragmatism (Creswell, 2003).

Positivism paradigm has more suitable options to conduct natural science research. Generally, positivists are having belief that reality can be described objectively with the measurable properties. Such properties are independent of researcher and the instruments being used (Myers, 1997). In this paradigm, theory has been tested based on hypothesis so that predictive understanding of the problem can be improved. A research can be categorised into positivist approach in case there is evidence of formal propositions, quantifiable measures of variables, testing of hypotheses and also inference about a problem can be drawn from the sample to a stated population (Orlikowski & Baroudi, 1991; Ritchie & Lewis, 2003). This research study is to explore the processes of maintenance strategies and maintenance practices at an organisation level in order to understand the tacit & implicit knowledge available with the maintenance managers; it is not possible to develop the hypothesis for testing and also to have a measurable list of variables. Therefore, positivist paradigm is not suitable for this study.

Social reality is historically constituted and people are responsible for production and reproduction of it. People can change their social and economic circumstances with their conscious act. The paradigm which is having such an assumption is named as Critical research paradigm. Accordingly, critical researchers begin from premise that there is an apprehension between control and resistance by various forms of social, cultural and political domination (Meyers, 1997). Estrange and restrictive conditions of the status quo are brought to reality by doing social critique which is the main task of critical researchers. Further, critical researchers should help to eliminate the causes of alienation and domination of society and their research should focus on conflicts and contradictions in present-day society. This research study does not search for alienation and domination conditions in the society. This research study would emphasize the social

contractedness of reality and therefore an interpretive approach is selected for this research.

Hermeneutics and phenomenology is the philosophical base of interpretive approach (Myers, 1997). The basic assumption of interpretive research is that social reality can be accessed only through social constructions such as language, consciousness and shared meanings. Interpretive paradigm supports the view that there are many truths and multiple realities and focuses on holistic perspective of the person and environment. Interpretive studies usually attempt to understand problem through the meanings that people assign to them and interpretive methods of research are "aimed at producing an understanding of the context of the problem, and the process whereby the problem influences and is influenced by the context" (Walsham, 1995). The study adopts a social constructivist vision of reality that implies reality is socially constructed by the observer (Berger & Luckmann, 1967).

Table 3.3 Comparison between Scientific Paradigms

Characteristic	Positivist View	Interpretive View
Purpose	The researcher will predict and	The researcher will interview the
	explain changes in phenomena	stakeholders and recognise the
	of study	value and depth of the individual
		content
Beliefs	One truth exists	Many truths and
	Must be objective	realities
		Different people have
		different perceptions,
		needs and experiences
Research Method	Quantitative	Qualitative
What Study Data	Measurable outcomes from	Descriptive, explanatory and
is Based Upon	questionnaire data	contextual words of interview
		data
Study Sample	Clear and precise inclusion and	Representatives who are able to
	exclusion data	provide expertise from different
		point of view

(Source: Ritchie & Lewis, 2003)

The holistic view of research problem and individual interpretive process for understanding of the problem are the characteristics of hermeneutics researcher. Researchers in this tradition are allowed to be subjective and devoted. Pre-understanding in the hermeneutic perspective is considered as a requirement as this will help the researcher to understand and interpret conditions (Patel & Davidson, 2003). Pre-understanding is an essential concept and also an indispensable prerequisite in the hermeneutic approach because, it gives direction to the research. In hermeneutics theory, interpretation and understanding of situation by studying the human nature, action and language can be carried out in well-structured manner (Bell & Bryman, 2007; Patel & Davidson, 2003).

Specifically, the study uses an adapted version of grounded theory (Glaser & Strauss, 1967). It can also be referred as constructivist grounded theory (Charmaz, 2006). Its two processes are ascertaining and emerging. These processes are carried out by a thorough interpretative process. The results of the interpretative process are concepts and development of theory. This approach does not seek the universal and lasting legitimacy. However, the research outcome will provide one interpretation among multiple interpretations of a shared or individual reality (Charmaz, 2006).

3.3.3 Scientific Approach

There are three different types of research approaches that are being used by researchers to relate the existing theories with empirical data. These research approaches are deductive, inductive, and abuctive. All these three research approaches are explained in detail in the subsequent paragraphs.

The deductive approach starts from the existing theories in the particular research area. These theories are tested with the help of hypotheses and the research questions formulated for the research study. The empirical data are collected based on these hypotheses and research questions so as to do comparison between existing theories and empirical data. The conclusion is

arrived through an analytical process. (Gummesson, 2000; Bell & Bryman, 2007).

The inductive approach is based on empirical facts. In this approach, empirical data collection is the first step. Based on the empirical data, researcher develops a concept. Further, the concepts are used to structure theories. The difference between inductive and deductive approaches is that deductive approach tests the existing theory and inductive approach generates new theory (Gummesson, 2000).

Inductive approach has been used in this research study. Empirical data are collected from maintenance managers of the gas utility company through semi-structured interview regarding their existing practices in the area of maintenance strategies in petrochemicals and NG Pipelines. Then, concepts have been developed through systematic analysis of data using qualitative software. Further, using these concepts process model has been developed for maintenance strategies & maintenance practices planning and execution.

The abductive approach is the iterative process among theoretical framework, empirical data and the analysis of case. The outcomes of creative iterative process are systematic combination of matching theory and extension of theory of previous research study (Spens & Kovacs, 2006). Therefore, new theory development is possible in this approach. The steps in abductive approach are development of theory through inductive approach, explanation of theory, testing of new theory through case study. This demands experience in the area of study therefore, this method cannot be applied schematically (Saunders, Lewis, & Thorhill, 2007). The abductive approach is not used in this research study since the new theory development is not the aim of this study.

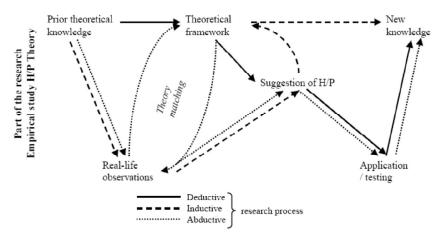


Fig. 3.2 – Three Different Research Approaches (Spens & Kovács, 2006)

3.3.4 Research Method

There are many ways to categorise research methods in social science research. The major research methods are *Quantitative* Research Method and *Qualitative* Research Method. Quantitative method starts with a test of theory then the researcher identifies the relationship among variables and finally poses this in terms of questions/hypotheses. This method uses instruments like surveys and experiments to understand natural phenomena in natural science research. To understand social and cultural phenomena in social sciences the *Qualitative* research method has been developed. Example of qualitative research methods are case study research, action research, and ethnography (Ritchie & Lewis, 2003).

Understanding the context of the research problem and setting of the participants are the requirements of Qualitative researchers. This helps researchers to gather information personally through visiting the problem context. So that, they can make interpretation based on their findings and the researchers experience and background help them to organise the interpretations (Denzin & Lincoln, 2005). Research questions are exploratory in nature (Maxwell, 1996; Yin, 2003), therefore the Qualitative research method has been chosen for this study. This method helps the researchers to study the problem in detail with respect to understanding of people and

context (social/cultural) within which they exist (Myers, 1997). In Qualitative research method, research problem can be studied through understanding the patterns and relations in dialogue, archival documents, work place diagrams, etc. Inductive approach is the strength of the qualitative research method. This focuses on specific circumstances or people and emphasis on words rather than numbers (Maxwell, 1996). Rossman & Rallis (1998) offer eight characteristics of qualitative research and researcher as shown in Table 3.4

Table 3.4 Characteristics of Qualitative Research Method

Research Method	Characteristics	
Qualitative Research	Naturalistic – takes place in the natural world	
	• Uses multiple methods that are interactive and	
	humanistic	
	Is emergent rather than tightly prefigured	
	Is fundamentally interpretive	
	 Views social worlds as holistic or seamless 	
	• Engage in systematic reflection on his own role in	
	the research	
	• Is sensitive to his personal biography and how it	
	shapes the study	
	• Uses complex reasoning that is multifaceted and	
	iterative	

(Source: Rossman & Rallis, 1998)

A comparison of Qualitative and Quantitative approaches is presented in Table 3.5 based on purpose, research methods, validity, conceptual framework etc. for understanding the qualitative research method.

Table 3.5 Comparison of Qualitative and Quantitative Elements in Design

	Quantitative	Qualitative	
Purpose	Precise measurement	Meaning, Context & Process	
	and comparison of	 Discovering unanticipated events, 	
	variables	influences, and conditions	
	 Establishing 	• Understanding single cases	
	relationships	Inductive development of theory	
	between variables		

	• Inference from	
	sample to population	
	sample to population	
Compositional	Variance theories	Process theories
Conceptual	Variance theories	Process theories
framework		
Research	Variance questions	 Process questions
questions	-Truth of proposition	How and why
	-Presence or absence	 Meaning
	-Degree or amount	 Context (holistic)
	- Correlation	Hypotheses as part of conceptual
	Hypothesis testing	 framework
	Causality (factual)	Causality (physical)
Research Method	<u> </u>	, d ,
Relationship	Objectivity /	Use of influence as tool for
1 to two to the property of th	reduction of	understanding (researcher as part
	influence (researcher	of process)
	as extraneous	of process)
G P	variable)	
Sampling	Probability sampling	 Purposeful sampling
	• Establishing valid	
	comparisons	
Data collection	Prior development of	• Inductive development of
	instruments	strategies
	 Standardisation 	 Adapting to particular situation
	Measurement /	• Collection of textual or visual
	testing – quantitative	material
	/	
	 categorical 	
Data analysis	Numerical	Textual analysis (memos, coding,
	descriptive analysis	connecting)
	(statistics,	Grounded theory
	correlation)	Narrative approaches
	Estimation of	· ····································
	population variables	
	Statistical hypothesis	
	testing	
	• Conversion of	
	textual data into	
Validity	number of categories	
Validity		
Internal	Statistical conclusion	 Descriptive validity

validity	validity	Interpretive validity
	Construct validity	Construct validity
	Causal validity	Causal validity (identification and
	(control of	assessment of alternative
	extraneous variables)	explanations)
Generalizability	External validity	Transferability
	(comparability)	Generalizing to theory

(Source: Maxwell & Loomis, 2003)

Qualitative research method was selected for this study for following reasons using above table as a guide. First, the nature of research questions suggests a qualitative approach. These are more of "how" and "what" types rather than "how many" or "how much" or "why" types. Second, the aim is to present a detailed understanding of maintenance strategies and maintenance practices at an organisation level (in a large gas utility company in India), requiring a focus on maintenance managers/engineers perspective and their meaning i.e. tacit & implicit knowledge available with the maintenance managers. Without getting involved, detailed understanding of these maintenance processes is difficult to understand and describe. Therefore, semi-structured interviews and secondary data were used for data collection. Participant observation has also been used as an additional technique for collecting data in this thesis. This helps to researcher to better understand tacit and implicit aspects of formulation of maintenance strategies and maintenance practices existing in the company. Third, maintenance strategy formulation and implementation aspects of this study needs to be studied in natural settings, rather than in controlled experimental settings.

3.3.5 Research Strategy-Case Study

Researcher can select a particular type of qualitative research method suitable to the research study since various qualitative research methods are available. Examples of qualitative methods are action research, case study research, and ethnography (Ritchie & Lewis, 2003). Based on the following conditions each method is having advantages and disadvantages: (a) type of research question,

(b) Investigator control over actual behavioural events, and (c) focus on contemporary phenomena instead of historical phenomena (Yin, 2003).

Solving actual problems with the active participation is the focus of action research method. This method is not suitable for this research study. Since the research objective is not to provide immediate solution to the problem of concerned people. Description and interpretations of a cultural and social group is the ethnography method. This method helps to understand the social world of people under study. The same can be done through engagement in the people community in order to produce people description in detail including their culture and beliefs.

Investigation of current phenomenon within its real-life context where the boundaries are not clearly evident between phenomenon and context is the main focus of case study method. Case study research uses multiple sources of evidence for data triangulation (Yin, 2003). In this research study, we need to understand existing maintenance strategies and practices at an organisation level. In a maintenance function of the organisation, the tacit and explicit knowledge available with maintenance managers & engineers working in the organisation needs to be captured for understanding existing approaches in maintenance strategies formulation. Therefore, there is a need to gather an indepth understanding of this knowledge in formulation of maintenance strategy & practices at an organisation level. Qualitative research method is a suitable method in capturing and reusing such tacit and explicit knowledge in the field of best practices in maintenance management at the company.

For this research, case study method was chosen because it best matches with the requirements of the research and researcher's ability. Case study method is preferred when "how" or "why" questions are posed, when the investigator has little control over events, and when the focus is on contemporary as opposed to historical phenomenon within some real life context (Yin, 2003). Further, the case study method allows studying both the phenomenon of interest and context, producing a large number of potentially relevant variables

(Yin, 2003). Therefore, this method is selected. Case study method is the most commonly used qualitative method in such kind of study (Orlikowski & Baroudi, 1991; Alavi & Carlson, 1992; Myers, 1997; Palvia, Mao, Salam, & Soliman, 2003).

The purpose of this research work is to understand & describe the formulation of maintenance strategy at an organisation level (large gas utility company). Further, to understand why the particular maintenance strategy has been chosen and how these formulated strategies are being practiced in the organisation. A case study approach has been selected for this research study because, the definition of the case study method say that "the central tendency among all types of case study, is that it tries to illuminate a decision or set of decisions: why they were taken, how they were implemented, and with what result" (Yin, 2003).

The chosen design & methodology decisions which enclose the methods and techniques employed in designing this research study is summarised in the below shown Figure 3.3. Case Study Design and data collection strategies are described in the subsequent sections in detail.

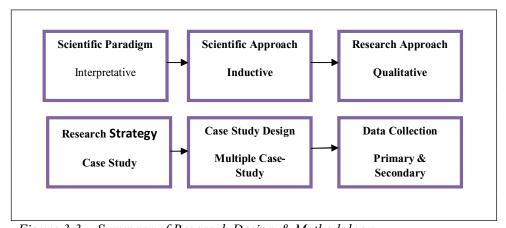


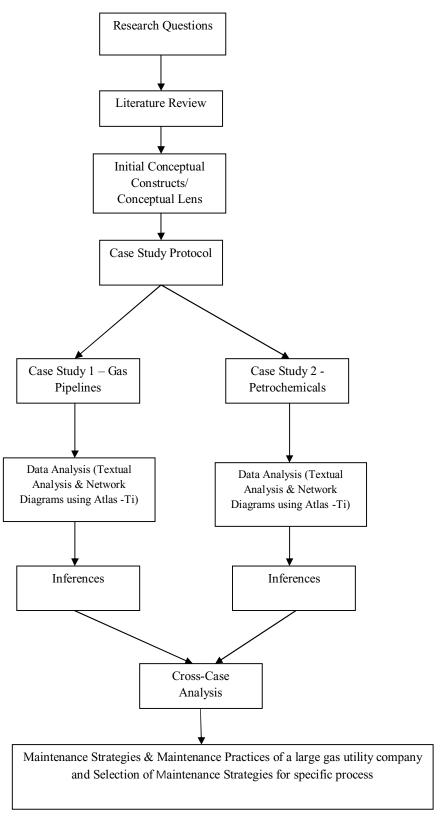
Figure 3.3 – Summary of Research Design & Methodology

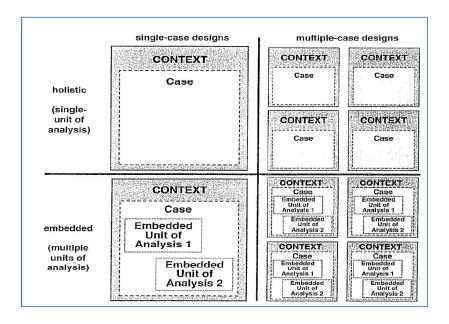
3.4 Case Study Design

Design of case study includes the process of carrying out case study, selection of number of cases, unit of analysis, case selection criteria, etc. Figure 3.4 explains the case study design used in this research study.

Case Study method as research strategy encompasses all the aspects such data collection, data analysis, and data presentation which can be taken as an all-inclusive method (Yin, 2003). Therefore, such kind of study starts from existing literature discussion, data collection and a vigilant analysis of the evidences through an interpretive perspective (Yin, 2003). The same strategy has been used in this research study also.

GAIL (India) Limited, a large gas utility company has been chosen for the study on maintenance strategy & maintenance practices since it is having 70% market share in natural gas industry and it is a No. 1 gas utility company in India. GAIL (India) Limited, a Maharatna Public Sector Undertaking, is having 7 LPG processing plants, 1 Petrochemical processing plant & 3 Natural Gas Pipeline networks & 2 LPG pipeline networks. Further, researcher is having experience of 20 years in this company. In 20 years, the researcher worked in Petrochemicals plant maintenance for 10 years. The researcher is having almost 16 years of experience in maintenance of petrochemicals and gas processing plant. Selection of the large gas utility company helps researcher to interact with the maintenance managers in-depth & able to participate in the maintenance activities in order to observe the maintenance practices at site.




Figure 3.4 Case Study Design

3.4.1 Number & Type of Cases

Selection of case such as single case study design or multiple case study design is an important aspect in case study method. If the case is to test the well formulated theory, or an extreme or unique case or a revelatory case then the single case study design is a suitable method for the case study (Yin, 2003). Neither of these conditions is applicable to this research study. Therefore, a multiple case design was chosen. Then, the number of cases that was necessary or sufficient needed to be decided. In multiple case studies, each case serves an explicit purpose within the overall scope of examination (Yin, 2003). Replication logic is needed for multiple case analyses and further it increases the external validity of research (Eisenhardt, 1989; Yin, 2003)

GAIL's major business verticals are Natural Gas Transmission, Petrochemicals, Liquid Hydrocarbons (LPG Processing plant), LPG Transmission, City Gas Distribution, Exploration & Production, Tele communication & Power. The business verticals such as petrochemical process plant and natural gas pipeline networks are having unique operation processes in the gas utility company. Therefore, town case studies such as NG Pipelines and Petrochemicals are selected with the purpose of comparison of findings from multiple cases, the selection of case studies should follow "replication" logic. Replication logic suggests treating a series of cases as a series of experiments. Each case is helping to confirm or disconfirm the conceptual lens framed during the study. Replication logic aims to show or predict similar results, and explain contrasting results by giving anticipated reasons (Yin, 2003). Therefore, multi case holistic design (Type 3; Yin 2003) of case study research design has been selected for this research work.

Multiple-case design has been considered because, the evidence from multiple cases is often more compelling, and the overall study is therefore regarded as being more robust (Yin, 2003). Basic types of design of case studies suggested by Yin, 2003 is presented in the below given Figure 3.5 for reference.

Source: Yin (2003); COSMOS Corporation

Figure 3.5 Basics Types of Designs for Case Studies

3.4.2 Selection of Cases

The selection of two cases depended upon theoretical and pragmatic considerations. In the gas utility company, Natural Gas Transmission contributes 74% of the turnover of the company with the profit contribution of 58% of company's total PBT. Similarly, Petrochemicals contributes 8% of the turnover of the company with the profit contribution of 27% of company's total PBT. Approximately, 45% of man power has been deployed in these business verticals. Therefore, these two business verticals have been chosen for the study on Maintenance strategy & Maintenance practices.

3.4.3 Structure of Case Study Design

The structure of case design is as given under:-

Case 1: Maintenance strategy & practices for Petrochemical processing plant

Unit of Analysis: Plant

Level of Analysis:

- 1) Company level (at corporate)
- 2) Unit/Department level (Mechanical/Electrical/Instrumentation)
- 3) Individual (Sectional HODs/Supervisory level/Executing level)

Case2: Maintenance strategy & practices for Natural Gas Pipeline network

Unit of Analysis: Plant

Level of Analysis:

- 1) Company level (at corporate)
- 2) Unit/Department level (Compressor Stations/Gas Terminals/RR Stations/SV Stations)
- 3) Individual (Sectional HODs/Supervisory level/Executing level)

Above two cases have been done separately and then cross case analysis of maintenance strategies & practices in Petrochemical plant & Natural Gas Pipelines network are conducted. Three levels are selected to cover employee levels exists in the company i.e., junior level management (individual); middle level management (unit level/department level); senior level management (corporate level).

A common and different maintenance strategies & practices applicable are also identified for the above two business verticals of the large gas utility company in India. Based on the study of above cases Case 1 & Case 2, the process model of maintenance strategies & maintenance practices planning and execution for the selected gas utility company is developed.

3.4.4 Sampling

Theoretical sampling method was employed for this study. For data sample, Gail's petrochemical complex & compressor stations, Gas Terminals, Radio Repeater (RR) Stations and Sectionalising Valve (SV) Stations of NG pipeline network were considered. The plants/terminals/stations were identified using the data base available with the company in GAIL's Intranet/website. Among the maintenance and operation managers working in these plants/terminals/stations were interviewed based on their availability either at site location or Training institute.

The names & contact details of the maintenance/operation managers were obtained from the Telephone directory available in the GAIL's Intranet/website. Among the managers identified, based on the unit of analysis & level of analysis, 25 managers/engineers related maintenance functions were chosen. Finally, interviews were conducted from 10 maintenance managers/engineers including both the case studies Case Study 1 & Case Study 2.

3.5 Data Collection Method

"Immersion in the details and specifies of the data to discover important categories, dimensions, and interrelationships; exploring genuinely open questions rather than testing theoretically derived hypotheses" (Patton, 1990). Accordingly, data gathered in this research has been analysed and interpreted inductively. Further, Qualitative data is "detailed, thick description, inquiry in depth, direct quotations capturing people's personal perspectives and experiences" (Patton, 1990).

The advantages of case study method are:- (i) case study method provides systematic collection & organisation of data, comprehensive data analysis methods in order to ensure in-depth information above each case under study, (ii) it allows to interviewees to share their experiences in their own language

rather than the researchers', (iii) it involves collection of evidences for data collection from the various sources like documents, archival records, questionnaire, interviews, observations, and physical artefacts (Eisenhardt, 1989, Yin, 2003), (iv) this method ensures the validity of the research findings through triangulation of data collected from multiple sources.

Data collection activities primarily contain conducting site visits for the case studies, collection of data before and after a visit based on requirement. The empirical investigation in this research study included collecting data from the plants Petrochemicals and NG Pipeline units such as compressor stations, terminals etc. of gas utility company in India.

Data at the gas utility company was collected from four sources: participant observation, interviews, informal discussions and archival documents. The observations focused on the process elements of context, actors and actions (Pettigrew, 1997). The researcher also made detailed field notes and noted down the interactions taking place among the maintenance personnel at the company whenever possible.

The data was collected from the Maintenance Managers of GAIL using the case study protocol. A case study protocol is a document that contains the questionnaire (instrument) for data collection as well as the procedures and general rules to be followed in using the protocol. During data collection stage, Construct validity was checked using multiple sources of evidence (document analysis) and reliability has been ensured by using case study protocol (Yin, 2003). In section 3.8, Data Collection Protocol (DCP) used in this research study for interview is discussed in detail. The detailed case study protocol was developed before data collection and semi structured interviews with the maintenance personnel of the large gas utility company's petrochemical plant & NG Pipelines were conducted.

Before starting the interview, interviewee person was explained that the case study material and the interview data would be used in two ways: (i) To understand & model maintenance strategies & practices planning and execution for this research study and (ii) To use data for a case publication in thesis, conference, papers, and book. A brief introduction was also given to the interviewee person about this case study research based on the framework given above.

The interviews were conducted at three levels to collect the data for the study of maintenance strategy & practices in the gas utility company. The three levels are as given under.

- 1) Interview with Senior Management (Maintenance Heads in corporate level or unit level)
- 2) Interview with Middle Management (Departmental Heads at unit level)
- 3) Interview with Junior Management (Sectional Heads/ Engineers/ supervisors at unit level)

The above interviews lasted between 30 to 60 minutes. The interviews are recorded and fully transcribed. Typed interview scripts are also shown to the interviewees, along with follow-up questions. Table 3.6 summarises the main steps of data collection for all cases.

Table 3.6 Main Steps in Data Collection

Steps in data collection	NG Pipelines	Petrochemicals
	(Case Study 1)	(Case Study 2)
Development of Case Study Protocol	December, 2012 to April, 2013	
(CSP), Review and final CSP		
development		
Initial Contact and Arrangements	May, 2013	June, 2013
Data Collection Interviews	July, 2013 to	July, 2013 to August,
	October, 2013	2013
Site visits for field observations	October, 2013 to	September, 2013 to
	November, 2013	November, 2013
Review of case report for internal	November, 2013	November, 2013
validity		

Additional data collection	December, 2013	December, 2013
Total Number of interviews	6	6

3.6 Data Analysis Strategy

Systematic investigation and analysis of data so as to present the interpretation and presentation of findings is the main purpose of qualitative investigation. The challenges in data analysis are "make sense of massive amount of data, reduce the volume of information, identify significant patterns, and construct a framework for communicating the essence of what the data reveals" (Patton, 1990). The researcher's interpretations and description of phenomena is the basis for data analysis in this research. These interpretations are subjective based on actors' experiences in a context. Such kind approach is classified in modified form of ground theory (Locke, 2001; Charmaz, 2006).

Data analysis is aimed to identify (i) the nature of maintenance strategies & maintenance practices including benchmarking of maintenance practices and maintenance reliability of the large gas utility company, (ii) maintenance strategies selection process in the company, and (iii) the relationship between maintenance strategies selection process and the factors contributing to maintenance strategies & maintenance practices. Two major steps were adopted in data analysis for this research study: within case analysis and cross case analysis. Within case analysis approach is to understand the case individually and documenting it thoroughly. In cross case analysis, similarities and differences across cases were explored.

Within case analysis helps to organize individual case data for in-depth study and to manage the staggering volume of data (Eisenhardt, 1989). After completion of individual case's data collection and analysis, search for cross-case patterns are carried out from qualitative data. These patterns are such as categories, codes, dimensions, and theme/scheme classifications (Patton, 1990). The initial conceptual constructs identified for conceptual lens are the

basis for categories to search for within-case similarities and between-case differences.

Data Analysis has been carried out with the Textual Analysis and cross case synthesis. Textual analysis has been done with the help of Atlas TI software; network diagrams have been formulated with the necessary quotation and frequency analysis.

3.6.1 Data Analysis using Grounded Theory

The data analysis using grounded theory is an iterative process involving several iterations between interview data, existing theory, and observation data (Charmaz, 2006).

Following three steps were used iteratively for conducting data analysis:

- 1. Open Coding
- 2. Focused Coding
- 3. Identifying patterns of relationship among conceptual categories

The first two steps help in exploring and understanding the nature of maintenance strategies and maintenance practices in the large gas utility company by developing codes, categories and concepts of maintenance strategies and practices being following in the company. The last step helps in identifying the factors contributing to the selection of maintenance strategies and their impact in maintenance practices. Details of these activities are as given under:-

Step I: Open Coding

Input data are selected, categorised and combined to understand main concepts by using open coding method. Further, it is used to identify the relevant constructs. Part of the text which are sentences or paragraphs (Strauss & Corbin, 1990) describing (i) the nature of maintenance strategies &

maintenance practices including benchmarking of maintenance practices and maintenance reliability of the large gas utility company, (ii) maintenance strategies selection process in the company, and (iii) the relationship between maintenance strategies selection process and the factors contributing to maintenance strategies & maintenance practices assigned with labels for easy retrieval and categorisation (Miles & Huberman, 1994) using open code technique (Strauss & Corbin, 1990; Charmaz, 2006).

'The investigator identifies potential themes by pulling together real examples from the text' is the process of open coding (Ryan & Bernard, 2000). Open coding implies that the codes are discovered from the empirical data. New codes are created as a new evidence (for example issues, themes) emerges from data. The open coding is used to investigate a new occurrence. The focus of research is on the outcomes of theoretical categories from empirical evidences (Strauss & Corbin, 1990; Charmaz, 2006).

Figure 3.6 below explains how the open coding was done from interview statement. In the example statement the words "Preventive Maintenance", "Predictive Maintenance", "Shutdown Maintenance" illustrates the maintenance methods (explains initial conceptual construct- Maintenance Tactics), therefore, in open coding step these were marked as codes. Similarly, phrases "maintenance of pipelines based on our previous experience", "Stand by equipment strategy" illustrate about maintenance strategy selection and therefore marked as codes. Phrase "pipeline availability of 99.9% on 24 X 7 basis" illustrates the maintenance objectives i.e., explains organisation's maintenance policy, and accordingly marked as code.

"GAIL is a Maharatna Company and is having profit of 5000 Crores. We follow globally proven standards with the pipeline availability of 99.9% on 24 X 7 basis availability of both pipeline & equipment. Standby equipment strategy is being followed for pipelines in cases of both NG & LPG Pipelines. I happened to work in both NG & LPG Pipelines. And also worked in world's longest LPG pipelines i.e., Jamnagar -Loni Pipeline and it was commissioned in 2001. We are following/best practices as I said. The maintenance methods are preventive/maintenance, <u>predicti</u>ve maintenance and shutdown maintenance. In case of preventive maintenance, every quarterly planning for <u>maintenance of pipelines</u> based on our previous experience and also world level/standards are being carried out. In the predictive maintenance, we do maintenance of compressors and other equipment. Whereas preventive maintenance are being carried out based on ISO Schedules" Maintenance Maintenance Maintenance **Tactics** Strategy Selection Policy/ Objectives

Figure 3.6 – Examples of Codes

Interview scripts coding was done through Qualitative Analysis software Atlas-Ti. This software enabled the data analysis process by helping with coding, linking codes, and text segments, creating memos, searching, editing and reorganising, and for visual display of data and findings (Miles & Huberman, 1994; Weitzman, 2000; Creswell, 2007).

Step II: Focused Coding

Codes with common attributes are merged to create conceptual categories and abstractions from the empirical data in focused coding. Such kind of consolidation helps to reduce the number of codes the researcher work with. It also helps to create the main themes which emerge from the empirical data

(Strauss & Corbin, 1990). Codes are grouped into categories using a bottom up approach as shown in the Figure 3.7 given below.

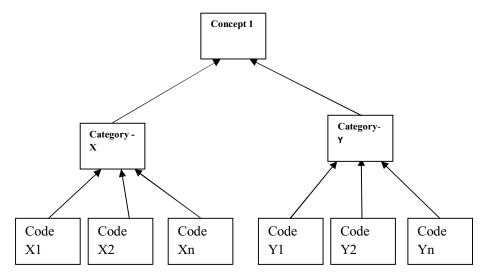


Figure 3.7 – Codes, Categories, and Concepts

During the open coding, codes illustrating (i) maintenance strategies and maintenance practices of the large gas utility company, (ii) selection of Maintenance Strategies, (iii) reliability of maintenance practices & strategies being used and (iv) benchmarking practices for maintenance processes, are discovered from the empirical data during the open coding. These codes are further consolidated into broader categories. Then, categories are classified into concepts/themes. Since it comes from conceptualisations of data, these are the basic units of analysis in grounded theory.

Initial Conceptual Constructs identified related to maintenance strategies from literature served as basis of identifying concepts. Statements illustrating these initial conceptual constructs are coded first. Then these codes are consolidated into categories: each category represented the factors which are related to maintenance strategies & maintenance practices of a large gas utility company. Finally, each category is linked to the categories of Initial Conceptual Constructs (ICC). In a category which could not be associated with the Initial Conceptual Constructs (ICC) is identified as new category (a new concept emerged). Figure 3.8 shows this categorisation and linking process in detail.

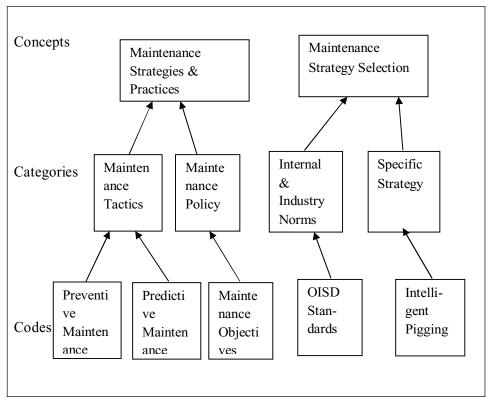


Figure 3.8 – Categorisation and linking of Codes, Categories & Concepts

Labelling of all interview data in to codes, categories and concepts are carried out using the methods such as open coding and focused coding as explained above. The relationships among codes and categories are compositional in nature. The relationships are generally of 'is part of', 'is a', 'is associated with'. The relationships between codes, categories and concepts are recognised using these causal relations. Then, the relationship is defined as the composition of a particular concept or category.

Step III: Identifying patterns of relationships among conceptual categories

This step supports to identify the underlying relationships between codes, categories and concepts. In data analysis, the relationships identified are causal ('is part of', 'is associated of') and associative in nature. Accomplishments mentioned by interviewees leading to the maintenance strategy processes are

identified by creating appropriate codes in Atlas Ti software. Figure 3.9 below presents how causal relationships identified from the interpretation of interview statements.

"GAIL is a Maharatna Company and is having profit of 5000 Crores. We follow globally proven standards with the pipeline availability of 99.9% on 24 X 7 basis availability of both pipeline & equipment. Standby equipment strategy is being followed for pipelines in cases of both NG & LPG Pipelines. I happened to work in both NG & LPG Pipelines. And also worked in world's longest LPG pipelines i.e., Jamnagar -Loni Pipeline and it was commissioned in 2001. We are following best practices as I said. The maintenance methods are preventive maintenance, predictive maintenance and shutdown maintenance. In case of preventive maintenance, every quarterly planning for maintenance of pipelines based on our previous experience and also world level standards are being carried out. In the predictive maintenance, we do maintenance of compressors and other equipment. Whereas preventive maintenance are being carried out based on ISO Schedules" Leads to cause of

Figure 3.9 Casual Relationships identified from Interview Statements

As shown in the Figure 3.9, "Standby equipment strategy" is the specific maintenance strategy being adopted in gas pipelines that leads to "pipeline availability of 99.9% on 24 X 7 basis" in order to achieve the gas utility company's maintenance objective/policy. Similarly, "previous experience" of maintenance managers is the cause of "preventive maintenance plans" in the gas utility company. It implies that preventive maintenance planning is being done based on previous experience of maintenance engineers/managers in the organisation. Accordingly, these codes are linked through Atlas-Ti software by

"leads to" and "is cause of" and "is part of" relations as shown in the above Figure.

Abstraction of these codes into categories and categories into concepts leads to inheritance of relationships between codes which are already identified from the data by the categories and codes. Continuing with the above example, code "pipeline availability of 99.9%" is associated with "maintenance policy", which in turn is part of "maintenance strategies & maintenance practices" concept. Similarly standby "equipment strategy" code is associated with the category "Specific maintenance strategies for NG pipeline", which is part of the concept "selection of specific maintenance strategy for a particular operation process/equipment".

The casual relationships such as "leads to" and "cause of' between the codes are further classified in respective categories and codes as shown in Figure.3.10 below.

"GAIL is a Maharatna Company and is having profit of 5000 Crores. We follow globally proven standards with the pipeline availability of 99.9% on 24 X 7 basis availability of both pipeline & equipment. Standby equipment strategy is being followed for pipelines in cases of both NG & LPG Pipelines. I happened to work in both NG & LPG Pipelines. And also worked in world's longest LPG pipelines i.e., Jamnagar-Loni Pipeline and it was commissioned in 2001. We are following best practices as I said. The maintenance methods are preventive maintenance, predictive maintenance and shutdown maintenance. In case of preventive maintenance, every quarterly planning for maintenance of pipelines based on our previous experience and also world level standards are being carried out. In the predictive maintenance, we do maintenance of compressors, and other equipment! Whereas preventive maintenance are being carried out based on ISO Schedules"

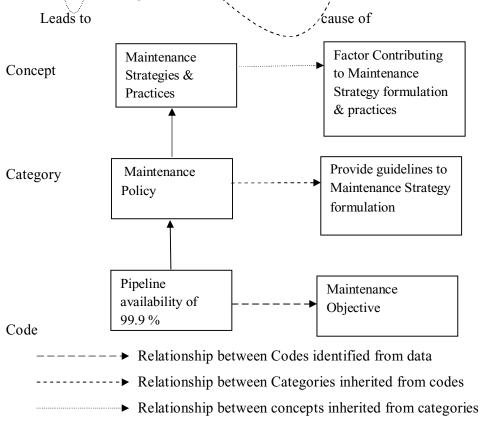
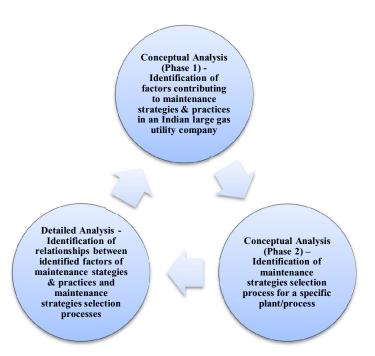


Figure 3.10- Relationships between Concepts/Categories inherited from Codes


3.6.2 Within Case Data Analysis

Within case data analysis is carried out based on interview data in terms of research questions: How the gas utility company is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment?. This approach leads to the identification of various factors contributing to maintenance strategies and maintenance practices. These factors form the basis for maintenance strategies selection and maintenance practices in the large Indian gas utility company. Further, maintenance strategies selection process being adopted for a particular operation process/equipment in the organisation is also identified. Then, the relationship between the identified factors of maintenance strategies & maintenance practices and maintenance strategies selection process in the company are analysed thoroughly. Figure 3.11 below shows the phases within case analysis.

The data analysis is carried out in two levels, conceptual and detailed. Conceptual analysis findings are of descriptive nature. These findings describe about the nature of maintenance strategy formulation, selection, and maintenance practices. Detailed analysis findings are of perspective in nature (Tsang, 1997). Therefore, it describes the relationships among the factors contributing to maintenance strategies and practices & selection of specific maintenance strategy for a particular operation process/equipment. Two level data analysis provides better internal validity of the research study by triangulation of perspectives on the same data set. This is known as theory triangulation (Patton, 1990).

<u>Phase 1 - Identification of factors contributing to maintenance strategies & practices in the large gas utility company</u>

The basic aim of this phase is to identify the factors contributing to maintenance strategies formulation & maintenance practices which are being implemented in the large gas utility company. As described in the previous section, open coding and focused coding are used to identify categories and concepts from the data. Codes illustrating about maintenance strategies and maintenance practices are discovered from the empirical data during the open coding. Then, these codes are combined into broader categories. Further, the categories identified are classified into concepts. This phase resulted in description of various factors contributing to maintenance strategies selection & maintenance practices of the company. The categories and concepts identified in this phase are used in next two phases.

Figure 3.11 – Phases of within case analysis

Phase 2 -Identification of maintenance strategies selection processes for a specific plant/ process

In this phase, open coding and focused coding are used to identify the maintenance strategies selection processes for a specific plant/process. Codes illustrating activities for managing maintenance strategies selection are discovered from the empirical data during the open coding. These codes are combined into categories. Then these categories are further classified into concepts. The relationships among the identified factors are labelled in Atlas-Ti software with "is associated with" relations.

Phase 3 - Relationships among the factors identified in phase 1 & maintenance strategies selection processes identified in phase 2

In this phase, an attempt has been made to identify the relationships between factors contributing maintenance strategies and practices and selection of maintenance strategies. A detailed analysis of interview data is carried out to identify the basic patterns among these factors.

Each phase's results are compared with the exiting literature to identify emerging new ideas and concepts. This process is continued till no more concepts and categories are found. The results of within case analysis are presented in the form of "qualitative associative networks". Associative networks are having nodes linked to each other by association. These networks set aside for fuzzy, intuitive and, subconscious relations between concepts which are to be presented visually. The associative networks are displayed using boxes and arrows, with the boxes containing the concepts. The arrows are representing the relationships among the concepts. The arrows can be unidirectional and bi-directional. Relationships include causality, association, choices, and time (Ryan & Bernard, 2000). The qualitative associative networks developed for the case studies NG Pipelines & Petrochemicals of the gas utility company are discussed in details in the chapter 4 & 5.

3.6.3 Cross Data Analysis

Replication logic is used for cross data analysis. This analysis is to compare and explain similarities, dissimilarities and, complimentary findings in the study of maintenance strategies and maintenance practices of the large gas utility company. Case comparison can be done by listing similarities and dissimilarities between the cases. Such case comparison includes the relative findings and contextual factors across cases (Eisenhardt, 1989).

Cross case analysis results are exhibited in the form of a content analytic summary table. Such analytic table focuses on content primarily. It does not refer to which case it comes from (Miles & Huberman, 1994). In this study, a content analytic summary is presented in the form of qualitative associative networks. The findings across cases are integrated through these network diagrams. The cross case analysis is discussed in detail in Chapter 6.

3.7 Quality of Empirical Research

This study does not claim the objectivity in line with the view of socially constructed reality. However, it provides the argument that the evolving theory is one of numerous possible explanations of reality constructed with the researchers as active instruments. The theory replicates the observation as well as the observed. Therefore, all the explanations are not meant to be treated as equally relevant, credible, and acceptable. As a researcher, it is required to present the argument of the case for theory explanation as per the requirement of research study.

This research focuses on rich description of maintenance strategies selection and maintenance practices rather than on generality as encouraged by others (Yin, 2003). Such kind of approach may be criticised because it supports only generation of a local empirical theory. It may not be generalised. Hughes and Jones (2003) argued that the approach mentioned above is still useful and it can contribute to the existing body of knowledge. Early qualitative researchers

are of the opinion that they are able to examine the case in more detail and thoroughly understand the interrelationships of data by limiting a study to a single organisation.

For evaluating quality of any research study following tests are used: Construct Validity, Internal Validity, External Validity, and Reliability (Yin, 2003) and the details of the same are discussed below.

3.7.1 Construct Validity

Ascertain the correct measures for the concepts being studied is referred as construct validity (Yin, 2003). This demands that the selected concepts are measured correctly. Data triangulation addresses the potential problems of construct validity when the evidences are collected from various sources. Few quotes from Yin, 2003 regarding data triangulation are, "it aimed at corroborating the same fact or phenomenon" and "when you have multiple sources that nevertheless address different factors". Gathering evidences from multiple sources essentially provide "multiple measures of the same phenomenon" (Yin, 2003) and ensures "stronger substantiation of constructs and hypotheses" (Eisenhardt, 1989).

A technique called triangulation which combines different sources of evidence in a single study is used to address construct validity (Rossman & Wilson, 1985). One of the major strength of the case study approach is the combination of different sources (Yin, 2003). This case study includes various sources for collecting relevant data like interviews, documents, company's website, intranet, observations and artefacts. The interviews and field observations are transcribed and used in the data analysis. This approach enhances the construct validity by providing multiple perspectives of the phenomena. Chain of evidence approach would allow an external observer to follow the source of evidence from initial research questions to case study conclusions.

As advocated by Yin (2003), the case study reports are reviewed by the key informants. Participants' feedback is also incorporated in the final case reports. Further, two level of analysis are carried out such as conceptual and detailed during data analysis. This analysis helps to improve the construct validity of the research by triangulation of perspectives on the same data set (theory triangulation) (Patton, 1990). The details of triangulations are presented in the below given Table 3.7.

Table 3.7 Data Evidences for Data Triangulation of Case Study 1 & 2 (NG Pipelines & Petrochemicals)

Concepts	Categories	Evidence Type	Details of evidences
Maintenance	Maintenance	Interviews;	Audio records & field notes of
Strategies &	Policies/ Budget	Company's Intranet;	interviews; company's
Practices planning		Documents;	maintenance policy/ budget is
and execution		Informal Discussion	available on intranet;
			maintenance policy document;
			budget document; field notes
	Maintenance	Interviews;	Audio records & field notes of
	Tactics	Company's Intranet;	interviews; maintenance policy,
		Documents;	objectives, mission are
		Participant	available in intranet; documents
		Observation	such as ISO documents,
			Department Quality Manuals
			(DQM), Preventive
			Maintenance Schedules, etc.;
			field notes
	Planning &	Interviews;	Audio records & field notes of
	Scheduling	Company's Intranet;	interviews; MOU parameters
		Documents;	available on intranet;
		Informal Discussion	documents such as PM
			schedules, work orders etc.;
			SAP PM module data; field
			notes
	Material	Interviews;	Audio records & field notes of
	Management	Company's Intranet;	interview; Contract &
		Documents;	Procurement (C & P)
		Informal Discussion	procedures available on
			intranet; SAP MM module data;
			field notes.

	Employee	Interviews;	Audio records & field notes of
	Empowerment	Company's Intranet;	interview; Contract &
		Documents;	Procurement (C & P)
		Informal Discussion	procedures and O & M
			information available on
			intranet; field notes.
	Information	Interviews;	Audio records & field notes of
	Technology	Company's Intranet;	interview; SAP module data;
	<i>-</i>	Documents;	SCADA system data; field
		Informal Discussion	notes.
	Organisation &	Interviews;	Audio records & field notes of
	Human	Company's Intranet;	interview; training records &
	Resources	Documents;	organisation structure available
	resources	Informal Discussion	on intranet; field notes
	Maintenance	Interviews; Informal	Audio records & field notes of
	Challenges	Discussion;	interview; field notes
	Chanenges	Ť.	interview, field notes
		Participant's	
D 1: 1:1:	D 1: 1:1:	Observations	A 1' 1 0 C 11 C
Reliability	Reliability	Interviews;	Audio records & field notes of
Maintenance	Analysis	Company's Intranet;	interviews; no much document
strategies &		Documents;	is available except Root Cause
practices being		Informal Discussion	Analysis (RCA) reports &
used			Incident Analysis (IA) reports;
			no data available on intranet;
			field notes.
Benchmarking	Performance	Interviews;	Audio records & field notes of
practices for	Measures &	Company's Intranet;	interviews; MOU parameters &
maintenance	Benchmarking	Documents;	benchmark reports are available
processes		Informal Discussion	in intranet; documents such as
			MOU & IMOU data and
			standards such as OISD,
			PNGRB, AGA etc.; field notes.
Maintenance	Factors for	Interviews;	Audio records & field notes of
strategies selection	maintenance	Company's Intranet;	interviews; maintenance policy,
processes for	strategy	Documents;	objectives, mission are
specific	selection;	Informal	available in intranet; documents
plant/process	Internal &	Discussion;	such as ISO documents,
	Industry norms;	Participant	Department Quality Manuals
	specific	Observation	(DQM), PM Schedules, etc.;
	maintenance		field notes
	strategies for NG		
	Pipeline		
	P******		

3.7.2 Internal Validity

Establishing causal relationships among the conditions so as to one leads to another with the proper differentiation from the false relationships is implication of Internal Validity (Yin, 2003). There are two types of problems associated with internal validity. First one is making inferences from the case study i.e., researcher cannot directly observe the event every time. Second one is spurious effects i.e., there may be few additional constructive factors other than the factors identified in the research model.

In this research a number of methods are used to address the above mentioned problems in order to ensure internal validity. In this study, two of such methods are used. They are (i) Theory triangulation perspectives have been used on the same data set (Patton, 1990). Data have been analysed with different perspectives during with-in case analysis like conceptual and detailed level of analyses and, (ii) the key participants were requested to review and comment on case reports. The comments from review have been incorporated in the final case report.

The above two methods are used to focus on understanding and interpretation of the processes that can be characterised as casual relationships between concepts: (a 'cause') leads to another concept (an 'effect').

3.7.3 External Validity

Research study's findings can be generalized by establishing the domain of the study. This can be defined as External Validity (Yin, 2003). Multiple case study strategy helps to strengthen the generalisation of the research findings.

According to replication logic in case study, the design of multiple case studies and cross case analysis is a major step carried out in the research. This approach can be treated similar to use of experiments in which researcher generalise the theory using one experiment to another (Yin, 2003).

External validity can be addressed using replication logic in selecting case studies. Case study relies on analytical generalisation (Eisenhardt, 1989; Yin, 2003). Case study is not statistical generalisation as with experimental hypothesis-testing research. Research results can be accepted even after application of replication logic once. Multiple replications are not required to be performed (Yin, 2003).

3.7.4 Reliability

The errors and biases of the research study is basic objective of the reliability test. Operations of the study such as data collection procedures can be repeated to produce the same result using reliability test (Yin, 2003). This means that if another researcher applies the same data collection procedure as carried out by the previous researcher in case study, the researcher will arrive at same outcomes and conclusions.

To ensure consistency in applying procedures for data collection and analysis, number of methods is used in this research. First, the *Case Study Protocol* (CSP) has been used to guide the research process. The protocol is a major method in increasing the reliability of case study research. CSP guides the investigator in carrying out the case study research (Yin, 2003). The protocol includes interview questions as well as procedures and general rules that should be followed during interviews. This ensures consistency in the areas covered within cases and across cases.

Second, interviews are recorded and transcribed so as to capture all the data which permits independent data analysis by other researchers also. Third, use of Atlas-Ti software helps researcher to do systematic and consistent analysis of qualitative data (Weitzman, 2000) and increased the reliability of research because the procedures can be repeated (Yin, 2003). Fourth, the filed notes have been taken and the same are also transcribed for future reference. The Case Study Protocol is discussed in detail in the next section.

3.8 CASE STUDY PROTOCOL DEVELOPMENT

This section discusses the use of Case Study Protocol (CSP) and describes the process of developing one for this research. As discussed already, use of case study protocol enhances the reliability of case study research and serves as a guide for the researcher in carrying out the data collection from a single case study (Yin, 2003).

3.8.1 Process of Developing Case Study Protocol (CSP)

The case study protocol and survey questionnaire, both are directed at collecting data from a single data point, i.e. a single case study or from a single respondent. But the case study protocol differs from the survey questionnaire in a significant way. It is much more than a questionnaire or instrument, and contains the procedures and general rules to be followed in using the protocol (Yin, 2003). It is directed at the researcher rather than the subjects of the study and according to Yin (2003) having a case study protocol is essential for multiple case study research.

The case study protocol includes following main sections (Yin, 2003):-

- i. <u>Introduction to Case Study and Purpose of Protocol</u>: This gives an overview of case study research including research objectives, issues, and related literature about the research.
- ii. <u>Data Collection Procedures</u>: This section details the field procedures to be followed while conducting the research including presentation of credentials, access to the case study sites, and general sources of information.
- iii. Outline of Case Study Report: This section details out the format for the case study report including the outline, format for data, use and presentation of other documentation, and bibliographic information.

iv. <u>Case Study Questions</u>: This section presents the case study objectives and questions the researcher must keep in mind while collecting data, formats for arranging data, and potential sources of information for answering each research question.

Based on the conceptual framework and guidelines given by Yin, a case study protocol was developed. The case study protocol is provided in full in the next section. The draft case study protocol was presented to the subject matter experts in maintenance in the large gas utility company i.e., GAIL (India) Limited. Further, a presentation was made on constructs of maintenance strategy selection and practices such as Maintenance Tactics, Reliability Analysis, Maintenance Performance/Benchmarking, Maintenance Policy/Budget, Material Management, Planning & Scheduling, Information Technology, etc. The feedback from the team members on these constructs was taken and duly incorporated in the finalisation of case study protocol.

3.8.2 CASE STUDY PROTOCOL- FORMAT

A. Introduction to Case Study and Purpose of Protocol

A1. Background

Production/Operation process is continuous in a gas utility company and any abrupt stop of whole production process cause delay and reduction in output. Although Organisation follows various maintenance strategies, the cost and impact (equipment safety, upstream supplier issues, and downstream customer issues) of sudden failure of equipment was found to be huge in the organisation. Therefore, this case study protocol has been prepared to study on this problem i.e., How the maintenance managers in a large gas utility company in India formulate the maintenance strategies for their gas transportation/processing operations and how they practice these formulated maintenance strategies to maintain the equipment healthy & operate the process/plant continuously without interruption?

To conduct the above case study, GAIL (India) Limited has been chosen to conduct the study. Approval of conducting this study has also been obtained from the organisation.

A2. Purpose of Case Study Protocol

A case study protocol is a document that contains the questionnaire (instrument) for data collection as well as the procedures and general rules to be followed in using the protocol. This purpose of this Case Study Protocol is using case study as research strategy to understand:

How the gas utility company (GAIL India Limited) is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as petrochemicals & pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment? The additional questions are,

- a. What are the common and different maintenance strategies & practices to both the business verticals (and) how the maintenance strategy & practices differ with the specific assets available in one operation process/plant/pipeline network from others business verticals?
- b. What are the benchmarks being used in petrochemicals/ NG pipelines? What is extent of achievement of benchmark parameters in practices?
- c. How the reliability of the operation process/equipment/assets are ensured by the maintenance strategy used for the particular operation process/equipment/assets?

B. Data Collection Procedures

B1. Names of sites to be visited, including contact persons

Two case studies are considered in this case study protocol. First Case Study is on maintenance strategies & practices for Natural Gas Pipelines. Second case study is on maintenance strategies & practices of Petrochemicals Plant. For both of these case studies, data collection are done from the employees of GAIL (India) Limited. The proposed list of employees who will be contacted for interview along with the location & contact details is also prepared.

B2. Data Collection Plan

Data Collection from the employees of GAIL (India) Limited will be done in the calendar year 2013. The data collection will be done by semi-structured interview with an individual employee using the Case Study Protocol.

At least 60% of employees are visiting to GAIL Training Institute (GTI), Noida for attending training program based on data available with GTI, Noida. Therefore, it is proposed to conduct interview at GTI, Noida from those selected employees who are visiting for training program to this institute.

The site visit will be planned accordingly to cover the rest of the employees from the list of the selected employees who could not happen to visit GTI, Noida and also for participant observation.

Description April, May, June, July, Aug, Sep, Oct, Nov, 2013 2013 2013 2013 2013 2013 2013 2013 **Data Collection for** Case Study-1 Data Collection for Case Study-2 Site Visits for Case Study-1 Site Visits for Case

Table 3.8 Data Collection Plan

Study-2

B3. Expected preparation prior to data collection

1. Intimate the employee regarding interview schedule & get his permission well in time.

2. Prepare with interview tool kit such as questionnaire, interview

recording format, audio recorder etc.

C. <u>Case Interview Guide (Natural Gas Pipelines & Petrochemicals)</u>

This document serves as guideline specifying the type of questions in

conducting interview for this case study "A study of Maintenance strategies &

practices in a large gas utility company". These constructs will be used for

validation purpose during interview. Documentary evidences will be identified

during interview & the same will be recorded.

C1. Description of the Case Study entity

C1.1 General

1. Company: GAIL (India) Limited

2. Name:

3. Designation:

4. Location:

5. Experience:

6. Date:

 ${\it C1.2}$ Responsibilities & their Roles relevant to Maintenance function in NG

Pipelines/Petrochemicals at GAIL:

C2. Planning & Execution of Maintenance Strategy & Practices

This section of interview will cover the primary research question of this case

study which deals with the planning & execution of maintenance strategy and

practices in Natural Gas Pipelines & Petrochemicals of GAIL (India) Limited.

maintenance strategies for different business verticals of the composits as NG Pipelines, petrochemicals?	uny such
What management approaches are being adopted in formula	Ū
What are the factors influence maintenance strategy planning? How manage to prepare maintenance strategies for different business very	•
Do you have maintenance policy for your organisation? If yes describe.	s, please
Describe about your maintenance mission & objectives?	
Describe the maintenance organisation/structure & its roles in main in your company?	ntenance
How the company's policies/objectives influence the maintenance in the company?	function
C2.1.How the gas utility company (GAIL India Limited) is plant executing its maintenance strategy for Natural Gas Pipelines/Petroche	

How has the maintenance strategies influenced the maintenance budget in your company? How do you prepare maintenance budget?
How do you manage to implement the maintenance strategies in your company?
What are the driving forces & challenges in maintenance practices?
How do you monitor the execution of maintenance strategies in your company?
Do you envisage employee empowerment becoming important for maintenance function?
Are you aware about Operator Based Maintenance/Autonomous Maintenance? If yes whether same is being practiced in your organisation?

function?
How do you manage modification works being carried out by the maintenance teams in your organisation?
How has the maintenance function influenced with external stake holders such key suppliers/contractors?
How do you envisage material management influence in maintenance management?
Do you foresee training will impact the execution of maintenance strategies & maintenance practices?
How IT has been leveraged in formulation and implementation of maintenance strategies?

ensure smooth ope	eration of natural gas pipelines/petrochemicals?
	ne maintenance strategies & practices in your plant (NG ochemicals)? How do you come up with such maintenance
How frequently y operation of plant	vour plant faces shutdown? How do you ensure smooth
How has the plan in your plant?	nning & scheduling influenced the maintenance practices
How do you mand works/ shutdowns	age with long terms plans to forecast major maintenance in your plant?
-	age with short terms plans to comply with the preventive ks/stoppages of plant?

C2.2. How the maintenance strategies are being practiced in the company to

	o do you prioritise the day to day maintenance works/backlog
	it are the management approaches to leverage Information Technolog in maintenance function in your plant?
mai	you foresee any material requirement for execution of particula ntenance strategy? If yes, how do you manage inventory of material in plant?
Ном	has the inventory control influenced the maintenance planning?
	Selection of Maintenance Strategy

This section of interview will cover the additional research question ('a' mentioned above in Section A2) which deal with the selection of maintenance strategy for particular operation/process/plant/equipment in Natural Gas Pipelines/petrochemicals.

C3.1. Why the specific maintenance strategy has been selected for a particular operation process/equipment in Natural Gas Pipelines/Petrochemicals at GAIL?

Describe the maintenance strategies adopted for a particula process/equipment within your plant? Are they same or differ with the typ of process/equipment?
What decision processes are your company is applying in selection of particular maintenance strategies for a particular process/equipment? How they impact the overall maintenance practices in your plant maintenance?
How do you manage total maintenance man hours to the particula maintenance strategy (for e.g. Preventive Maintenance)?
How do you manage with compliance of maintenance strategy schedule (for e.g. Preventive Maintenance)?
How has the emergency/break down maintenance influenced the devotion of total man hours in your plant?
C3.2.What is the common and different maintenance strategies & practices to both Natural Gas Pipelines & Petrochemicals at GAIL?

Compare & describe the maintenance strategies & maintenance practices being adopted in both NG pipelines and Petrochemical plant operations?
How would you characterise maintenance strategies & practices between NG pipelines and Petrochemical plant operations?
C3.3. How the maintenance strategy & practices differ with the specific assets available in one operation process/plant/pipeline network from other business verticals within GAIL?
Describe the maintenance strategies & practices being adopted for the equipment/process available within the NG Pipeline/ Petrochemicals operations at GAIL?
How would you characterise maintenance strategies & practices of NG Pipelines/petrochemicals among other business verticals such as City Gas Distribution, LPG Pipelines etc., at GAIL?
C4. Benchmarking in Maintenance

This section of interview will cover an additional research question ('b' mentioned above in Section A2) which deals with benchmarking in maintenance.

pipelines at GAIL? What is extent of achievement of benchmark parameters in practices? How the maintenance performance of "Best in Class" of NG pipeline/petrochemicals has been benchmarked at your company? Describe the benchmark measures & targets in practices at your plant? What initiatives & processes are being used to achieve the benchmark parameters of your plant in practices? How do you manage with internal norms of the company & industry norms in maintenance performance measurement/benchmarking?

C4.1. What is the benchmarks being used in maintenance Natural Gas

C5. Reliability in Maintenance

This section of interview will cover an additional research question ('c' mentioned above in Section A2) which deals with benchmarking in maintenance.

C5.1.How the reliability of the operation process/equipment/assets are ensured by the maintenance strategy used for the particular operation process/equipment/assets in Natural Gas Pipelines/Petrochemicals at GAIL?
How do plant operations cope with the reliability issues & What is the maintenance strategy being adopted to ensure reliability in plant operations, in specific to particular process/equipment/assets available in your plant?
How the reliability statistics of process/equipment/asset is maintained in your plant?
What initiatives & processes are being used to do incident/root cause analysis of plant shutdowns & equipment failures?
How do you manage with reliability based analysis of process/equipment/asset being maintained in your plant?
C6. Maintenance Strategies & Practices at GAIL's NG Pipeline/ Petrochemicals- Additional comments (other than above), if any

What is the great challenge in maintenance strategy formulation & maintenance practices in your company?

Anything to share more... (closing)

The above interview guide was used for all the levels of employees such as Top management, Middle management & Junior Management in Petrochemical plant & NG Pipelines at GAIL

3.9 CONCLUDING REMARKS

This chapter presented the research objectives and research questions formulated based on the problem statement for this research study. Overall approach and rationale for this research study is discussed in detail logically by explaining the philosophical assumptions, scientific paradigms, scientific approach, research method, and research study. The basis for this research study is based on interpretative paradigm, inductive based qualitative research approach, and multiple case design-case study research strategy.

Further, data collection method is discussed in detail in this chapter. Data collection was done majorly with the help of methods semi-structured interviews using Case study protocol, participant observation, site visits, and collection of documentary evidences. Interview data was transcribed and then analysed through Atlas- Ti software. The details of data analysis strategy such as within case analysis and cross case analysis are discussed in detail in this chapter. The methods used to ensure quality of research is described in detail explaining with help of four relevant tests such as construct validity, internal

validity, external validity, and reliability. Case study protocol is presented in the last section.

Next chapter describes the case study-1 i.e., maintenance strategies and maintenance practices of Natural Gas Pipelines in large gas utility company.

CHAPTER 4

MAINTENANCE STRATEGIES & MAINTENANCE PRACTICES OF NATURAL GAS PIPELINES

4.1 INTRODUCTION

This chapter presents in detail the case study conducted at natural gas pipelines. Data collection details related to this case study-1 (NG Pipelines) is discussed in section 4.2. Then detailed data analysis findings are reported in the subsequent sections on maintenance strategies & practices in NG Pipelines (section 4.3), maintenance strategy selection processes in NG Pipelines (section 4.4), and relationship between maintenance strategy selection process and maintenance strategies & practices in NG Pipelines (section 4.5) of the large gas utility company in India. Further, detailed discussions on case findings are presented in section 4.6. Outcomes of the case study findings are summarised in concluding remarks. The sub-section of this section of this chapter discusses about Natural Gas Pipelines of a large gas utility company in India (GAIL India Limited) and its operation & maintenance systems at the company.

4.1.1 A LARGE INDIAN GAS UTILITY COMPANY

India's natural gas scenario is undergoing rapid changes and gas is poised to occupy a significant share in the energy mix. Natural Gas is a new age fuel. Natural Gas is the cleanest of fossil fuels. Natural Gas satisfies most of the requirements for fuel in a modern day industrial society, being efficient, non-polluting and relatively economical. Natural Gas requires a strong distribution

network to not only support existing demand, but also fuel future demand. A big challenge lies in bridging the physical gap between demand and supply centres in an efficient, safe and eco-friendly manner. Pipeline transportation of gas offers a safe, economic and environmentally sound alternative to most other modes of energy transport. Meeting the emerging demand for gas requires transportation of gas across the length and breadth of India through creating gas transportation infrastructure of more than 2-3 times the present size. The Government and Regulator also recognize the need to augment the natural gas transmission infrastructure in the country. With the Petroleum and Natural Gas Regulatory Board in place, the conditions to support an expanded natural gas grid (NGG) and a fully functioning natural gas market are in place. The existing gas transportation infrastructure in India is presented in Table 4.1

Table 4.1 Existing Gas Transportation infrastructure in India (Source: CRISIL)

	Design Capacity (MMSCMD)	Length (KM) including spur line	Average present flow (MMSCMD)
GAIL	155	8000	120
GSPL Gujarat	40	2000	40
AGCL/OIL	08	500	
RGTIL EWPL	80	1400	50
TOTAL	283	11,900	166

Over the years, GAIL (India) Limited as a major pipeline operator has contributed to the growth and development of natural gas pipeline infrastructure and natural gas market and has existing 10,972 Kms. of robust gas pipeline infrastructure with a capacity of 210 MMSCMD. GAIL's existing natural gas pipeline network has Pan- India presence and covers 16 States (AP, Assam, Delhi, Goa, Gujarat, Haryana, Karnataka, Kerala, MP, Maharashtra, Punjab, Rajasthan, TN, Tripura, Uttarakhand, & U.P.) and 2 UT's (Puducherry & Dadra Nagar Haveli).

Figure 4.1 – Existing Natural Gas Pipeline Network in India

The existing pipeline network of GAIL is as shown in Figure 4.1. GAIL was also awarded Grant of Authorisation for Surat-Paradip P/L on 25.04.2012 by PNGRB which GAIL won under competitive bidding. The capacity of the P/L is 74.81 MMSCMD stretching over a Length of approx. 1990 Kms. With upcoming of Jagdishpur Haldia P/L and Surat Paradip P/L, GAIL shall cover 5 more new States such as Bihar, Chattisgarh, Jharkhand, Odisha and West Bengal. GAIL shall continue to meet the Noble objective of supply and transportation of natural gas through its state of art natural gas transmission pipeline system and shall contribute to the growth and industrialisation in India.

4.1.2 Natural Gas Pipelines – Operations & Maintenance

Operations and Maintenance of plant and equipment plays a vital role in the industry growth and development. Operations and Maintenance of pipelines and plants helps ensure a reliable and operationally safe system, providing not only uninterrupted supply of gas to consumers, but also maximising the throughput. GAIL's emphasis is not only on maximising production and sale of natural gas but also to achieve this with least energy consumption. Every effort is focused on energy-efficient operation of the plants, machinery and processes.

Availability of the best dedicated telecommunication/SCADA facilities in India has been fully utilised for online monitoring of machine/process parameters along the pipeline. Observe, Detect, Analyse, Compare and Improve are the watchwords for day-to-day operations. O&M covers various gas pipelines across the country, including the HVJ gas pipeline network and LPG recovery plants. In order to assess and monitor the health of pipelines, various condition monitoring tools and techniques are used which include continuous monitoring of pipe to check soil potential, corrosion sensing probes, post monsoon foot patrolling along pipeline, etc.

Some of the salient features of O & M activities in NG Pipelines are, (i) Round-the-clock supervision of the operation of the entire pipeline through National Gas Management Centre located at NOIDA and Regional Gas Management Centres located in each region with the help of SCADA and regular health monitoring; (ii) Surprise and periodic helicopter surveillance of the entire pipeline route, in addition to ground patrolling, for possible encroachment on ROU, soil erosion, line exposure etc.; (iii) As per National/International standard based on SOP maintenance of plant and equipment is being done. Maintenance schedule and records are generated in SAP; (iv) Gas scheduling, allocation and invoicing is being done through SAP based Gas Management System.

The objectives of GAIL's operations and maintenance policy include uninterrupted supply of gas and liquid hydrocarbon with quality, high reliability, high energy efficiency, inventory control, low operating cost and safety. (Source: www.gailonline.co.in)

An organisation chart for the large gas utility company's operation & maintenance team is as shown in Figure 4.2 below:-

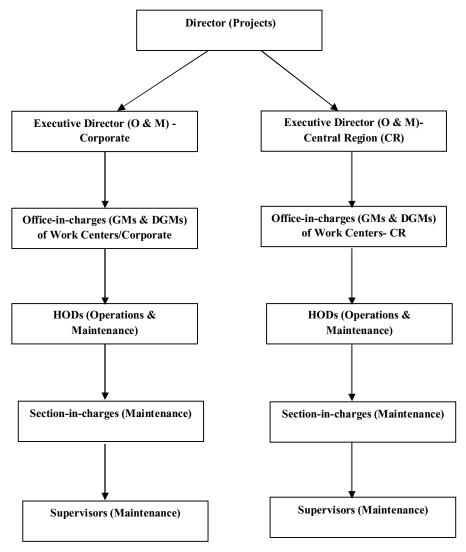


Figure 4.2 Organisation Chart for NG Pipelines Operations & Maintenance of Gas Utility Company

4.2 DATA COLLECTION

Semi structured interview was conducted from the following maintenance personnel in the area related to Natural Gas pipelines who are the employees of the large gas utility company using case study data protocol.

Table 4.2 - List of Interviewees of Case study-1 (NG Pipelines)

Level of Analysis	Designation	Date of Interview
Level 3 – Gas Terminal	Manager (NG- PL O & M)	16.07.2013
Level 2 – Pipelines	SM (Training) - Faculty	12.07.2013
Level 1 – Corporate	DGM (O & M)	10.08.2013
Level 1 – Compressor	CM (O & M)	10.08.2013
Station		
Level 2 – Pipelines	CM (LPG- PL O & M)	07.09.2013
Level 3 – Gas Terminal	DM (NG PL O & M)	07.10.2013

Note: The names of the participants are not given in the above table due to agreed confidentiality.

Data was collected from a variety of source: (i) Participant observation of team at NG Pipeline terminals located in Delhi NCR region for a month; (ii) Interviews; (iii) Company website, Intranet, and operation & maintenance related documents; and (iv) informal discussions with maintenance team leaders, maintenance mangers, maintenance engineers and maintenance technicians. As discussed in Section 3.5, the data collection was carried out at various sites in the Natural Gas Pipelines of the large gas utility company. The data collection phase lasted for almost six months. Initial one month was spent for initial contact and making arrangements for data collection (May, 2013). Then, four months were spent in conducting interviews based on the availability of maintenance mangers/engineers from various levels (July, 2013 to October, 2013). Thereafter, two months site visits were carried out in Delhi NCR region (October, 2013 & November, 2013).

The details of interview participants are shown in above Table 4.2. All interviews were recorded and then transcribed. After completion of the transcription of interviews, one month was spent to collect the interviewees' feedback on the transcripts (November, 2013). The draft of the case study report was shown to DGM (O &M), and his suggestions and feedback were incorporated. Follow-up over telephone was done for clarifications and additional information.

Based on the interview data, within case data analysis was undertaken keeping in mind the research questions: How the gas utility company is planning and executing its maintenance strategies & practices to ensure smooth operation process in the company's business vertical Petrochemicals and why the specific maintenance strategy has been selected for a particular operation process/equipment?. This lead to the identification of various factors forms the basis for maintenance strategies selection and maintenance practices in NG Pipelines of the large gas utility company. Further, maintenance strategies selection processes being practiced in NG Pipelines and specific maintenance strategies for a particular operation process/equipment were identified. Then, the relationship between maintenance strategies selection processes and the identified factors for maintenance strategies & maintenance practices in NG pipelines was analysed. Next Section describes about the detailed data analysis and findings of NG Pipelines case study.

4.3 MAINTENANCE STRATEGIES & PRACTICES IN NG PIPELINES

Data collected from NG Pipelines of the large gas utility company were analysed as per the data analysis strategy described in the Section 3.6. This section describes about the factors contributing to the maintenance strategies and maintenance practices in NG Pipelines of the large gas utility company. The detailed data analysis based on initial conceptual constructs and subconstructs identified & conceptualised from the literature review (Section 2.6) such as Performance Measures, Maintenance Tactics, Planning & Scheduling, Materials Management, Organisation/Human Resources, Employee

Empowerment, Information Technologies, and Maintenance Polices/ Budget is presented below.

4.3.1 Performance Measures

The interviewee data shows that the sub-constructs such as breakdown records, key performance indicators, training man hours of maintenance staff, maintenance performance measures, and internal & industry norms identified from literature for maintenance performance measures are being practiced in the company. A few of the representative quotations from the interviews are:-

"GAIL is having so much long proven track records in maintenance. GAIL person is involving in drafting standards such as OISD etc. Reliability records are being maintained such as PLT availability, breakdown records, stand-by pump maintenance records" – Manager (Pipeline O & M).

Breakdown records are part of the maintenance records being maintained by NG Pipeline O & M group in their plant. These maintenance records are also being used as part of the reliability records of equipment/systems in NG Pipeline networks.

"Objective of maintenance is based on MOU targets. These targets are such as production targets, equipment availability targets etc. Since the production targets are high & stringent, we need to make available the equipment & plant through better maintenance practices. These targets are performance indicators of maintenance" – Senior Manager (Mechanical).

"NG pipelines benchmarking is much related to enforcement of law. The bench mark for NG pipeline is availability of pipeline must be 99.9 %. Bench marks may be taken as parameters which come from MOU targets" – Senior Manager (Mechanical).

"As far as bench marking is concerned, we have bench marked the maintenance cost. This is being monitored on monthly basis. The down time of plant is being monitored by GAIL. But, there is no linkage with bench marking. Maintenance targets are based on MOU targets signed with petroleum ministry. GAIL is achieving every year its targets in the category of excellent. I can proudly share this with you" – Deputy General Manager (NG Pipeline O & M).

It is clearly evident from the above quotations that the MOU (Memorandum of Understanding) targets which are agreed upon with Petroleum ministry are only used for the purpose of benchmarking of Operation & Maintenance practices in NG Pipelines of the company as conceived by the maintenance managers/engineers. There are no separate parameters for measuring maintenance performance which are not part of the operation/production targets.

"We are having regular training program for outsourced manpower. Both safety & technical training are being provided to the contract manpower before assigning the job then they are being imparted every quarter. These trainings are being video recorded and well documented" – Manager (NG Pipeline O & M).

"Training is a very important factor in performing maintenance function. Own engineers should have specialised knowledge on the equipment gaining from their own experience. But, we have the constraint that even after training, we require expert manpower from OEM for specialised jobs such as engine overhauling, compressor overhauling etc."- DGM (NG Pipeline O & M).

"Training is very important for maintenance function. Training helps also to share our experience among maintenance managers" – Chief Manager (NG Pipeline O & M)

As described above by the maintenance managers in gas utility company, training function is being given importance by maintenance managers. From the company's intranet, further as explained by the maintenance managers, there is a structured process to allot training to the maintenance personnel in the company. However, a gap between training & application in job exists in the company. As quoted by one of the O & M manager, even after training, maintenance team still depends on OEM expertise in many of the jobs being carried out in plant.

"We are following OISD standards in case of industry norms. We are also following ISO, OHSAS, metering standards such as AGA/API etc." – Manager (NG Pipeline O &M)

"Internal norms are based on MOU & IMOU targets which are defined by ministry & corporate management. GAIL is a market leader in gas industry therefore, GAIL's operating parameters itself can be taken as benchmarks which are comparable to global benchmarks" – Senior Manager (Mechanical).

From the above quotations, it is evident that the company is following certain internal norms such as guidelines from corporate management based on targets assigned by petroleum ministry and industry norms such as standards & industrial compliance requirements.

"The maintenance systems are being audited such as ISO Audit (Half yearly), Internal Audit (Yearly) which is being done by multi-functional experts from C.O. to ensure proper O & M systems and follow the uniformity across all the work centres. Further, we also have IUSA (Intra unit safety Audit) consists of cross- functional experts, external audits like OISD Audits. We cannot miss any small maintenance activities. These audits provide reports with the observations. This helps to implement at unit level the industry practices being adopted and also to incorporate improvements in maintenance systems. This is due to maintenance methods are being evaluated based on industry standards and auditors are experts in their field. Internal & external audits provide lot of

scope for improvement in maintenance practices. Though we are hard pressed during audits, audits benefits are excellent" – Manager (NG Pipeline O &M).

"We have different audits such as ISO audits, OISD Audits (5 years), PNGRB Audits, IUSA Audits (2 years) etc. for maintenance methods and performance monitoring"- Senior Manager (NG Pipeline O & M).

As described by maintenance mangers, maintenance performance measures are majorly done using methodology of audits. These audits are being conducted internally by company's employees like Inter-unit audit and Intra-unit audit and further external audit experts from statutory bodies, third party vendors, etc. These audits provide audit reports with suggestions. These audit points are implemented to improve the maintenance performance as told by the maintenance managers.

"We have unit wise benchmarking system. Each unit are assigned with the set of maintenance parameters or targets to achieve. This is the responsibility of the unit to accomplish these targets on yearly basis. The same is being monitored by the corporate O & M"- Senior Manager (NG Pipeline O & M)

"As far as bench marking is concerned, we have bench marked the maintenance cost. This is being monitored on monthly basis. The down time of plant is being monitored by GAIL. But, there is no linkage with bench marking. Maintenance targets are based on MOU targets signed with petroleum ministry. GAIL is achieving every year its targets in the category of excellent. I can proudly share this with you"- DGM (NG Pipeline O & M).

Maintenance managers of the company are of the opinion that the targets in Operation & Maintenance of NG Pipelines are based on MOU & Internal MOU targets. Further, these targets are considered as benchmarks in operation & maintenance because the company is market leader in this business segment and also NG Pipeline availability is being maintained at 99.9%.

There is no clear evidences could be collected from interview data related to labour cost and material cost relation with the maintenance performance measures or no indicators are available for benchmarking the cost of labour and material. However, one maintenance manager told about maintenance cost is benchmarked. Further, he has also confirmed that this not being practiced in targets, benchmarking, etc.

The findings from the case data related to these sub-constructs are also shown in Table 4.3.

Table 4.3 Performance Measures sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from empirical	from empirical	Analysis
Constructs		data	data	
Performance	Downtime	Performance	Breakdown	Records are being
Measures/	Records	Measures/	Records	maintained by the
Benchmarking		Benchmarking		company for measuring
				maintenance
				performance
	Key		Key Performance	KPIs are available.
	Performance		Indicators	Basically, these are
	Indicators			derived from MOU
				Targets which are
				drawn from MOU with
				Petroleum Ministry
	Training man		Training man	Structured Training
	hours of		hours of	Process is available in
	maintenance		maintenance staff	the company
	staff			
	Maintenance		Maintenance	Maintenance
	Performance		Performance	Performance is largely
	Measures		Measures	based on Internal &
				External Audit Process.
	Internal		Internal Norms &	Company is following
	Norms &		Industry Norms	relevant Internal &
	Industry			Industry Norms as per
	Norms			applicable standards &
				statutory requirements.

Benchmarking	Benchmarking	No International
measures &	measures &	Benchmarks are being
targets	targets	followed. But, MOU
		targets are treated as
		benchmarks since the
		company is market
		leader.
Labour and	Nil	No evidence could be
material cost		collected from
		maintenance managers
		which support
		importance being given
		to labour and material
		cost in maintenance
		function.

The qualitative associative network associated with the initial conceptual construct "Performance Measures" is as shown in Figure 4.3.

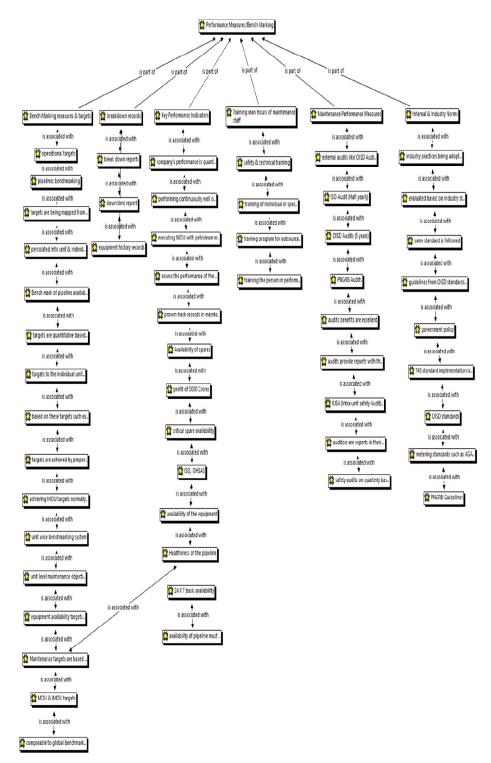


Figure 4.3 QAN for Performance Measures & Benchmarking

4.3.2 Planning & Scheduling

Interviewees indicated that the planning & scheduling is an important factor which plays crucial even at the stage of maintenance strategies formulation. A qualitative network associated with planning & scheduling is shown in Figure 4.4. The categories emerged out from this qualitative associative network are explained next with the help of evidences and descriptions from the case study.

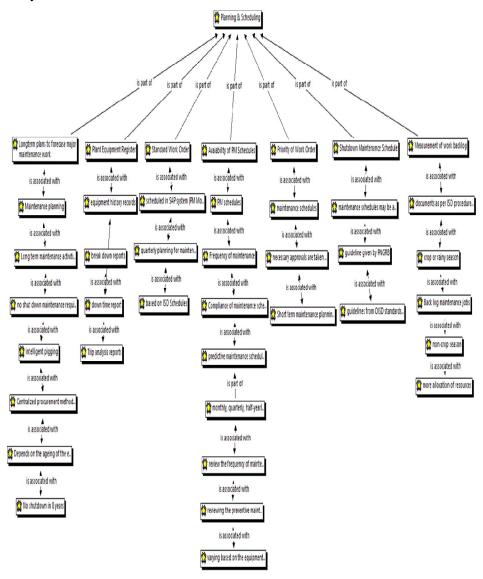


Figure 4.4 QAN for Planning & Scheduling

"Maintenance monitoring is also based on preventive maintenance schedules and the same is available in SAP maintenance PM Module. Further, through SAP maintenance planning, job requests, permits are being maintained" – Sr. Manager (NG Pipeline O & M).

"....scheduling & planning of maintenance is completely is being done through SAP -PM module" – Sr. Manager (NG Pipeline O & M).

"All the maintenance scheduling & planning are being done through SAP- PM Module all across GAIL. We get reminders of maintenance schedules also from SAP" – DGM (NG Pipeline O & M).

As explained by the maintenance managers above, the maintenance records used for planning & scheduling such as plant equipment register, standard written work order, availability of PM schedules, priorities of work order, shut down maintenance schedule, and backlog maintenance jobs are being maintained in SAP-PM Module in SAP system installed in the company.

"When break down occurs, we are going into root cause analysis. Trip analysis reports and break down reports provide inputs to maintenance schedules. Accordingly, tuning of schedules is done in maintenance schedules & planning" – DGM (NG Pipeline O &M).

"...further leveraging of this module is done ...by maintaining equipment history records etc..." – SM (NG Pipeline O & M).

From the above it is clearly evident that trip analysis reports and break down reports are being maintained as part of the plant equipment register in SAP PM Module.

"....maintenance activities are being scheduled in SAP system (PM Module) as per frequency.... quarterly planning for maintenance of pipelines... based on ISO Schedules"- Manager (NG Pipeline O & M).

"Short term maintenance planning is based on PM schedules. This includes cathodic protection (CP). In CP, PSP potential measurement is to be done on monthly basis. The same is to be recorded in ISO formats & sent for approval of WICs" – SM (NG Pipeline O & M).

"The preventive maintenance schedules & frequency of maintenance are decided based on OEM recommendations and experiences of maintenance personnel" – DGM (NG Pipeline O & M).

"We have schedules for maintenance like monthly, quarterly, half-yearly and annually... varying based on the equipment/instruments type" – Manager (NG Pipeline O &M).

The quotations shown above explain that the PM schedules are being maintained in NG Pipelines of the company and the same are being maintained in SAP PM Module. These schedules are based on frequency of maintenance, types of maintenance such as predictive, preventive etc., and schedules are prepared based on OEM recommendations and vary based on equipment types.

"...depends on the ageing of the equipment and history of the equipment maintenance schedules are being prepared..." – Manager (NG Pipeline O & M).

"...during this period, maintenance schedules may be affected... deviations are informed to in-charge of plant and necessary approvals are taken..." – DGM (NG Pipeline O &M).

According to the maintenance schedules priorities of work orders are being assigned based on equipment ageing and equipment history. In case of equipment is not able to release for maintenance due to operational constraint, priorities may be shifted with the due approval from the competent authority of the plant in NG Pipelines of the company.

"...shut down maintenance is the major maintenance activity. This is not in case of NG Pipelines..." – CM (NG Pipeline O & M).

"...guidelines given by PNGRB come out with the standard called T4S. It clearly defines the maintenance activities, frequencies, etc. for NG Pipelines" – SM (NG Pipeline O & M).

There is no evidence of maintaining shutdown schedules in SAP -PM Module from the above quotations. Further, during case study review with the interviewee, it is confirmed that shut down maintenance job schedules are being maintained by maintenance managers separately. The same is guided by standards such as T4S from PNGRB (Petroleum and Natural Gas Regulatory Board) and other standards from OISD (Oil Industry Safety Directorate).

"...in case of deviation in maintenance schedules and the same is to be brought to the knowledge of OIC of the unit and necessary approval to be taken and to be documents as per ISO procedure" – Manager (NG pipeline O & M).

"During crop or rainy season, we may not be taken up maintenance activities. Normally, we plan maintenance activities accordingly. Backlog of maintenance may be there due to the reasons I told like crop season, we complete those jobs during non-crop season. Accordingly, we ensure completion of maintenance schedules" – CM (NG Pipeline O & M).

"Back log maintenance jobs are completed with the more allocation of resources such as manpower, man hours etc." – DGM (NG Pipeline O &M).

From the above representative quotations, it is evident that during crop or rainy season maintenance activities related to maintenance schedules cannot be carried out so that the same are being taken up during non-crop season. It is ensured by the company that such kind backlog maintenance jobs are completed at next available opportunity with the allocation of more resources such as man power, material, etc.

"Maintenance planning varies based on types of equipment & processes within our Vijaipur plant. For example, NG pipeline compressors, schedules are different due to stand by strategy. But, in case of processing plant LPG, the maintenance are varies due to continuous running nature of process"- DGM (NG Pipeline O & M).

"Long term maintenance activities are being planned based on intelligent pigging. Suppose, one portion of pipeline is corroded, we need to plan for material, manpower, necessary approvals from local authorities, farmers, consumers etc. These all involves long term planning. Short term maintenance planning is based on PM schedules. This includes Cathodic protection (CP). In CP, PSP potential measurement is to be done on monthly basis. The same is to be recorded in ISO formats & sent for approval...."- SM (NG Pipeline O & M).

"In NG/LPG pipelines, there is no shut down maintenance requirement... We do not have any records of shut down of pipelines in last 8 years in VSPL LPG/NG Pipeline.... Centralised procurement method is being adopted in VSPL pipeline."- Manager (NG Pipeline O &M)"- Manager (NG Pipeline O & M).

From the above quotations from the interviews of maintenance managers clearly explains about long term plans of the company to forecast activities in NG Pipelines. First, there is no major shutdown planning activities associated with NG Pipelines. Second, long term maintenance planning is based on the type of equipment such as compressors, turbines etc. and requirement of process plants. Outcomes of Intelligent Pigging activity will be the inputs to long term maintenance planning in NG pipeline; it involves replacement of pipe segments, statutory approvals, permission from supplier/customers etc.

Centralised procurement methods helps for better planning for long term maintenance activities.

The findings from the case data related to these sub-constructs are also shown in Table 4.4.

Table 4.4 – Planning & Scheduling sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Planning	Plant	Planning &	Plant	Equipment details are being
&	Equipment	Scheduling	Equipment	maintained in SAP PM
Scheduling	Register		Register	module; As part of plant
				equipment register
				breakdown records & reports
				and trip analysis reports are
				also being maintained in
				SAP system.
	Standard		Standard written	Work orders are being
	written work		work order	maintained in SAP PM
	order			module based on ISO
				Schedules with the frequency
				of PM jobs planned.
				Automatic work orders are
				being generated based on
				schedule incorporated in the
				system.
	Availability		Availability PM	PM Schedules are available
	PM schedules		schedules	& the same are being
				maintained in SAP PM
				Module. PM Schedules are
				based on frequency & types
				of maintenance. These
				schedules are prepared based
				on OEM recommendations
				and are equipment specific.
	Priorities of		Priorities of	Work orders priorities are
	work order		work order	assigned and being
				maintained in SAP PM
				module. The same is based

		equipment history &
		criticality of the equipment.
		Approval is taken for any
		change in priorities of work
		order from Competent
		Authority.
Availability of		Work schedules are being
work schedule		maintained in SAP PM
for a week		module and can be accessed
ahead		any point of time based
anead		
Cl. 41	C1 + 1	schedule.
Shutdown	Shutdown	Shutdown jobs schedules are
Maintenance	Maintenance	being maintained by
Schedule	Schedule	maintenance managers
		separately. The shutdown
		jobs schedules are being
		prepared based on standards
		provided by PNGRB &
		OISD.
Measurement	Measurement of	Backlog maintenance jobs
of work	work backlog	are maintained in SAP PM
backlog		module. The same is
		completed in the next
		available opportunity.
		Completion of backlog jobs
		is ensured with proper
		allocation of resources.
Long Term	Long Term	In NG Pipelines, shutdown
Plans to	Plans to forecast	maintenance is not part of the
forecast major	major	long term maintenance
shutdown/	shutdown/	planning. Intelligent pigging
maintenance	maintenance	is the primary activity from
work	work	which long term planning is
		being done in the company.
		Long term planning is based
		on types of equipment,
		processes in plant and
		centralised procurement
		facilitates such planning in
		NG Pipelines' compressor
		stations.

4.3.3 Materials Management

Materials Management is a critical part in maintenance strategy formulation stage itself. The effective materials management will facilitate efficient implementation of maintenance strategies. A qualitative associative network which is the outcome of data analysis of interviews taken for NG Pipelines case study is presented below in Figure 4.5.

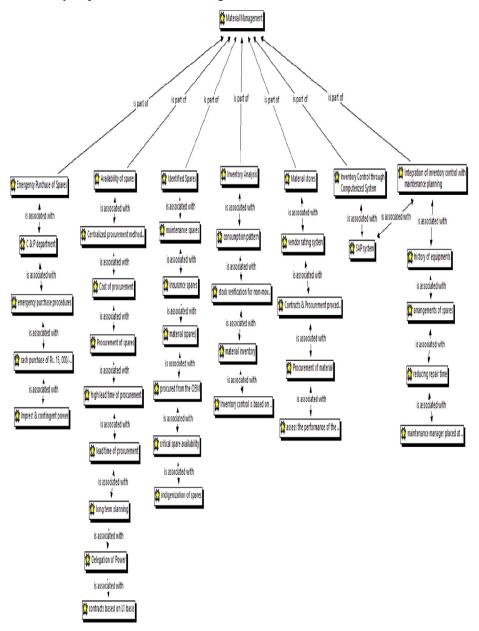


Figure 4.5 QAN for Materials Management

"....there are emergency purchase procedures. Maintenance managers can go for nomination based purchase also..." – DGM (NG Pipeline O & M).

"Imprest & contingent power are used for cash purchase of Rs. 15, 000/- at the level of Chief Manager level i.e., WIC level" – Manager (NG Pipeline O & M).

Inferences related to sub-construct i.e., focused code "Emergency purchase of Spares" could be derived from the above representative quotations. Emergency purchase procedures are available in the company as per maintenance mangers. The same is also verified with the documentary evidence "C& P Procedures" document of the company. This procedure includes imprest & contingent advances and the nomination based procurement etc. which helps maintenance managers to keep provisions for emergency situations while formulating the maintenance strategy.

"Centralised procurement method is being adopted in VSPL pipeline. Similar practice is being used in other locations also. Cost of procurement & long term planning are the basis of centralised procurement method"- Manager (NG Pipeline O & M).

"...spares are having high lead time of procurement. Managing these spares is very critical in maintenance function. Procurement of spares depends on types, criticality, consumption pattern, lead time of procurement etc..."- DGM (NG Pipeline O & M).

The above quotations show the evidences for the focused code "available of spares" from the data analysis. Spares availability are being ensured by the company using economical method i.e., centralised procurement. The centralised procurement method facilitates optimum cost of procurement and able to plan for long time maintenance activities. The spares procures are basically depends on types, criticality, consumption pattern, lead time of procurement, etc.

"In GAIL we have both maintenance spares (less lead time procurement materials) as well as insurance spares. Insurance spares are rarely required spares. But without these spares, we may face larger down time of the equipment/plant"- DGM (NG Pipeline O & M).

"...need to maintain the equipment/machines as good as new one. To maintain in such a condition there is no concept of indigenization of spares/retrofitting of the particular machine. All the spares required for the particular machines are being procured from the OEM only...."- SM (NG Pipeline O & M).

"Availability of system is more in pipeline is due to 1) highly skilled manpower 2) training of individual in special areas 3) Availability of spares (top management monitors the critical spare availability through quarterly reports)..." – Manager (NG Pipeline O & M).

Spares have been identified as maintenance spares (consumable, less lead time spares & less cost spares are grouped in this category) and insurance spares (critical spares, high lead time spares, and high cost spares are grouped in this category). Critical spares can be insurance spares. Therefore, it is evident from the above quotations that there is a clear identification/demarcation of spares is available in the company C & P procedures as stores procedures.

"...Managing these spares is very critical in maintenance function. Procurement of spares depends on types, criticality, consumption pattern, lead time of procurement etc."- DGM (NG Pipeline O & M).

"Based on the history of equipment, material inventory is reviewed and controlled. Further, stores have a procedure of stock verification for non-moving items on annual basis. Based on this procedure, non-moving items are identified and necessary action is taken for the control of inventory" – SM (NG Pipeline O & M).

"Inventory control is based on critical spares availability. The same is being maintained through SAP system..." – Manager (NG Pipeline O & M).

Inventory analysis is being done based on equipment history, spare stock position and stock verification for non-moving items on annual basis. Based on analysis outcomes, inventory control is being done through SAP system majorly for all identified critical spares and other spares also.

"...Material stores are available in Rajamundhry, Vijayawada & Cheralapalli" – Manager (NG Pipeline O & M).

"Inventory control is being monitored and controlled in SAP PM & MM modules by C & P Department and stores and we received intimation regarding spare inventory & purchase orders through SAP...: - CM (NG Pipeline O & M).

The findings from the case data related to the above sub-constructs are also shown in Table 4.5.

Table 4.5 – Materials Management sub-constructs and empirical findings

Initial	Sub	Categories	Focused	Observation on Data
Conceptual	Constructs	from empirical	codes from	Analysis
Construct		data	empirical	
			data	
Materials	Spare parts	Materials	Availability of	Availability of spares are
Management	availability	Management	Spares	being ensured by
				maintenance department
				using Centralised
				procurement method in
				NG pipelines for optimum
				cost of procurement &
				long term planning.
	Reordering		Identified	All the spares have been
	of		Spares	identified as routine
	consumable			maintenance spares,

s/identified		insurance spares, and
spares		critical spares and the
		same is being maintained
		by C & P Department at
		Stores.
Inventory	Inventory	Inventory analysis is
Analysis	Analysis	being done based on
7 that years	7 Marysis	equipment history, spares
		stock position and
		identification of non-
		moving items on annual
		basis and being
		maintained in SAP
		system.
Emergency	Emergency	Emergency purchase
purchase of	purchase of	procedures are available
spares	spares	with C & P department
		such procedures are
		imprest, contingent, and
		nomination purchase. The
		same is being done by
		maintenance department
		in coordination with C &
		P Department as per
		procedures.
Average	Nil	No evidence of following
Inventory		"Average Inventory
Turnover		Turnover" concept in the
		company
Inventory	Inventory	Inventory control is being
control	control	monitored through SAP
through	through	system by Stores &
computerise	computerised	concerned maintenance
d system	system	department.
Availability	Material	Material Stores is
of stores	Stores	available in all the major
		work centres/compressor
		stations in NG Pipelines
		of the company.
Integration	Integration of	
Integration	Integration of	Inventory control with
of inventory	inventory	maintenance planning is

control with	control with	being integrated through
maintenance	maintenance	SAP-MM Module and
planning	planning	SAP- PM Module in SAP
		system. The same is being
		monitored by C & P
		department and Stores.
		On regular basis
		notification are being sent
		to concerned maintenance
		managers/ Engineer-in-
		charges regarding
		inventory of spares.

4.3.4 Human Resources

Human Resources (HR) function is a critical function in any company. In maintenance function also HR plays a vital role. The data analysis outcomes is shown in the below given Figure 4.6 qualitative associative network. The network components such as focused codes and categories are discussed in detail below by presenting representative quotations from the interview data collected. Further the same is also summarised in Table 4.6.

"Maintenance organisation level is varying in the company among the business verticals such as petrochemicals, NG pipelines, LPG pipelines etc. In case of NG pipeline, taking the case of KG Basin, 850 Km. of pipeline n/w, taking the gas supply from ONGC & Cairn energy and supplying gas to around 45 consumers including major (>1 mmscmd), medium consumers & small consumers... Maintenance personnel are working in 24 X 7 Shift" - Manager (NG Pipeline O & M)

"GAIL's maintenance organisation in such a way operating that 2 Executive Directors is there to take care of maintenance function. One Executive Director (ED) is looking after Corporate Function and another ED is looking after central region. These 2 EDs are looking after Natural Gas O &M. Another ED is looking after Petrochemicals. Below ED, work centres are there all over central region" – DGM (NG Pipeline O & M)

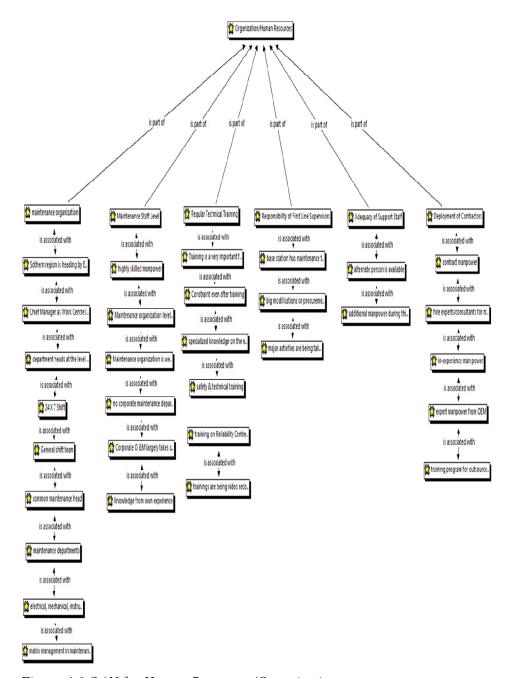


Figure 4.6 QAN for Human Resources/Organisation

"Maintenance organisation is well structured. The maintenance organisation is divided into several maintenance departments such as electrical, mechanical, instrumentation, civil, etc. These departments are working under one common maintenance head in the level of GM. There is no corporate maintenance

department per say. Individual units are completely taking care of maintenance related jobs" – SM (NG Pipeline O & M).

"...availability of system is more in pipeline is due to:- 1) highly skilled manpower; 2) training of individual in special areas ... Manpower standby is also kept for reliability improvement. We are using matrix management in maintenance. Always alternate person is available to perform the particular maintenance job." – Manager (NG Pipeline O & M)

The above representative quotations show that there is a well-structured maintenance organisation structure existing in the company. Maintenance personnel are coming in general shift as well in shifts in order to ensure 24 X 7 manpower availability in gas terminals & compressor stations of NG Pipeline network.

Further, maintenance staff level exists in the company. The maintenance personnel are highly skilled and trained in specific equipment/processes.

"Maintenance structure of KG Basin consists of total 1000 km pipe line network with 5 O & M base stations. Each base station has maintenance team which includes mechanical, electrical, instrumentation engineers. Day-to-day activities are being managed by this team. In case of major maintenance, main station at Rajahmundry will coordinate & help"- CM (NG Pipeline O & M)

"...first line supervisors of concerned maintenance departments such as electrical, instrument, mechanical are responsible for keeping their maintenance activities updated. These maintenance activities are being scheduled in SAP system (PM Module) as per frequency..."- Manager (NG Pipeline O & M)

From the above representative quotations from interview data show that the first line supervisors of concerned department such electrical, mechanical, instrumentation, etc. are responsible for execution of day to day jobs and

update the job status in SAP system. They are placed in base stations in the NG Pipeline network. They will report to main station to which they have attached based on pipeline network regions.

"....Manpower standby is also kept for reliability improvement. We are using matrix management in maintenance. Always alternate person is available to perform the particular maintenance job.... we need additional manpower during this shutdown of NG Pipelines" – Manager (NG Pipeline O & M).

"Training is a very important factor in performing maintenance function. Own engineers should have specialised knowledge on the equipment gaining from their own experience. But, we have the constraint that even after training, we require expert manpower from OEM for much specialised jobs such as engine overhauling, compressor overhauling etc."- DGM (NG Pipeline O & M).

"We are having regular training program for outsourced manpower. Both safety & technical training are being provided to the contract manpower before assigning the job then they are being imparted every quarter. Remote stations (which have section valves) are manned with security personnel. These security personnel are being called to the work centres and provided with the security sensitization training on quarterly basis. These trainings are being video recorded and well documented."- Manager (NG Pipeline O & M).

"Maintenance department is empowered to manage the maintenance problem to hire experts/consultants for maintenance jobs"- SM (NG Pipeline O &M).

It is evident from above quotations that company is having well- structured training process and documenting training programs. However, as highlighted by one senior maintenance manager, dependency on OEM for execution of maintenance jobs in major equipment needs to be reduced.

Further, deployment of contractors is required to execute the major maintenance jobs like overhauling of major equipment. Manpower assistance for execution of day-to-day maintenance jobs also is taken from service contractors. Deployment of such contracts is being done by maintenance department through C & P departments. Engineer – in-charge of contracts are from maintenance department. Therefore, for contractor job execution, maintenance department is responsible. The findings from the case data related to the above sub-constructs are also shown in Table 4.6.

Table 4.6 Human Resources sub-constructs and empirical findings

Initial	Sub	Categories	Focused	Observation on Data
Conceptual	Constructs	from	codes from	Analysis
Construct		empirical	empirical	
		data	data	
Organisation/	Maintenance	Organisation/	Maintenance	Maintenance Staff level
Human	Staff Level	Human	Staff Level	exists in the company.
Resources		Resources		
	Maintenance		Maintenance	Well Structured
	Organisation		Organisation	maintenance organisation
				existing in the company.
				Maintenance personnel
				are deployed on 24 X 7
				basis in NG pipeline
				installations such as
				compressor stations, gas
				terminals etc.
	Responsibility		Responsibility	Supervisor
	of first line		of first line	responsibilities are well
	supervisors		supervisors	defined & they are
				responsible for execution
				of day- to-day jobs of
				their concerned
				departments and update
				the job status in SAP
				system. They are placed
				in base stations of NG
				Pipeline network and
				reports to main station in-
				charge.
	Adequacy of		Adequacy of	Support staff is adequate
	Support staff		Support staff	and maintenance

		personnel are coming in
		shifts to ensure 24 X 7
		basis monitoring &
		maintenance and for
		emergency handling
		manpower is also kept in
		standby.
Regular	Regular	Technical training is
Technical	Technical	being imparted to the
Training	Training	employees in the
Training	Training	structured manner
		including fire & safety
		training. As highlighted by
		one senior maintenance
		manager, OEM
		dependency needs to be
		reduced by more
		advanced trainings on
		equipment.
Apprenticeshi	Nil	No evidences from
p program		interview data. However,
		from company secondary
		data Apprentice program
		is available as per
	 	statutory requirements.
Deployment	Deployment	The company is regularly
of Contractors	of Contractors	deploying contract
		manpower including
		expert manpower from
		OEMs etc. as per
		requirement. The same is
		being managed by
		maintenance department
		in coordination with C &
		P Department.

4.3.5 Information Technology

Maintenance strategy formulation leverages the information technology for effective formulation of maintenance strategies. All the sub-constructs related to information technology identified through literature reviews have been

emerged out from our case study. The same is displayed in the qualitative associative network Figure 4.7 which is developed through Atlas-Ti software.

"In pipelines operation, we have vibration monitoring system which provides input to maintenance schedules. Integration of this system is under progress" – DGM (NG Pipeline O &M)

"IT has been leveraged through SAP System. SCADA & centralised SCADA are used to monitor the pipeline parameters & inform the alarming condition to the concerned sites"- Manager (NG Pipeline O &M).

"...In NG pipelines, satellite based monitoring & GIS monitoring may be followed..." – SM (NG Pipeline O &M).

In the company, expert systems such as vibration systems, intelligent pigging, SCADA system, satellite monitoring etc. are used for NG pipeline operations monitoring & for giving early diagnostics of failures in NG pipelines so that preventive action can be initiated in well-advance.

"Information Technology is leveraged through SAP in maintenance. Scheduling & planning of maintenance is completely is being done through SAP PM Module... preventive maintenance schedules and the same is available in SAP maintenance PM Module. Further, through SAP maintenance planning, job requests, permits are being maintained"- SM (NG Pipeline O & M).

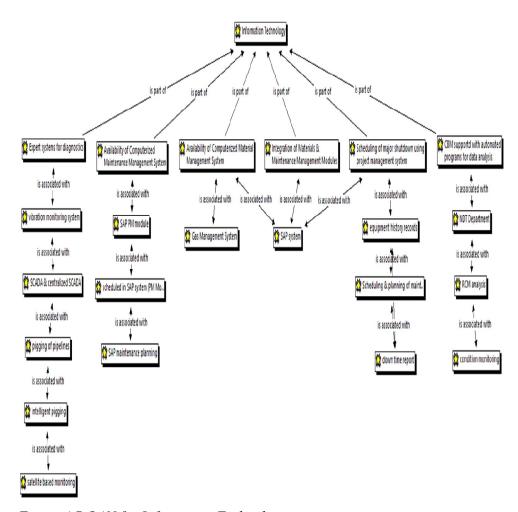


Figure 4.7 QAN for Information Technology

"All the maintenance scheduling & planning are being done through SAP- PM Module all across GAIL. We get reminders of maintenance schedules also from SAP"- DGM (NG Pipeline O &M)

"...maintenance activities are being scheduled in SAP system (PM Module) as per frequency..."- Manager (NG Pipeline O & M)

"Information Technology has been leveraged through SAP system & SCADA system in maintenance function. Entire pipeline networks are connected through SCADA system and monitoring is being done centrally. Gas billing is being done through SAP, GMS (Gas Management System) module..." – CM (NG Pipeline O &M).

"NDT Department is looking after the predictive maintenance of rotating equipment such as compressors, turbines etc. The vibration levels/monitoring are being done by this inspection department. In NG pipelines we have predictive maintenance such as pipeline thickness measurement, intelligent pigging etc."- DGM (NG Pipeline O & M).

The empirical findings related to sub-construct information technology based on above representative quotations from interview data collected from NG Pipelines maintenance managers of a large gas utility company in India are summarised in the below given Table 4.7.

Table 4.7 Information Technology sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Information	Availability of	Information	Availability of	Maintenance planning &
Technology	computerised	Technology	computerised	scheduling and execution of
	system for		system for	maintenance work orders
	maintenance		maintenance	are being done through SAP
	management		management	PM Module in SAP system
				for NG Pipelines O & M in
				the company.
	Availability of		Availability of	NG Pipelines O & M team
	computerised		computerised	is using SAP- MM module
	system for		system for	for material procurement,
	materials		materials	spares management, stores
	management		management	management and inventory
				analysis & control.

Integration of	Integration of	In NG Pipelines of the
maintenance	maintenance &	company SAP- MM &
& materials	materials	SAP-PM Modules have
management	management	been integrated for effective
modules	modules	implementation of
scheduling of	Scheduling of	maintenance strategies.
major	major shutdowns	Further, SAP-GMS Module
shutdown	using project	is being used for gas
using project	management	management & gas
management	system	balancing.
system		
CBM	CBM supported	Real Time condition
supported	with automated	monitoring systems such as
with	programs for data	vibration monitoring
automated	analysis	systems, leak detection
programs for		systems are available in NG
data analysis		Pipeline systems.
Expert	Expert Systems	Vibration monitoring,
Systems for	for diagnostics	SCADA system, Intelligent
diagnostics		Pigging & Satellite based
		monitoring are available in
		NG Pipelines to monitor &
		prevent major failures by
		taking preventive actions
		through early warning of
		such advanced diagnostics
		systems.

4.3.6 Employee Empowerment

The qualitative associative network developed through Atlas-Ti software for construct employee empowerment is shown in the below given Figure 4.8

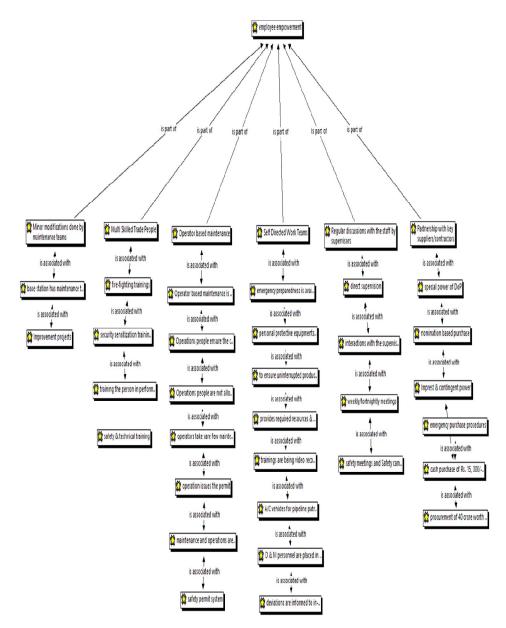


Figure 4.8 QAN for Employee Empowerment

"Operator based maintenance is not being followed in GAIL. In GAIL, maintenance personnel is taking cares all jobs related to maintenance. In NG pipelines, maintenance and operations are merged together. When pipeline personnel goes for pipeline walk and found one valve requires greasing. He needs to do immediately without calling specialised manpower from maintenance" – SM (NG Pipeline O & M).

"Operator based maintenance is followed in our base stations. Because, the operation personnel are required to perform few maintenance activities as and when required..." – CM (NG Pipelines O & M).

"Operations people are not allowed to do maintenance. Therefore, operator based maintenance is not being followed in GAIL. We follow safety permit system like cold work, hot work & work at height permits. Operations people ensure the clearance of giving such permits in order to ensure uninterrupted production. There is clear cut roles are there in O & M at GAIL. For example, electrical lock out permit, electrical department requests the permits, operation issues the permit, safety persons countersign the permit and after work clearance from electrical, then operations takes over. Best maintenance practice in GAIL, using of personal protective equipment, non-sparking tools" – Manager (NG Pipelines O & M).

It is evident from the above representative quotations from interview data reveals that in small gas terminals there is no demarcation like operations and maintenance team. The team working gas terminal is fully responsible for all the jobs. Therefore, they are required to complete the jobs as per requirement irrespective of their disciplines. In compressor stations/pumping stations, there is separated teams for operations and maintenance. In this case, job responsibility of operation personnel is to issue work permits ensuring all clearances so that the maintenance team can perform the jobs as per requirement. Hence, company does not have any job role/responsibility based on operator based maintenance concepts exist in other industries.

"Interaction with supervisors are done face to face basis, direct supervision etc. In bigger installation, weekly/fortnightly meetings are being conducted by in-charges of the plant. There we discuss incident analysis report, down time report etc."- DGM (NG Pipeline O &M).

"As an in-charge of gas terminals, interactions with the supervisors are being done through weekly meeting by reviewing the preventive maintenance

schedules and resource requirements for the NG pipeline section within the limits of my gas terminal. Visit different terminals and observe the customer complaints. Those complaints are discussed with supervisors. NG pipelines, spare materials are being taken along with the maintenance personnel" – SM (NG Pipeline O & M)

"....security personnel are being called to the work centres and provided with the security sensitization training on quarterly basis. They are also being provided with fire-fighting trainings. These are the interactions with the supervisors/technicians" – Manager (NG Pipeline O &M).

"Interactions with maintenance team are being done with the ways such as direct interaction during on the job, O & M meeting on monthly basis and weekly basis visits to sites for interaction & discussion based on daily progress reports. Further, we have safety meetings and Safety campaigns at sites/terminals. Therefore, regular interaction is there with maintenance team" – CM (NG Pipeline O & M).

As described above by maintenance managers/engineers, it is clear that there are regular discussions are being done by staff with supervisors through planned interventions like weekly/fortnightly meetings, safety & technical trainings for supervisors, etc. Further, informal discussions with individuals are also being practiced by the maintenance managers in the company.

"...emergency preparedness is available for NG pipelines such as Emergency Response Vehicle, Emergency tool box, emergency phone numbers, man power etc."- SM (NG Pipeline O &M)

"...best maintenance practices are being followed in GAIL such as using of personal protective equipment, non-sparking tools... provides required resources & manpower... O & M personnel are placed in shifts..." – Manager (NG Pipeline O & M).

"....deviation is being informed to in-charge of plant and necessary approvals are taken..." – DGM (NG Pipeline O & M).

It is evident from the above quotations that the company is having well-structured maintenance process so that the team is self-directed. For example, maintenance personnel can work on self-direction during emergencies. Because, emergency preparedness procedure provides clear directions for individuals concerned in plant operations & maintenance. There is a procedure for taking approval from competent authority in case of any deviation in any procedures.

"With employee empowerment, the maintenance jobs cannot be performed in an efficient manner. Our company (GAIL) provides A/C vehicles for pipeline patrolling and provides required resources & manpower. We have been given special power of DoP. DoP was revised in last year. More empowerment has been given to the employees. Imprest & contingent power are used for cash purchase of Rs. 15, 000/- at the level of Chief Manager i.e., WIC level" – Manager (NG Pipeline O & M).

"Employee empowerment is enough in GAIL as per is maintenance is concerned. There are emergency purchase procedures. Maintenance managers can go for nomination based purchase also" – DGM (NG Pipeline O &M)

"Employee empowerment is enough at GAIL. For example, when I was incharge of gas terminal, I can go for procurement of 40 crore worth material within the budgeted amount at the level of senior manager. Delegation of Power (DoP) i.e., financial power of the employees below board level is well documented and available" – SM (NG Pipeline O &M).

From the above quotations from interview, maintenance managers have confirmed that the overall employee empowerment is much satisfied in the company. Partnership key suppliers/ contractors are facilitated with the well-

defined & documented "Delegation of Powers (DoP)" and Contracts & Procurement Procedures exists in the company.

"...both safety & technical training are being provided to the contract manpower before assigning the job then they are being imparted every quarter. Remote stations (which have sectional valves) are manned with security personnel. These security personnel are being called to the work centres and provided with the security sensitization training on quarterly basis. They are also being provided with fire-fighting trainings. In absence of safety officer another officer will take care of these activities. Concept of everyone is safety officer is inculcated in pipeline installations at GAIL." — Manager (NG Pipeline O &M).

The above quotation explains about the company's policy of developing multi skilled people. In case of emergency the person available in shift must able to attend the emergency situation. Hence, all maintenance staff is being provided with fire & safety training. Even security personnel are also being covered in fire & safety training.

"We have Quality Circle systems in GAIL. Improvement projects are being taken care by Quality Circles" – Manager (NG Pipeline O & M).

"Modification in NG pipelines ensures no interruption to consumers. We follow Change management system. Based on this system, the necessary approvals are taken from Competent Authority" – CM (NG Pipeline O & M).

"For modification, we have structured process. We need to go through change management process. It will go to technical cell personnel. HAZOP study will be done and then necessary approval will be taken from competent authority. Finally, technical cell hand over the job to maintenance personnel. Maintenance personnel then arrange for material, manpower etc. for execution..." – DGM (NG Pipeline O &M).

In the company to do modifications there is a well-structured & documented change management system procedure available. Accordingly, modifications are being done by maintenance personnel. Few improvement projects are also being done through Quality Circles. These are established from the above representative quotations. The findings from the case data related to these subconstructs are also shown in Table 4.8.

Table 4.8 Employee Empowerment related sub constructs and empirical findings

Initial	Sub	Categories	Focused	Observation on Data
Conceptual	Constructs	from	codes from	Analysis
Construct		empirical	empirical	
		data	data	
Employee	Multi skilled	Employee	Multi skilled	Multi skilled people are
Empowerment	trade people	Empowerment	trade people	being developed in NG
				pipelines in the company.
				They are being given
				training in various skills
				such as fire & safety,
				security to handle the
				emergency situation in
				NG pipelines.
	Operators		Operators	Team working gas
	based		based	terminals/remote gas
	maintenance		maintenance	stations are required to all
				the activities irrespective
				of their function.
				Compressor stations are
				having separate teams for
				operations &
				maintenance. Interview
				data is emerging with
				contra arguments among
				the interviewees. This
				shows that concepts of
				OBM are not being
				practiced uniformly in the
				company.

Regular	Regular	Formal interventions such
discussions	discussions	as scheduled meetings,
with the staff	with the staff	safety and technical
by supervisors	by supervisors	trainings etc. with the
		supervisors & informal
		interactions with
		individuals as and when
		required are being
		practiced by maintenance
		managers in the company.
Self-directed	Self-directed	Maintenance teams are
work teams	work teams	self-directed. Evidences
		are there such as adopting
		safety norms, ready with
		emergency work plan, etc.
Minor	Minor	Minor modifications are
modifications	modifications	being taken care by
done by	done by	maintenance through
maintenance	maintenance	structured process of
teams	teams	"Change Management
		System". Few
		improvement projects are
		also being done through
		Quality Circles.
Partnership	Partnership	Well defined &
with key	with key	documented Delegation of
suppliers/cont	suppliers/cont	Powers and Contracts &
ractors	ractors	Procurement procedures
		are facilitating the
		partnership with key
		suppliers/contractors.
 <u> </u>		I

4.3.7 Maintenance Tactics

Interview data has been analysed through Atlas-Ti software. Maintenance Tactics has been emerged out as a category and data analysis outcome is qualitative associative network as shown in Figure 4.9

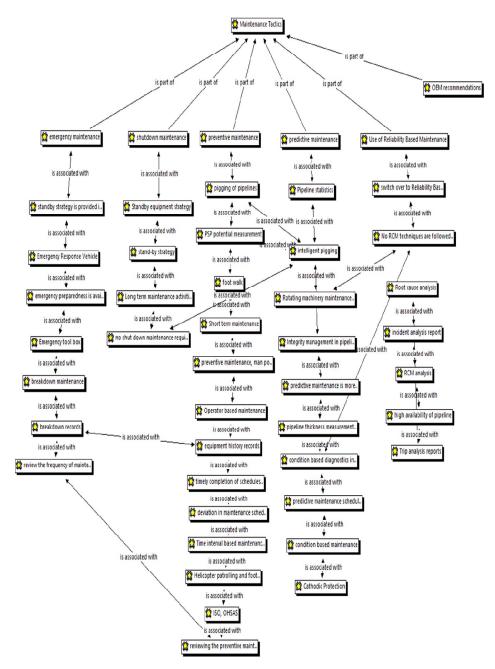


Figure 4.9 QAN for Maintenance Tactics

"The maintenance methods are preventive maintenance, predictive maintenance and shutdown maintenance. In case of preventive maintenance, every quarterly planning for maintenance of pipelines based on our previous experience and also world level standards are being carried out. In the predictive maintenance, we do maintenance of compressors and other equipment. Whereas preventive maintenance are being carried out based on

ISO Schedules...preventive maintenance schedules are varying based on the equipment/ instruments types..." – Manager (NG Pipeline O & M)

"We review the frequency of maintenance schedules every year. If break down maintenances are more for the particular equipment then preventive maintenance schedules will be reviewed accordingly. Due to the ageing of NG/LPG pipelines, maintenance problem increases. so, the preventive maintenance schedules are reviewed accordingly"- Manager (NG Pipeline O & M)

"GAIL's major maintenance strategies are preventive maintenance and predictive maintenance or condition based maintenance. Sometimes we face shutdown maintenance also...In NG pipelines, preventive maintenance methods are line walk/foot walk to see encroachment, helicopter patrolling, cleaning pigging. Predictive maintenance methods are intelligent pigging, cathodic protection, etc... preventive maintenance, man power requirement is much more... preventive maintenance scheduling is based on OISD standards and guideline given by PNGRB. PNGRB comes out with the standard called T4S. It clearly defines the maintenance activities, frequencies, etc. for NG pipeline maintenance" – SM (NG Pipeline O &M)

"Maintenance strategy planning: Major maintenance strategies are preventive maintenance, predictive maintenance /condition monitoring, breakdown maintenance used in NG pipelines. The preventive maintenance schedules & frequency of maintenance are decided based on OEM recommendations and experiences of maintenance personnel. Few methods are CP system, foot walk, survey etc." – DGM (NG Pipeline O &M)

As described by maintenance managers with reference to above quotations, preventive maintenance is used in NG pipelines maintenance. The key observations are,

 Preventive maintenance schedules along with frequency of maintenance are prepared based on OEM recommendations, OEM manuals, OISD standards, PNGRB standards like T4S, equipment types & history records of equipment and previous experience of maintenance managers.

- Preventive maintenance methods specific to NG Pipelines are line walk/foot walk to see encroachment, helicopter patrolling, pigging for pipeline cleaning, etc.
- For execution of preventive maintenance schedules, more man power is required compare to other maintenance methods.
- Preventive maintenance schedules are being reviewed on annual basis by the company based on ageing of equipment & pipelines and no. of breakdowns/failures occurred in particular equipment/system.
- Preventive maintenance schedules are included in ISO procedure and ISO system. Completion of PM schedules ensured through ISO internal audits & external audits.

"...predictive maintenance schedules also again OEM recommendations are available for types of test, periodicity etc. NDT Department is looking after the predictive maintenance of rotating equipment such as compressors, turbines etc. The vibration levels/monitoring are being done by this inspection department. In NG pipelines we have predictive maintenance such as pipeline thickness measurement, intelligent pigging etc..." – DGM (NG Pipeline O & M).

"Reliability of the equipment is very high at GAIL. Rotating machinery maintenance group has been formed across GAIL compressor stations. No RCM techniques are followed at GAIL... When break down occurs, we are going into root cause analysis. Trip analysis reports and break down reports provide inputs to maintenance schedules. Accordingly, tuning of schedules is done in maintenance schedules & planning."- DGM (NG Pipeline O & M).

"Reliability is important in case of metering systems, equipment etc. We go for root cause analysis in case of failures of NG Pipelines"- CM (NG Pipeline O & M).

"...predictive maintenance is more in NG pipelines such as intelligent pigging. Integrity management in pipelines are new maintenance strategy but it is not implemented so far..."- SM (NG Pipeline O & M).

"To ensure reliability, we follow only preventive maintenance & predictive maintenance. Pipeline statistics are available and failure analysis has not been carried out due to very high availability of pipeline" – Manager (NG Pipeline O & M).

As described by maintenance managers with reference to all above quotations, majorly *predictive maintenance is used in NG pipelines maintenance*. The key observations are,

- Predictive maintenance procedures are prepared based on OEM recommendations, OEM manuals, methods prescribed in standards issued by OISD, PNGRD, etc., and previous experience of maintenance managers.
- Predictive maintenance specific to NG Pipelines are intelligent pigging, cathodic protection, vibration monitoring & analysis, thickness measurements of pipelines, etc.
- Predictive maintenance is integrated with computerised analysis software systems & Human Machine Interface (HMI). Such kind of system provides early warnings about equipment or system failures.
 Based on these warnings, maintenance is being carried out in NG pipelines systems.

"Compressor station shut downs are more in NG pipelines at Vijaipur. This is being managed by stand-by strategy. This may be due to aero derivative compressors. We have margin time due to pipeline pack availability"- DGM (NG Pipeline O & M).

"...standby strategy is provided in the NG pipeline systems. Suppose compressor A trips/on maintenance and Compressor B comes on line and ensures the NG supply to such critical plant like petrochemicals so that ensures gas supply availability of 99.9%... in NG/LPG pipelines, there is no shut down maintenance requirement. In pipeline shut down means it is only leakages of pipeline & sabotage to pipelines.... Reliability records are being maintained such as PLT availability, breakdown records, and standby pump maintenance records."- Manager (NG Pipeline O & M).

"We keep provisions for emergency maintenance pipelines. Complete emergency preparedness is available for NG pipelines such as Emergency Response Vehicle, Emergency tool box, emergency phone numbers, man power etc. Safety aspects are very important in NG pipelines maintenance. All safety precautions/procedures are available"- Manager (NG Pipeline O & M).

The key findings on emergency maintenance and shutdown maintenance in NG Pipelines from the above quotations of interview data are appended in the below shown Table 4.9.

Table 4.9 Maintenance Tactics sub constructs and empirical findings

Initial	Sub	Categories	Focused	Data Analysis
Conceptual	Constructs	from	codes from	
Constructs		empirical	empirical	
		data	data	
Maintenance	Use of	Maintenance	Predictive	Predictive Maintenance
Tactics	Condition	Tactics	Maintenance	methods are being used in
	Based		(CBM)	NG Pipelines. Predictive
	Maintenance			maintenance procedures
	(CBM)			have been developed based
				on OEM recommendations,
				OEM manuals, standard,
				and previous experience of
				maintenance managers.
	CBM is		Nil	Predictive Maintenance
	favoured over			(CBM) methods are used
	Time Based			more in NG Pipelines than

Maintenance		preventive maintenance
(TBM)		(TBM) methods.
Total	Preventive	Preventive Maintenance
maintenance	Maintenance	method is being used in NG
man hours	(TBM)	Pipelines of the company.
devoted to		Preventive Maintenance
Preventive/Pre		procedures/schedules are
dictive		prepared based on OEM
maintenance		recommendation, OEM
(PM)		manual, equipment types &
		history, recommended
		standards for the system,
		and previous experience by
		maintenance managers.
Compliance	Nil	PM Schedules are included
of PM	1311	in ISO Schedules/ ISO
Schedules		Procedures. Timely
		completion of PM
		schedules is being ensured
		through ISO
		internal/external audits. PM
		Schedules are also being
		reviewed by the company
		on annual basis.
OEM	OEM	OEM recommendations are
recommendati	Recommendat	used to prepare preventive
ons for an	ions	maintenance schedules and
equipment		predictive maintenance
regarding PM		systems & procedures for
		NG Pipeline systems.
Use of Total	Nil	No evidence of following
Productive		TPM by NG pipelines of
Maintenance		the company is found.
(TPM)		
Use of formal	Use of	No RCM is being followed
Reliability	Reliability	in the company. Few basic
Based	Based	metrics used such as
Maintenance	Maintenance	Incident Analysis Reports,
(RBM)		Root Cause Analysis, PLT
		Availability records etc.
		However, maintenance
		managers are interested to
		implement Reliability
		prement rendenity

			Centred Maintenance in NG
			Pipelines.
,	Total	Emergency	Emergency maintenance is
1	maintenance	Maintenance/	very less in NG pipelines
1	man hours	Breakdown	due to standby equipment
	devoted to	Maintenance	strategy is being followed &
	emergencies/b		availability of pipeline
1	reak down		packs. However, emergency
1	maintenance		preparedness is kept ready
			in NG pipelines of the
			company.
		Shutdown	Shutdown maintenance is
		Maintenance	the method in which
			pipelines system become
			totally shutdown. Such kind
			of requirements is well
			planned based on data
			available through intelligent
			pigging and necessary
			approvals will be taken
			from all concerned. One
			such example of shutdown
			maintenance is attending
			leakage of pipeline by
			replacing the pipeline
			segments. There is no
			shutdown maintenance
			requirement in NG
			pipelines equipment,
			because standby equipment
			strategy is followed in the
			company.

4.3.8 Reliability Analysis

Reliability Analysis is one among the category emerged out from the data analysis. The qualitative associative network related to Reliability Analysis is presented below in Figure 4.10. The same is prepared through Atlas- Ti software based on interview data from maintenance managers of a large gas utility company in India.

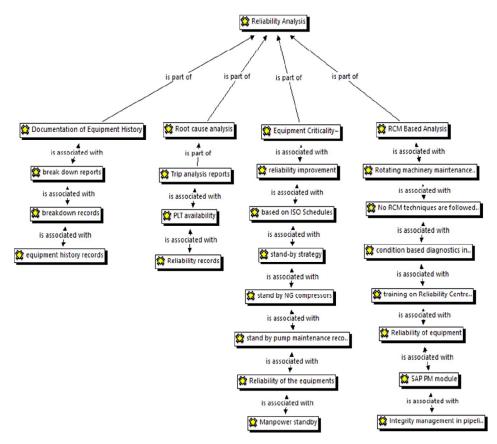


Figure 4.10 QAN for Reliability Analysis

"...When break down occurs, we are going into root cause analysis. Trip analysis reports and break down reports provide inputs to maintenance schedules. Accordingly, tuning of schedules is done in maintenance schedules & planning...Reliability records are being maintained such as PLT availability, breakdown records, stand by pump maintenance records...Manpower standby is also kept for reliability improvement" – Manager (NG Pipeline O & M).

"Scheduling & planning of maintenance is completely is being done through SAP PM Module. But, further leveraging of this module is to be done for RCM analysis, equipment history records etc." – SM (NG Pipeline O & M)

"Reliability of the equipment is very high at GAIL. Rotating machinery maintenance group has been formed across GAIL compressor station. No RCM techniques are followed at GAIL... Compressor station shut downs are more in NG pipelines at Vijaipur. This is being managed by stand-by strategy. This may be due to aero derivative compressors. We have margin time due to pipeline pack availability" – DGM (NG Pipeline O & M).

"There should be training on Reliability Centred Maintenance for maintenance managers. These types of quantitative methods related to RCM analysis is must. History of equipment failures are to be documented & should be given to new recruits" – SM (NG Pipeline O & M).

Empirical findings related to Reliability Analysis from the above representative quotations as described by maintenance managers are summarised in the below given Table 4.10.

Table 4.10 Reliability Analysis sub constructs and empirical findings

Initial	Sub	Categories	Focused codes	Data Analysis
Conceptual	Constructs	from	from empirical	
Constructs		empirical	data	
		data		
Reliability	Documentat	Reliability	Documentation of	Equipment History
Analysis	ion of	Analysis	Equipment History	Records are being
	Equipment			maintained in NG
	History			Pipelines. Such records
				are available in the form
				of break down records
				and break down reports.
	Root Cause		Root Cause	Root Cause Analysis
	Analysis/Inc		Analysis	(RCA) reports are being
	ident			prepared by maintenance
	Analysis			managers in NG Pipelines
				and the same is available.
	Mean Time		Nil	No evidence found in
	Between			using such metrics in
	Failures			maintenance practice.

(MTBF)		
Value Risk	Nil	No evidence found in
Study of		using such study in
maintenance		maintenance practice.
program		
Equipment	Equipment	Equipment Criticality is
Criticality	Criticality	based on types of
		equipment, OEM
		recommendations and
		process requirement.
		Maintenance schedules
		are being prepared based
		on equipment criticality.
Reliability	Nil	Basic metrics are being
Statistics of		used such equipment
equipment/a		availability, plant
ssets		availability etc. Advanced
		metrics based on RCM
		are not being practiced in
		NG pipelines of the
		company.
Reliability	Nil	RCM Analysis is not
Centred		being used in NG
Maintenanc		Pipelines of the large gas
e based		utility company.
analysis		

4.3.9 Maintenance Polices/Maintenance Budget

Maintenance Policy and Maintenance Budget is another category emerged out from the data analysis. The qualitative associative network related to Maintenance Policy/Maintenance Budget is presented below in Figure 4.11 & Figure 4.12. The same has been developed through Atlas- Ti software based on interview data from maintenance managers of a large gas utility company in India. Few representative quotations from interview data are presented below:

"In the Maintenance Policy of GAIL, we have defined maintenance objectives. The major objectives are to ensure high level of availability, reliability and safety. To operate the equipment/pipelines in order to ensure trouble free operation, keep the maintenance cost optimum, achieve the good performances. Overall Company's mission and vision is available. Maintenance policy is the backbone of the mission of the company. For example, in case of deviation in maintenance schedules and the same is to be brought to the knowledge of OIC of the unit and necessary approval to be taken and to be documents as per ISO procedure..." – Manager (NG Pipeline O &M).

"...As for as GAIL is concern, we have maintenance policy in force. The maintenance policy is available in GAIL's intranet. This policy provides guidelines to maintenance function for NG pipelines as well as petrochemicals processing plants. These are broader guidelines, and based on these guidelines each unit formulates its maintenance strategy. Management approach to formulating strategy is provided in maintenance policy... Driving forces of maintenance are from maintenance vision & mission which ensures the smooth operations of pipelines."- SM (NG Pipeline O & M).

"...Presently, I am working in Natural gas pipelines. Our company is having maintenance policy. The basic maintenance methods used are preventive maintenance, predictive maintenance and shut down maintenance... Basic mission of the pipelines system is that pipeline availability should be kept at 100%. Healthiness of the pipeline needs to be maintained in excellent condition by adopting preventive and predictive maintenance activities. This is the main objective of maintenance in pipe line O & M... Objective of maintenance is based on MOU targets." – CM (NG Pipeline O & M).

"Maintenance policies and objectives of the company are derived from the "Maintenance Policy" document. Company's mission is to be the dominant player in natural gas industry. Accordingly, maintenance policy has been prepared. The purpose of the maintenance is to keep the assets/ infrastructure in healthy condition" – DGM (NG Pipeline O & M).

"Budget is function of preventive, predictive & shut down maintenances...we have budget preparation activity every year (BE & RE estimates) based on the actual expenditures of last year by the concerned department. GAIL management's support & commitment is there for such budgeting activity in maintenance. We do the exercise of evaluating the present availability spares requirement and similar we also consider the improvements/modification requirement for the unit. The same will be considered as revenue budget & capital budget respectively. We also take OEM expert service for major maintenance/ overhauling of equipment on man day basis, the same will also be included in the budget based on the requirement of the unit... Based on the job requirement, the budget allocation/resource requirement can be reviewed. In past, based on my experience budget allocation was never being a constraint for performing maintenance jobs." – Manager (NG Pipeline O & M).

"We know that what are the maintenance activities to be taken for next year? Based on this we do our budgeting. Budget provisions are kept for capital expenditures & also revenue expenditures" – CM (NG Pipeline O & M).

"Maintenance budget is based on the ratio of maintenance used between preventive & predictive maintenance. If we add more methods condition based diagnostics in predictive maintenance, obviously maintenance budget will increase" – SM (NG Pipeline O & M).

The findings from the case data related to these sub-constructs are also shown in Table 4.11.

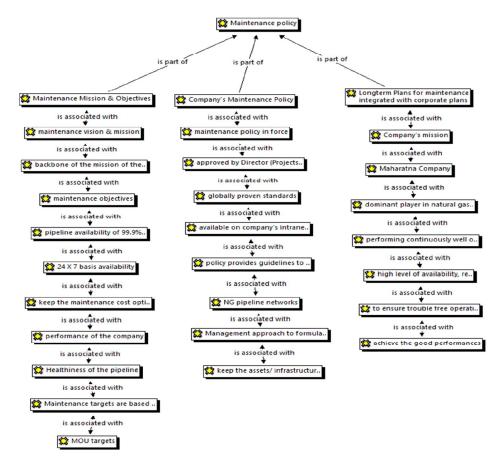


Figure 4.11 QAN for Maintenance Policy

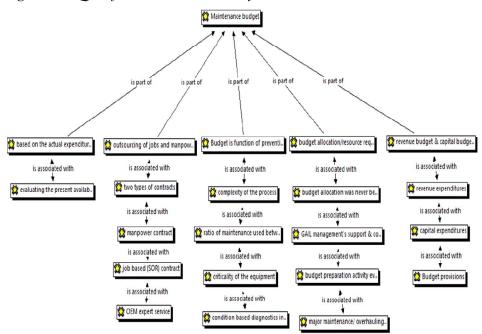


Figure 4.12 QAN for Maintenance Budget

Table 4.11 Maintenance Policy/Maintenance Budget related sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Data Analysis
Conceptual	Constructs	from	from empirical	
Constructs		empirical	data	
		data		
Maintenance	Maintenance	Maintenance	Maintenance	Clear maintenance
policies/	mission &	Policies/	mission &	mission & objectives are
budget	objectives	Budget	objectives	available in the company
				as per Maintenance Policy
				& MOU targets. The
				targets have been further
				divided into objectives of
				individual units/
				maintenance departments.
	Long term		Long term plans	Company's mission &
	plans for		for maintenance	vision is integrated with
	maintenance		function	the maintenance policy &
	function		integrated with	objectives.
	integrated		corporate plans	
	with corporate			
	plans			
	Maintenance		Company's	Maintenance Policy is
	Policies		maintenance	documented & available
			policy	in company's Intranet in
				the company.
	Maintenance		Maintenance	Well defined budgeting
	budget		budget	system is available in the
				company. Maintenance
				Budget is function of
				Preventive maintenance,
				predictive maintenance,
				and shutdown
				maintenance job
				requirements/ plan;
				Budget
				allocation/resource
				requirement is being
				reviewed by the company
				every six months

4.3.10 Maintenance Challenges

A new category has been emerged from the interview data which is collected from maintenance managers of the large gas utility company in India. Maintenance managers are of the opinion that the maintenance challenges are actually helping in formulating maintenance strategies for the company. The data analysis outcomes shows that the new category maintenance challenges contributing to maintenance strategy formulation, selection, and implementation of maintenance strategies. Qualitative Associative Network developed for this category is presented in the Figure 4.13 and few representative quotations from maintenance managers are also discussed below.

"Due to the ageing of NG/LPG pipelines, maintenance problem increases so, the preventive maintenance schedules are reviewed accordingly...in our KG Basin, we have very old pipelines network which was taken over from ONGC. These pipelines do not have pigging facility. We do not know the actual condition of the pipeline. Therefore, we may take operating decisions on such pipeline. This is another challenge in KG Basin pipelines... Major maintenance challenge is condensate from ONGC gas supply and to avoid condensate filtering systems are being used." –Manager (NG Pipeline O & M).

"We have challenges in the pipeline. Manpower placed in pipelines is the executives from GAIL role. But, the jobs are being executed by the contract manpower. Contract work force changes every two year once the new contract has been awarded. Sometimes, new contractors deploy same manpower from previous contract. In case of new contractor brings the new manpower, then training the person in performing the maintenance job is the challenge. Our managers are experts so that the outsourced manpower can be trained during the maintenance"—Manager (NG Pipeline O & M).

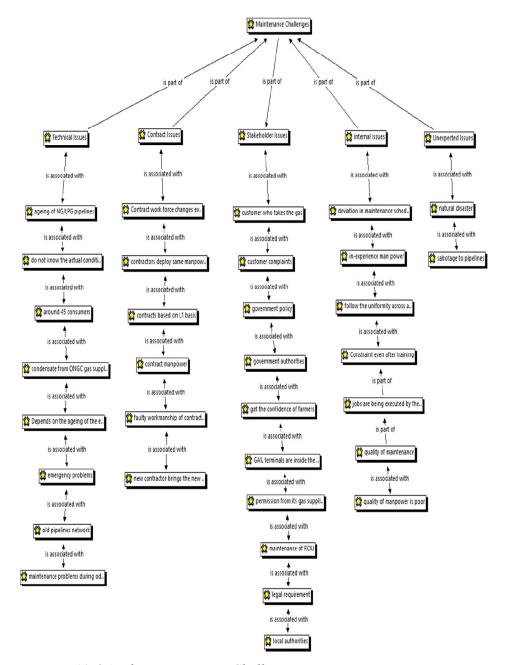


Figure 4.13 QAN for Maintenance Challenges

"The challenges are government policy, procurement procedures, outsourcing of maintenance manpower (GAIL's policy). Since we are hiring the contracts based on L1 basis, due to this quality of manpower is poor and that leads to maintenance problem" – SM (NG Pipeline O & M).

"In pipeline maintenance, external stake holder influence/involvement is very high. When I compare with petrochemicals, there stake holder influence/involvement is very low. Petrochemicals can analogue to gated community. Where, we can control whole lot of activities. But, in NG pipelines, pipelines are passing through the lands of farmers who farming the land, customer who takes the gas, government authorities and local authorities. All of these external stake holders are coming into the picture... for some maintenance reasons such as pipeline leakages etc., you need to get the confidence of farmers and necessary approvals from local government authorities. Your pipeline territory is highly controlled by external stake holders" - Manager (NG Pipeline O & M).

"At times, due to organisation's lean & thin manpower, quality of maintenance gets affected due to in-experience man power" – DGM (NG Pipeline O &M).

"...we have the constraint that even after training, we require expert manpower from OEM for much specialised jobs such as engine overhauling, compressor overhauling etc." – DGM (NG Pipeline O &M).

"...we have challenges in the pipeline. Manpower placed in pipelines is the executives from company's role. But, the jobs are being executed by the contract manpower" – Manager (NG Pipeline O &M).

"...pipelines are passing through the lands of farmers who farming the land, customer who takes the gas, government authorities and local authorities. All of these external stake holders are coming into the picture. If we want to take shut down of the pipelines for maintenance, GAIL needs to get permission from its gas supplier ONGC and its downstream consumers. Even after approval from the external stake holders, we need to complete the maintenance activity as per schedule and restore back the operation as early as possible... Since we are hiring the contracts based on L1 basis, due to this quality of manpower is poor and that leads to maintenance problem."- SM (NG Pipeline O & M).

"Shutdown of pipeline is mainly due to leakage of pipeline, sabotage of pipeline and natural disaster. Sometimes, in SV stations if one valve failures, we may use bypass valve/bypass line temporarily to ensure smooth operation of the NG pipeline" – Manager (NG Pipeline O & M). The findings from the case data related to these sub-constructs are also shown in Table 4.12.

Table 4.12 Maintenance Challenges factors and empirical findings

Categories from	Focused codes from	Data Analysis	
empirical data	empirical data		
Maintenance	Technical Issues	Few technical issues have been identified from	
Challenges (newly		data analysis. They are ageing of pipelines,	
emerged out)		condensate carry over along with NG through	
		supplier gas pipelines, etc.	
	Contact Issues	Few contract related issues have been identified	
		from data analysis. They are deployment of	
		contractor manpower, contract selection based on	
		lowest bid (L1) basis, training of newly deployed	
		contract manpower, etc.	
	Stakeholder Issues	Few stakeholders related issues identified from	
		data analysis are changes in government policy,	
		fulfilment of procedures laid down by local	
		authorities, customer & supplier related issues,	
		issues by farmers etc.	
	Internal Issues	The issues related to the company's internal	
		functions are in-experienced manpower, even	
		after training engineers are not able to perform	
		like OEM experts, Poor quality of contract	
		manpower, etc.	
	Unexpected Issues	Few issues which are natural and unexpected are	
		Sabotage to pipeline systems & natural disaster	
		like earthquake, flood etc.	

4.4 MAINTENANCE STRATEGIES SELECTION PROCESS IN NG PIPELINES

This section describes about maintenance strategies selection related activities in the large gas utility company. Data collected from the maintenance managers/engineers of the company were analysed as per the data analysis strategy described in Section 3.6. After phase I, the conceptual analysis of the case study was undertaken in order to identify various activities carried out by the maintenance managers for maintenance strategies selection and their practices in NG Pipelines. Then, these activities were combined into categories/concepts based on processes related to maintenance strategies & maintenance practices. The detailed data analysis based on literature review Section 2.5.3 (selection of maintenance strategies) and Section 2.5.5 (maintenance decision support system).

Interview data has also been analysed in terms of selection of formulated maintenance strategies. A Qualitative Associative Network has been developed to understand the existing methods available in the gas utility company for maintenance strategy selection. QAN for maintenance strategy selection is shown in Figure 4.14 and the same is supported with the representative quotations as described by the maintenance managers of the gas utility company.

"...frequency of maintenance is depending on the critically of the equipment/instrument. Further, criticality is based on the previous experience and process requirement... maintenance strategy selection is being affected with the factors such as process severity and criticality of the system. Standby equipment strategy is being followed for pipelines in cases of both NG & LPG Pipelines." – Manager (NG Pipeline O & M).

"...these requirements are decided at unit level based on criticality of the equipment and complexity of the process... maintenance policy provides guidelines to maintenance function for NG pipelines...these are broader

guidelines, and based on these guidelines each unit formulates its maintenance strategy...factors of maintenance strategy planning are complexity of the equipment, maintenance requirement and required availability of the equipment."- SM (NG Pipeline O & M).

"Selection of maintenance like preventive or predictive is based on two factors as I told earlier also. They are experience of maintenance personnel and OEM recommendations" – DGM (NG Pipeline O &M).

"...predictive maintenance is more in NG pipelines such as intelligent pigging. Integrity management in pipelines are new maintenance strategy but it is not implemented so far... Short term maintenance planning is based on PM schedules. This includes cathodic protection (CP). In CP, PSP potential measurement is to be done on monthly basis"- SM (NG Pipeline O & M).

"In pipelines operation, we have vibration monitoring system which provides input to maintenance schedules. Integration of this system is under progress" – DGM (NG Pipeline O & M).

"In my view, we should switch over to Reliability Based Maintenance. In NG pipelines, satellite based monitoring & GIS monitoring may be followed in future...in NG pipelines, preventive maintenance methods are line walk/foot walk to see encroachment, helicopter patrolling, cleaning pigging. Predictive maintenance methods are intelligent pigging, cathodic protection, etc. – SM (NG Pipeline O & M).

"...problem faced by the individual unit are shared with other units of similar nature. So that, the preventive actions can be initiated by the other units in order to avoid similar maintenance problems. This is the maintenance policy being followed among the GAIL units"- Manager (NG Pipeline O & M).

"PNGRB comes out with the standard called T4S. It clearly defines the maintenance activities, frequencies, etc. for NG pipeline maintenance. These

activities must have to be followed since T4S standard implementation is statutory... Maintenance modification such as re-routing pipelines is being done with guidelines from OISD standards"—SM (NG Pipeline O & M).

The findings from the case data related to maintenance strategies selection process are shown in Table 4.13.

Table 4.13 Maintenance Strategy Selection Process empirical findings

Categories from	Focused codes from	Data Analysis	
empirical data	empirical data		
Selection of Maintenance	Factors Contributing to	Few factors which are contributing to	
Strategy for particular	maintenance strategy	the selection of maintenance strategy	
operation	selection	have been identified from the data	
process/equipment		analysis. Such factors are previous	
		experience of maintenance managers,	
		criticality of the system/equipment,	
		OEM recommendations, Maintenance	
		Policy, equipment complexity,	
		equipment availability, process	
		severity, complexity of the process	
	Specific maintenance	Specific maintenance strategies being	
	strategy for NG pipeline	used in NG Pipelines are intelligent	
		pigging, integrity management system,	
		Cathodic Protection, Vibration	
		monitoring system, Stand-by equipment	
		strategy, Helicopter Patrolling, Line	
		walk, Cleaning Pigging.	
	Internal & Industry	Gas utility company is following	
	Norms	industry norms such as standards of	
		OISD, PNGRB, etc. and internal norms	
		are such as sharing maintenance	
		problems among work centres and	
		maintain SAP system so that all data	
		can be accessed by all work centres	
		across the country. These norms help	
		the company to implement uniform	
		maintenance strategy selection process	
		across the work centres in the country.	

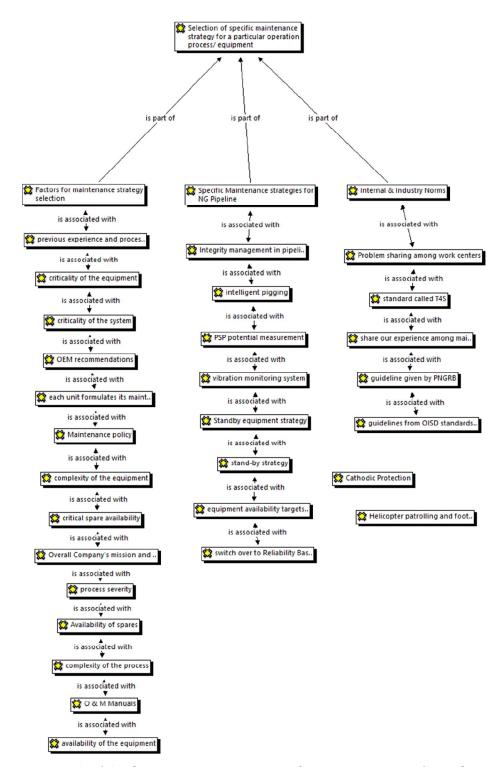


Figure 4.14 QAN for Maintenance strategy selection process in NG Pipelines

4.5 RELATIONSHIP BETWEEN MAINTENANCE STRATEGY SELECTION PROCESS AND MAINTENANCE STRATEGIES & PRACTICES

This section describes the relationship between factors contributing to maintenance strategies and maintenance practices and maintenance strategy selection processes in NG Pipelines of the gas utility company.

As shown below in Figure 4.15, maintenance strategies & maintenance practices planning and execution in NG Pipelines of the gas utility company depends on the factors contributing to maintenance strategies & maintenance practices including benchmarking practices and reliability maintenance practices in the company. Maintenance strategies selection process identified in section 4.4 play a crucial role in maintenance strategies & practices.

The key findings regarding relationship between maintenance strategy selection process and maintenance strategies & practices are as follows:- Total Productive Maintenance (TPM) technique is not being practiced in the gas utility company NG Pipelines; planned shutdown maintenance is one among the maintenance tactics is being used for the equipment/systems where standby is not available. This is the new tactics emerged out from this study; Predictive Maintenance is preferred more in NG Pipelines over Preventive Maintenance; Reliability Cantered Maintenance (RCM) technique is not being practiced in the gas utility company NG Pipelines. Therefore, the RCM metrics such as MTBF, Value Risk Study are not being used in maintenance; no International Benchmarks are being followed. But, MOU targets are treated as benchmarks. From the documentary evidence, it is found that maintenance cost is benchmarked i.e., 0.83 % of Gross Block (Inflation Adjusted); Maintenance managers are referring MOU targets/ operational targets as Key Performance Indicators (KPI) for maintenance also. This shows that there is no specific KPIs are identified for measuring maintenance performance.

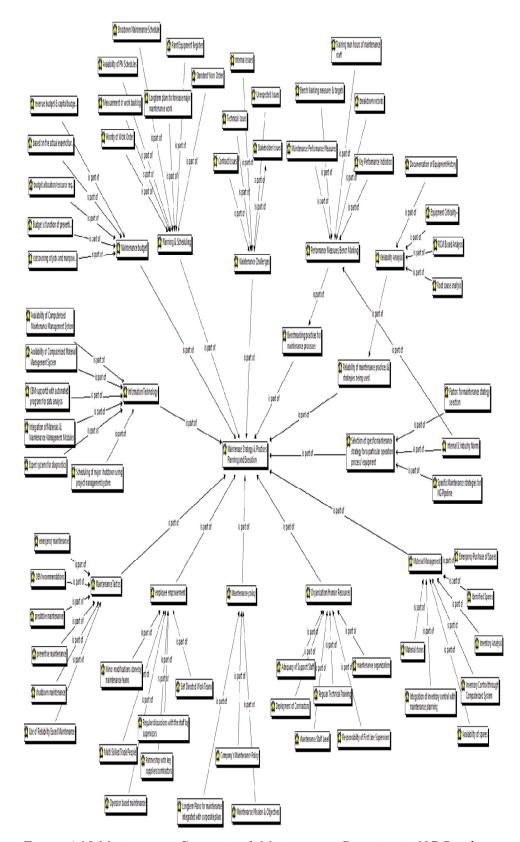


Figure 4.15 Maintenance Strategies & Maintenance Practices in NG Pipelines

Further, maintenance performance is assessed through Internal Audits & External Audits. Since, these audits are being conducted based on some standards such as OISD, PNGRB guidelines etc., these audit recommendations & their implementations are guiding the maintenance performance in the large gas utility company; there is no evidence of awareness or usage of metric related to labour cost/material cost from the interview data. However, maintenance cost is benchmarked by the company as given above; no evidence of following "Average Inventory Turnover" concept in the company; during interview, maintenance managers were not telling about Apprentice program. However, from company secondary data Apprentice program is available as per statutory requirements; maintenance challenges is the new category of maintenance strategies emerged out from this study. This includes the major issues being faced by maintenance managers in their day-to-day jobs. These are grouped in to technical issues, contract issues, stake holder issues, internal issues & unexpected issues. These factors will play crucial role in development of maintenance strategies & maintenance practices. Presently, these challenges are managed by individual/team as and when required. The same has to be formalised & documented for better maintenance practice; key maintenance challenges which are need to be considered before formulating maintenance strategy & while implementing maintenance practices are ageing of assets, NG Pipelines issues such as condition, no. of consumers, gas source problems etc., deployment of contract manpower & workmanship of contract employees, award of contracts, legal & statutory requirements, customer/supplier plant issues, quality of maintenance & inexperience maintenance personnel, dependency on OEM support, and natural disasters.

4.6 FINDINGS AND DISCUSSIONS

This section discusses the findings from empirical data analysis on maintenance strategies & maintenance practices of the large gas utility company business vertical NG Pipelines, maintenance strategy selection processes specific to NG Pipelines equipment/process and further relationship

between maintenance strategies selection process and maintenance strategies & maintenance practices in the company.

4.6.1 Maintenance Strategies & Maintenance Practices

The above detailed data analysis results with the following categories which contributes to maintenance strategies selection and maintenance practices.

- 1. Performance Measures/Benchmarking
- 2. Planning & Scheduling
- 3. Materials Management
- 4. Organisation/ Human Resources
- 5. Employee Empowerment
- 6. Information Technology
- 7. Maintenance Policies/Budget
- 8. Maintenance Tactics
- 9. Reliability Analysis
- 10. Maintenance Challenges

Earlier literature on maintenance strategies & maintenance practices has identified nine categories of factors contributing to maintenance strategies selection & practices as discussed in the literature review chapter section 2.6. This research study could find evidence for all these nine contributing factors. There is one new category emerged out from this study is maintenance challenges.

Earlier literature on performance measures as discussed in section 2.6.3 has identified sub-constructs such as labour and material cost, breakdown records, maintenance performance measures, key performance indicators, downtime records, training man hours of maintenance staff, internal norms/industry norms, benchmarking measures & targets. From the data analysis, there is evidence of all these construct except labour/material cost. Even though, maintenance cost is the only benchmarked parameter in the gas utility company's document, no evidence is found from interview data. i.e.,

maintenance managers/engineers are practically not using this measure. The interviewees indicated that the key performance measures and benchmarking parameters are based on MoU (Memorandum of Understanding) with concerned ministry of Government of India. It is observed that the most of the parameters are related operational targets and they are not measuring the maintenance performance. Benchmarking exercise was carried out by the gas utility company during 2002 only. Benchmarking is majorly related to operational/financial aspects of the business. There is no separate maintenance benchmarking parameters available.

Earlier literature identified the construct planning & execution to cover the sub-constructs (Refer section 2.6.4) such as plant equipment register, standard written work order, availability of PM schedules, priorities of work order, availability of work schedule for a week ahead, shutdown maintenance schedule, measurement of work backlog, long term plans to forecast major shutdown/maintenance work. This case study has found the evidences for all these elements. Planning & execution activities in NG Pipelines are being executed, maintained, and documented in the SAP system as indicated by the interviewees.

Earlier literature on material management as discussed in section 2.6.5 has identified with sub-constructs such as spares availability, identified spares, inventory analysis, emergency purchase of spares, average inventory turnover, availability of stores, inventory control through computerised system, and integration of inventory control with maintenance planning. This case study has found the evidences for the all these elements except average inventory turnover. This concept has not been used by the gas utility company. As per interview data analysis, the material management activities in NG Pipelines of the company are being managed through SAP MM Module in SAP system. Further, material management module is also integrated with SAP PM Module which is used for maintenance planning & execution. Therefore, practice of proper planning, organising, and controlling of the spare procurement in

alignment with the maintenance planning process exists in NG Pipelines of the company.

Earlier literature identified the construct organisation/human resources to cover the sub-constructs (Refer section 2.6.6) such as maintenance staff level, maintenance organisation, responsibility of first line supervisors and adequacy of support staff, regular technical training, apprenticeship program, and deployment of contractors. Evidences are found for all these elements of organisation/human resources from interview data except apprenticeship program. However, interaction during site visits and documentary evidences show that the company is following apprentice program and this is statutory also. Especially, training systems are well structured in the company as indicated by interviewees. This facilitates technical training in maintenance in order to ensure smooth operation and quick restoration of equipment/processes after breakdown.

Earlier literature on employee empowerment as discussed in section 2.6.7 has identified the sub-constructs such as multi-skilled trade people, operators based maintenance, regular discussion with the staff by supervisors, self-directed work teams, minor modifications done by maintenance teams, and partnership with key suppliers/contractors. This case study could find evidences for all these elements. There are contra arguments among interviewees regarding operators based maintenance practice. Because, in gas pipeline terminals, such practice is existing and it is not the case with compressor stations in NG Pipelines. Modifications are managed through change management systems and the modifications are carried out only by main stations not by base stations.

Earlier literature identified the construct information technology to cover the sub-constructs (Refer section 2.6.8) such as availability of computerised system for maintenance management, availability of computerised system for materials management, integration of maintenance management & materials management modules, scheduling of major Shutdown using project

management system, CBM supported with automated programs for data analysis, and Expert systems for diagnosis. This case study could find evidences for all these elements of activities related leveraging information technology in NG pipelines of the gas utility company. Expert systems for maintenance diagnostics used in NG Pipelines are SCADA, intelligent pigging, and satellite based pipeline survey/monitoring.

Earlier literature on maintenance polices and maintenance budget has identified the sub-constructs as discussed in section 2.6.9 such as maintenance mission & objectives, long term maintenance plans integrated with business plans, maintenance policies, and maintenance budget. Interview data analysis provides evidences for all these elements related to maintenance policies and maintenance budget. Interviewees indicated that clearly defined maintenance mission and maintenance objectives are available in the maintenance policy document. Further, they also explained about budget system and its role in maintenance function in NG Pipelines of the large gas utility company.

Earlier literature on maintenance tactics has identified the sub-constructs as discussed in section 2.6.1 such as use of Condition Based Maintenance/ Predictive Maintenance, Condition Based Maintenance is favoured over Time Based Maintenance (TBM), total maintenance hours devoted to Predictive Maintenance/ Preventive Maintenance, compliance of PM Schedules, OEM (Original Equipment Manufacturer) Recommendations for an equipment regarding PM, use of formal Reliability Based Maintenance (RBM), and use of Total Productive Maintenance (TPM). This case study could found evidences for all these elements of maintenance tactics in NG Pipelines of the gas utility company except use of Reliability Based Maintenance and Total Productive Maintenance. Shutdown maintenance is the maintenance method is emerged out from this case study. The maintenance jobs which could not be carried out during NG pipelines are under operational condition will be planned during pipelines shutdown (shutdown is the period in which NG Pipelines are not under operation due to non-requirement of gas by customer).

During this period, maintenance jobs are carried out. This type of maintenance is called as shutdown maintenance.

Earlier literature identified on reliability analysis to cover documentation of equipment history, equipment criticality, Root Cause Analysis (RCA)/Incident Analysis (IA), Mean Time Between Failures (MTBF), Value Risk Study of maintenance program, reliability statistics of equipment/assets, and Reliability Centred Maintenance (RCM) based analysis. This case study could not find any evidences for most of the elements except RCA/IA from interview data analysis. Interviewees has indicated that the reliability based maintenance or reliability centred maintenance is not being practiced in the company. However, few reliability measures like RCA/IA and equipment history are being practiced in NG pipelines of the company as indicated by maintenance managers/engineers of the company.

This case study could find evidences for "Maintenance Challenges" as a new category of factor contributes to maintenance strategies planning and execution in the company. This includes the major issues being faced by maintenance managers in their day-to-day jobs. These are grouped in to technical issues, contract issues, stake holder issues, internal issues & unexpected issues. These factors play crucial role in maintenance strategies & maintenance practices. Presently, these challenges are managed by individual/team as and when required. These maintenance challenges factors are to be formalised and documented for better maintenance practices in the company as indicated by the interviewees. The major maintenance challenge in NG Pipelines is sabotage to pipelines and natural disasters.

4.6.2 Maintenance Strategies Selection Process in NG Pipelines

As discussed in Chapter 2, section 2.5.3, literature indicated that the maintenance strategies selection process is being carried out using mathematical modelling. In the organisations, selection of maintenance strategies for particular equipment/process is treated as Multiple Criteria

Decision Making (MCDM) Problem. This type of problem can be solved using techniques like AHP, Fuzzy AHP, VIKOR model etc. This case study could not find any evidences of using such techniques in NG pipelines of the gas utility company for maintenance strategies selection process.

Further, as discussed in section 2.5.5, literature indicated that Decision Support System (DSS) models have been used for optimizing the maintenance strategies mix use in the organisations in order to ensure better implementation of maintenance strategies and improving maintenance. No evidences are found in this case study regarding implementation DSS models in NG pipelines of the gas utility company.

As detailed above in section 4.4, NG pipelines maintenance strategies selection process includes the following elements such as previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity, equipment availability, process severity, and complexity of the process in selecting a particular maintenance strategy for a specific equipment/process. However, there are specific maintenance techniques are applicable in NG Pipelines in performing maintenance strategies such as preventive maintenance and predictive maintenance like intelligent pigging, integrity management system, cathodic protection, vibration monitoring system, standby equipment strategy, helicopter patrolling, line walk, cleaning pigging, internal norms, and industry norms.

4.6.3 Relationship between Maintenance Strategies Selection Processes and Maintenance Strategies & Practices in NG Pipelines

Earlier literature identified with various maintenance strategies related models to explain the processes related to maintenance strategies selection and maintenance practices and contributing factors as discussed in chapter 2, section 2.6 & section 2.7. Such processes are deliberated like formulation of maintenance strategies (McAlister, 1999; Waeyenbergh & Pintelon, 2002;

Kelly, 2006), maintenance strategy selection (Dekker, 1996; Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Murthy, Atrens & Eccleston, 2002; Bertolini & Bravilacqua, 2005; Lin et al., 2009), and implementation of maintenance strategies (Campbell & Picknell, 2006; Eti M.C., 2006; Crespco, 2005; Pinjala, Pintelon & Vereecke, 2006; Veldman, Klingenberg & Wortmann, 2011), e-maintenance and its impact (Liptrot, David & Palarchio, Gino, 2000; Muller, Alexander; Crespo, Marquez, Adolfo & Lung, Benoit, 2007; Swanson, 2003; Elliot & Tobias, 2005). Maintenance performance provides key inputs to maintenance strategies selection and maintenance practices as indicated by various literatures (Albert et al., 1999; Tsang, 1999; Sherwin,, 2000; Swanson, 2001; Kutucuoglu et al., 2001; Visser & Pretorious, 2003; Weber & Thomas, 2006; Parida & Chattopadhyay, 2007; Parida & Uday, 2009; Muchiri et al., 2011; Simoes et al., 2011).

This case study could find evidences of relationship among the processes related to maintenance strategies & maintenance practices such as formulation of maintenance strategies, maintenance strategy selection, and implementation of maintenance strategies. E-maintenance implementation in NG pipelines is majorly based on the implementation of SAP system and other intelligent diagnostic systems. There is an evidence of using maintenance performance assessment in framing maintenance strategies and improvement in maintenance practices.

This case study could find evidences showing maintenance processes in the gas utility company such as maintenance strategies formulation, maintenance strategy selection, implementation of maintenance strategies and practices in the company. Further, this case study could come out with the factors contributing to those maintenance strategy related processes.

4.6.4 Case Study Findings in terms of Research Questions

The constructs and sub-constructs identified through literature review have been verified in data analysis of empirical data collected from maintenance managers/engineers of the large gas utility company in India. The detailed discussions, observations and findings have been presented above in section 4.3 & section 4.4. Further, the relationships among these factors emerged from data analysis and holistic picture for answering the central research question, a Qualitative Associative Network has been developed and the same is shown in section 4.5. The case study findings are summarised in terms of research questions and presented below.

- Findings related to CRQ (Maintenance strategies & practices planning and Execution & specific maintenance strategies of gas utility company)
 - O NG pipelines of gas utility company is planning & executing its maintenance strategies majorly based on: overall company's maintenance policy guidelines, MOU/ IMOU targets, maintenance challenges faced by maintenance managers/engineers such as ageing of assets, dependency on OEM, contract issues, etc.
 - Specific maintenance strategies are selected in NG pipelines majorly based on: OEM (Original Equipment Manufacturer) recommendations, standard industry practices and past experience of maintenance managers.
- Findings related to ARQ1- Common & different maintenance strategies between petrochemicals & NG Pipelines
 - o Predictive Maintenance is more used compare to preventive maintenance in NG Pipelines than petrochemicals
 - Emergency maintenance is very rare in NG Pipeline where in Petrochemicals the same is minimized by various maintenance tactics
 - Maintenance Techniques used are also very specific to systems in NG Pipelines such as cathodic protection, intelligent pigging, etc.

- Maintenance challenges play a crucial role in deciding on maintenance strategies & impact the maintenance practices in NG Pipelines.
- Findings related to ARQ2- Benchmarking in Maintenance of NG pipelines
 - o Benchmark report (2002) is available but it is not being practiced fully in NG Pipelines of the gas utility company.
 - From the documentary evidence, it is found that one parameter maintenance cost is benchmarked i.e., 0.83 % of Gross Block (Inflation Adjusted).
 - MOU targets are being treated as benchmarks by the maintenance managers since the company is market leader in NG pipelines transmission and availability of pipeline is 99%.
 - Maintenance performance is assessed through Internal Audits
 & External Audits by OISD, PNGRB, etc.
- Findings related to ARQ3- Reliability in maintenance
 - o Reliability Centered Maintenance (RCM) technique is not being practiced in NG Pipelines of the gas utility company.
 - o RCM metrics such as MTBF, Value Risk Study are not being used in NG pipelines maintenance practices.
 - However, Root Cause Analysis (RCA) of maintenance failure
 & Incident Analysis Report (IAR) are being used to identify
 root cause failure of equipment and report failure incident
 respectively.

4.7 CONCLUDING REMARKS

This chapter presented and discussed the analysis and results of NG Pipelines case study of Indian gas utility company. Categories of factors contributing to maintenance strategies & maintenance practices and maintenance strategy selector process in NG Pipelines of the gas utility company have been presented and discussed. One new type of category maintenance challenges

and one new type of maintenance tactic/method shutdown maintenance emerged out from the data.

The relationship between maintenance strategies selection process in NG Pipelines and categories of factor contributing to maintenance strategies & maintenance practices have been presented and discussed. The findings of the case study illustrate that interviewees considered the following categories such as performance measures, planning & Scheduling, materials management, human resources, information technology, employee empowerment, maintenance tactics, reliability analysis, maintenance policies/maintenance budget, and maintenance challenges are important in deciding on maintenance strategies selection process & maintenance practices in NG Pipelines of the gas utility company.

Further, interviewees indicated that the maintenance strategies selection process is not based on mathematical modelling using quantitative techniques & tools and it is based on previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity, equipment availability, process severity/complexity, internal norms and industry norms.

This chapter presented and discussed NG Pipelines Case study. Next chapter presents and discusses the Petrochemicals Case Study.

CHAPTER 5

MAINTENANCE STRATEGIES & MAINTENANCE PRACTICES OF PETROCHEMICALS PLANT

5.1 INTRODUCTION

This chapter presents in detail the case study conducted at petrochemicals plant. Data collection details related to this case study-1 (Petrochemicals) is discussed in section 5.2. Then detailed data analysis findings are reported in the subsequent sections on maintenance strategies & practices in Petrochemicals (section 4.3), maintenance strategy selection processes in Petrochemicals (section 4.4), and relationship between maintenance strategy selection process and maintenance strategies & practices in Petrochemicals (section 4.5) of the large gas utility company in India. Further, detailed discussions on case findings are presented in section 4.6. Outcomes of the case study findings are summarised in concluding remarks. The sub-section of this section of this chapter discusses about Petrochemicals of the large gas utility company in India and its operation & maintenance systems at the company.

5.1.1. Petrochemicals Industry – An Overview

Petrochemicals are the derivatives of crude oil and natural gas. Olefins (ethylene, propylene & butadiene) and Aromatics (benzene, toluene & xylenes) are the major building blocks from which most chemicals and petrochemicals are produced. They are used in dyes, synthetic fibres, rubbers, plastics, pharmaceutical bulk drugs, industrial appliances, packaging industry, detergents (surfactants).

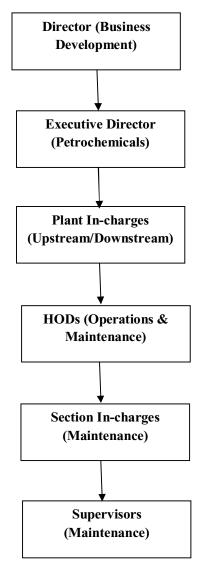
Petrochemicals production process consists of primarily two stages. In the first stage naphtha, produced by refining, crude oil or natural gas is used as a feedstock and is cracked. Cracking (breaking of long chain of hydrocarbon molecule) produces olefins and aromatics. In stage two, these building blocks are polymerized (made to undergo chemical processes) to produce downstream petrochemical products (polymers, polyesters, fibre intermediaries and other industrial chemicals. The upstream integrated naphtha / gas cracker complexes are technology intensive and enjoy economy of scales. However, downstream plastic processing industry is quite fragmented across the country and operates at lower than optimum capacity.

Olefins are the key building blocks of the petrochemical industry. Of the main, while India has sufficient capacities for ethylene and propylene, styrene continues to be in deficit. Ethylene capacity grew in the five year plan due to partial de bottlenecking of capacity by GAIL, HPCL and the start-up of IOC complex at Panipat. Propylene production boosted due to extraction of Propylene by RIL at its Refinery Complex. For Butadiene, RIL and Haldia are the only two domestic producers.

The industry suffers from high capital and energy costs, shortage of natural gas, lack of skilled manpower, low focus on value added exports of end products, cyclical nature of business, zero import duty differentials between polymers and feed stocks. The key demand drivers of this industry are GDP growth, improvement in disposable income, aspirations of young India, urbanization, etc. These mega trends get translated to increase demand for healthcare, packaging, white goods, automobiles, agriculture produce, retail, etc. The margins in the industry are cyclical and typically follow a 6-8 year period of troughs and peaks.

Availability and high duty on feedstock (natural gas), high cyclicality in the business, low import duties on polymers, poor margins due to nil duty differential between feed-stock and Products, large capex needed to set

petrochemical projects (Petrochemical feed stocks face 5% customs duty) are some of the issues that the industry faces. (Source: www.equitymaster.com)


5.1.2. Petrochemicals Operations & Maintenance

The large gas utility company owns and operates a gas based Petrochemical Complex at PATA, District-Auraiya in UP (around 380 km from Delhi). GAIL has world class "Sclairtech" solution polymerization process licensed from M/s Nova Chemicals, Canada to produce LLDPE and HDPE, with nameplate capacity of 210 KTA and has two slurry based polymerization process licensed from M/s Mitsui Chemicals, Japan, to produce HDPE, each with nameplate capacity of 100 KTA. A new world class gas phase Unipol PE Process of M/s Univation Technology, USA, to produce HDPE/LLDPE with a nameplate capacity of 400 KTA is expected to be commissioned shortly.

GAIL has 70% equity in joint venture company Brahmaputra Cracker & Polymer Limited (BCPL) in Dibrugarh, Assam with a nameplate capacity of 220 KTA of HDPE & LLDPE and 60 KTA of PP. GAIL has acquired equity in OPaL's greenfield petrochemical project at Dahej to produce 1060 KTA of HDPE & LLDPE and 360 KTA of PP. With ISO 9000, ISO 14000 and ISO 18001 accreditations, GAIL is committed towards producing a quality product with creating, maintaining and ensuring a safe and clean environment. GAIL's polymer products are environment-friendly and fully recyclable. GAIL provides a wide choice of grades with consistent and reliable quality to its customers. Its manufacturing process and quality systems ensure that the products conform to the technical specifications, backed by high quality services to provide complete solution to the customers. The company's marketing network is designed to ensure regular supply of material through multiple delivery modes, from both our Production Site as well as Stock Points.

GAIL Polymer Technology Centre (GPTC) is the technical support division of the GAIL Petrochemical Marketing group. It functions as the interface between the valued customers and plant. The centre is situated at Noida. The centre is equipped with state of the art plastic testing facilities for raw materials, additives and end products. It is NABL accredited Laboratory. With the support of laboratory equipment, it guides the customer for usage of GAIL's material. GPTC endeavours to bring customer delight by providing the total technical solutions to fulfil customer's needs.

GAIL petrochemical complex is called as Uttar Pradesh Petrochemical Complex (UPPC), PATA which is located 100 KMs. Away from Kanpur, Uttar Pradesh, India. It is producing 4.5 Lakh Tons of Polymer in its complex. Approx. 900 employees are working in this petrochemical complex. The petrochemical complex is producing polymer from natural gas. From natural gas, Ethane (C2) is extracted through gas processing plant and then C2 is cracked in Gas Cracker unit furnaces to convert Ethane to Ethylene. Then, Ethylene is transported to downstream plants to convert to Polyethylene grades High Density Poly Ethylene (HDPE) and Low Linear Density Poly Ethylene (LLDPE). All these processes are critical and controlled by automation & major equipment such as compressors, gas turbines, extruders, bagging machines, etc. It is contributing 24% profit of the large gas utility company's overall profit. Operations & Maintenance function plays a crucial role in achieving the production targets of polymers in this petrochemical complex. The organisation chart is as shown in Figure 5.1 below:

(Source: www.gailonline.co.in)

Figure 5.1 Organisation chart for Petrochemicals O & M

5.2 DATA COLLECTION

Semi structured interview was conducted from the following maintenance personnel in the area related to Petrochemicals plant who are the employees of the large gas utility company using case study protocol.

Table 5.1 - List of Interviewees of Case study-2 (Petrochemicals)

Level of Analysis	Designation	Date of Interview
Level 2– Gas processing	Manager (Maintenance)	24.07.2013
Level 2 - Petrochemicals	SM (Operations)	30.07.2013
Level 1 - Petrochemicals	SM (Maintenance)	23.08.2013
Level 1 – Corporate	CM (Maintenance)	24.08.2013
Level 3 – Polymer plant	DM (Maintenance)	24.08.2013
Level 3 – Gas	SE (Maintenance)	20.09.2013
Processing		

Note: The names of the participants are not given in the above table due to confidentiality

Data was collected from a variety of source: (i) Participant observation of team at NG Pipeline terminals located in Delhi NCR region for a month; (ii) Interviews; (iii) Company website, Intranet, and operation & maintenance related documents; and (iv) informal discussions with maintenance team leaders, maintenance mangers, maintenance engineers and maintenance technicians. As discussed in Section 3.5, the data collection was carried out at Petrochemical plant of the large gas utility company. The data collection phase lasted for almost six months. Initial one month was spent for initial contact and making arrangements for data collection (June, 2013). Then, two months were spent in conducting interviews based on the availability of maintenance managers/engineer from various levels (July, 2013 to August, 2013). Thereafter, 2-3 site visits were carried out in Petrochemicals plant at PATA, UP during September, 2013 to November, 2013.

The details of interview participants are shown in above Table 5.1. All interviews were recorded and then transcribed. After completion of the transcription of interviews, one month was spent to collect the interviewees' feedback on the transcripts (November, 2013). The draft of the case study report was shown to CM (O &M), and his suggestions and feedback were

incorporated. Follow-up over telephone was done for clarifications and additional information.

Based on the interview data, within case data analysis was undertaken keeping in mind the research questions: How the gas utility company is planning and executing its maintenance strategies & practices to ensure smooth operation process in the company's business vertical Petrochemicals and why the specific maintenance strategy has been selected for a particular operation process/equipment?. This lead to the identification of various factors forms the basis for maintenance strategies selection and maintenance practices in petrochemical of the large gas utility company. Further, maintenance strategies selection processes being practiced in petrochemical and specific maintenance strategies for a particular operation process/equipment were identified. Then, the relationship between maintenance strategies selection processes and the identified factors for maintenance strategies & maintenance practices in petrochemical was analysed. Next Section describes about the detailed data analysis and findings of Petrochemicals case study.

5.3 MAINTENANCE STRATEGIES & PRACTICES IN PETROCHEMICALS

Data Collected from maintenance mangers/engineers of the company in the area of petrochemicals were analysed as per the data analysis strategy described in Chapter 3 (Section 3.6). This section describes about the factors contributing to the maintenance strategies and maintenance practices in petrochemicals of the gas utility company. The detailed data analysis based on initial conceptual constructs and sub-constructs identified & conceptualised from the literature review (Section 2.6) such as Performance Measures, Maintenance Tactics, Planning & Scheduling, Materials Management, Organisation/Human Resources, Employee Empowerment, Information Technologies, and Maintenance Polices/Budget is presented below.

5.3.1 Performance Measures

The interviewee data shows that the sub-constructs such as breakdown records, key performance indicators, training man hours of maintenance staff, maintenance performance measures, and internal & industry norms identified from literature for maintenance performance measures are also being practiced in petrochemicals plant of the gas utility company. A few of the representative quotations from the interviews are as given under:-

"Down time analysis and root cause problem are identified through Trip Analysis Report (TAR) and further action is initiated to prevent those failures in future"- DM (O & M)

In petrochemicals, downtime records are called as breakdown records. Such records are maintained in Trip Analysis Reports (TAR).

"The decision regarding equipment's maintenance should be done in a very careful manner so that equipment healthiness is not getting affected" – SM (O & M).

"...basic objective of the process plant is to make available of the critical equipment on 24 X 7 basis for operations... Because, for critical equipment, we do not have standby..."- SM (O &M- PC)

"Maintenance objective of this unit is ensuring 95% availability of plant. For achieving this target, we are having different maintenance strategies..." – CM (O & M)

"...plant availability is to be maintained at 99% and individual functional departments are also setting their department wise targets such at equipment availability of 99% etc... plant down time for processing plant should be less than 14 hours due to instrumentation systems." – Manager (O &M)

"Benchmarking in our company is that availability of plant should be 95%. We have our own benchmarks such as MOU targets"- CM (O &M)

"Benchmarking can be comparable since the company is one among the market leader. Corporate MOU targets are the basis for bench marking. The targets are being percolated to unit level, plant level, department level and also to individual level" – SM (O &M)

"...we have maintenance man power benchmarks at corporate level. HRD department is having man power data and the same is communicated to individual unit for further planning. We do not have documentation with unit level. But the corporate guidelines are available..." – Manager (O & M).

It is clearly evident from the above quotations that the MOU (Memorandum of Understanding) targets which are agreed upon with Petroleum ministry are only used for the purpose of benchmarking of Operation & Maintenance practices in petrochemicals plant of the gas utility company as conceived by the maintenance managers/engineers. Further, key performance indicators are also MOU targets which are of nature internal/external MOU targets. External MOU targets are set by petroleum ministry of India and internal MOU targets are set by corporate O & M function.

"Training is very important for performing maintenance function. One is on the job training. Another one is HOD is continuously evaluating the training requirements of their employees. The training needs are captured through structured reporting system. GAIL training institute is capable to organize all the technical requirements of maintenance personnel" – SM (O & M- PC).

"Training is very important for maintenance personnel. Maintenance engineer who is working on a particular machine should be given training on the maintenance aspects of that machine from OEM. That is the welcome move. Discussions with OEM personnel will also help maintenance engineers to perform better maintenance function" – SM (O & M)

"On-job training is an important aspect in maintenance. One training per employee is given on functional side to each and every employee by the organisation" – CM (O & M).

As described above by the maintenance managers in gas utility company, training function is being given importance by maintenance managers. From the company's intranet, further as explained by the maintenance managers, there is a structured process to allot training to the maintenance personnel in the company. However, maintenance managers have emphasized on on-the-job training and OEM trainings in maintenance function.

"Annual audits are being conducted to see the maintenance practices compliance & performance measures of maintenance systems. Such audits are Inter Unit Safety Audit (IUSA), OISD Audit, etc. with different frequency" – CM (O & M)

"Maintenance Audits such as internal audits and external audits also facilitate the maintenance monitoring. We won the British Safety Council Award, this shows our maintenance practices are excellent" – Manager (O &M)

"Maintenance compliance & Maintenance performance are being ensured with the various audit processes such as internal audits by internal employees of GAIL and external audits by external agencies such as OISD, PNGRB, AGA etc." – DM (O&M)

As described by maintenance mangers, maintenance performance measures are majorly done using methodology of audits. These audits are being conducted internally by company's employees like Inter-unit audit and Intra-unit audit and further external audit experts from statutory bodies, third party vendors, etc. These audits provide audit reports with recommendations. These audit points are implemented so as to improve the maintenance performance as

explained by the maintenance managers. Compliance report is also submitted by maintenance managers within the targeted time assigned by auditors.

"...we are following international standards for industry norms compliance. Internal norms are MOU targets"- SM (O & M)

"...we are following standards such as AGA, PNGRB, SIL level etc. for compiling the Industry Norms" – CM (O&M)

"Maintenance modification is done with the well- structured procedure Change management system. Guidelines for the same is from the standard OISD 178" – SM (O&M- PC)

From the above quotations, it is evident that the company is following certain internal norms such as guidelines from corporate management based on targets assigned by petroleum ministry i.e. MOU targets and industry norms such as international standards (AGA, SIL, etc.) & industrial compliance requirements.

The findings from the case data related to these sub-constructs are also shown in Table 5.2.

Table 5.2 Performance Measures sub-constructs and empirical findings

Initial	Sub	Categories	Focused	Observation on Data
Conceptual	Constructs	from empirical	codes from	Analysis
Constructs		data	empirical	
			data	
Performance	Downtime	Performance	Breakdown	Breakdown/down time
Measures/	Records	Measures/	Records	analysis is being done in
Benchmarking		Benchmarking		petrochemicals to identify
				the root cause problem
				and the same is
				maintained in Trip
				Analysis Reports (TAR).

		Such records are being
		maintained for measuring
		_
		maintenance performance.
Key	Key	KPIs are available.
Performance	Performance	Basically, these are
Indicators	Indicators	operational performance
		derived from MOU
		Targets with Petroleum
		Ministry. Few
		maintenance indicators
		used are down time hours,
		equipment availability,
		etc.
Training man	Training man	Maintenance managers
hours of	hours of	_
		feel that training is
maintenance	maintenance	important to maintenance
staff	staff	personnel. They
		emphasized on on-the-job
		training, OEM training,
		etc. From the interview
		data & data evidences,
		Structured Training
		Process is available in the
		gas utility company.
Maintenance	Maintenance	Maintenance Performance
Performance	Performance	is largely based on
Measures	Measures	Internal & External Audit
		Process by internal
		experts & external
		agencies such as OISD,
		_
Internal	Internal	PNGRB etc. respectively.
		Petrochemical plant of
Norms &	Norms &	gas utility company is
Industry	Industry	following relevant
Norms	Norms	Internal & Industry
		Norms as per applicable
		standards & statutory
		requirements.
Benchmarking	Benchmarkin	No International
measures &	g measures &	Benchmarks are being
targets	targets	followed. But, MOU
		targets are treated as
		benchmarks since the
	<u> </u>	1 1 1

		company is market leader.
Labour and	Nil	No evidence could be
material cost		collected from
		maintenance managers
		which support importance
		being given to labour and
		material cost in
		maintenance function.

The qualitative associative network associated with the initial conceptual construct "Performance Measures" is as shown in Figure 5.2.

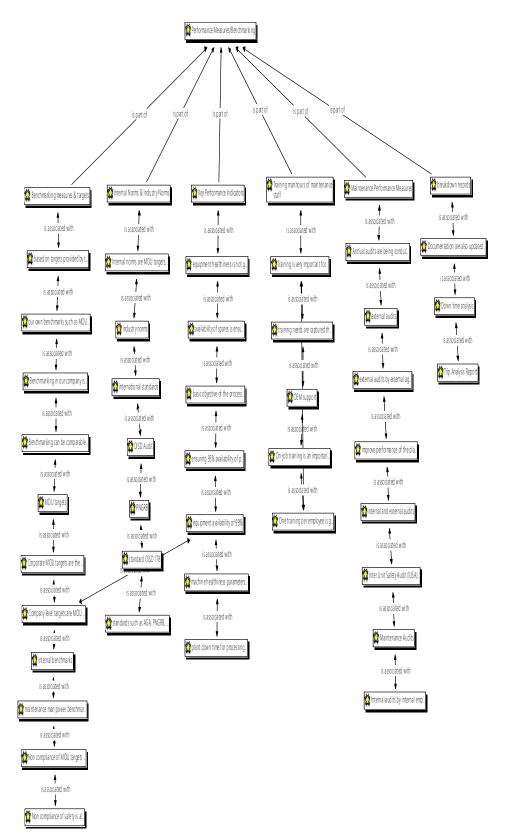


Figure 5.2 QAN for Performance Measures & Benchmarking

5.3.2 Planning & Scheduling

Interviewees indicated that the planning & scheduling is an important factor which plays crucial even at the stage of maintenance strategies formulation. A qualitative network associated with planning & scheduling is shown in Figure 5.3. The categories emerged out from this qualitative associative network are explained next with the help of evidences and descriptions from the case study.

"...SAP system is having beautiful tools. Through SAP, we can monitor spare availability, budget consumption and slippages in preventive maintenance schedules. IT is being well leveraged in our company like communication facility, SAP system etc." – Manager (O &M)

"...we use SAP system for planning maintenance system. All the maintenance schedules along with task list to be performed in the equipment are built-in with SAP system. Accordingly, work orders are being issued and necessary permits are obtained from operations personnel for performing that particular maintenance" – Manager (O &M)

"Maintenance planning, work intimation, spare planning etc. is being done through SAP system" - SM (O &M)

"...we have our IMS maintenance manuals. These manuals state very clearly the maintenance strategies being used in the company... work instructions, standard operating procedures are provided in the maintenance manuals..." – SM (O & M-PC).

"... for preventive maintenance we have maintenance schedules. We sought guidance from OEM for maintenance planning & formulating the maintenance schedules. We also take recommendations from OEM for specific maintenance problem identified in predictive maintenance also" – SM (O&M-PC)

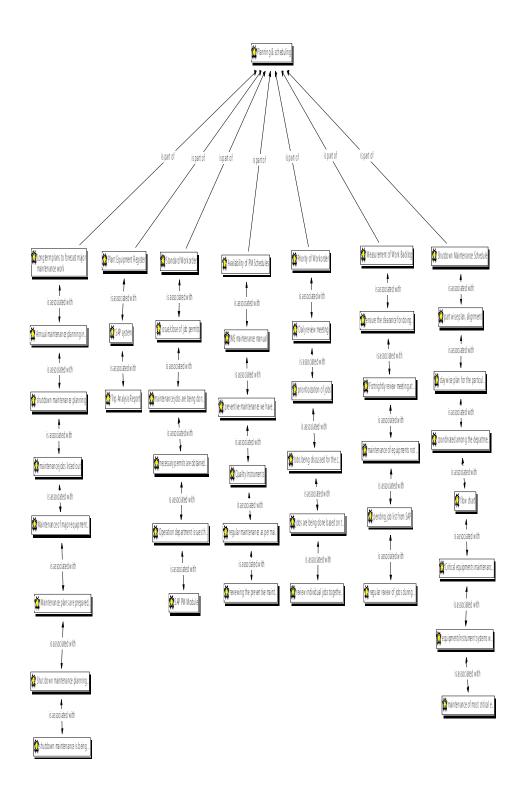


Figure 5.3 QAN for Planning & Scheduling

"...Quality Instruments are being taken to maintenance based on preventive maintenance schedules. And few instruments are also being sent to vendor site for calibration, service etc... In long run, if we do regular maintenance as per maintenance schedules then maintenance cost will be lesser." – CM (O & M)

"...reviewing the preventive maintenance schedule by 20th of every month for betterment in maintenance function..."- DM (O & M)

"...Planning of maintenance is majorly to reduce the down time of the plant. To take care of this, the major aspects considered during planning of maintenance are manpower planning, prioritisation of jobs and closing of the jobs..." – CM (O & M)

"After discussion with operation/maintenance team at plant control room, we assemble at department level. Jobs being discussed for the current status then distributed to the individual employees. Therefore, the same is monitored during day in Shifts/ G-Shift as per requirement" – CM (O &M)

"Daily we get pending job list from SAP then we decide among our maintenance crew to whom will do which job. After lunch, we review individual jobs together for any requirement of resources such as spares, man power etc." – DM (O & M)

As explained by the maintenance managers above, the maintenance records used for planning & scheduling such as plant equipment register, standard written work order, availability of PM schedules, priorities of work order, shut down maintenance schedule, and backlog maintenance jobs are being maintained in SAP-PM Module in SAP system installed in the company. Further, issues related to these factors are being reviewed in daily review meeting and accordingly jobs are prioritized and resource allocation is also done.

"Long term planning is being addressed by shutdown maintenance planning. Annual maintenance planning includes major overhauling & modifications job in the particular equipment/machine... Maintenance of major equipment which do not have stand-by will be done during shutdown maintenance"- CM (O&M)

"In my opinion, preventive maintenance should be strictly followed & compiled. Shut down maintenance planning should be done thoroughly and in advance. These will definitely help to improve maintenance practices in the organisation...Maintenance plans are prepared for the year and get it approved by HODs. Then, the same is taken up month wise. Further, if any deviation and the same is get it approved by HOD" – DM (O&M)

"Maintenance in petrochemical is not very simple. After achieving the MOU targets, shutdown maintenance is being planned every year. The maintenance jobs listed out for doing in shutdown maintenance is taken up during this plant shutdown. No surprise should come during equipment maintenance in performing annual shutdown maintenance. This could be achieved through proper planning based on predictive maintenance of that particular equipment"- SM (O & M)

The above quotations represented that in petrochemicals long term maintenance planning is majorly shutdown maintenance planning. Shutdown maintenance planning is being done by maintenance managers well in advance and the same is done for a year. The maintenance performance of petrochemicals is depending on the well execution of shutdown maintenance plan of the plant.

"...for Shutdown maintenance, we usually plan during month of April or May. We make through planning for shutdown maintenance...we get the flow chart which provides information that day wise plan for the particular equipment such as dismantling of machine, part wise plan, alignment etc. The jobs are being coordinated among the departments like mechanical, electrical &

instrumentation. Few jobs are department wise jobs which are required coordination among the departments. Such jobs are taken up individually department wise/unit wise" – DM (O& M)

"Critical equipment maintenance is linked to the annual maintenance shutdown. The maintenance of a particular machine has been decided by HODs in consultation with OEMs. OEM experts will be available to perform the maintenance during plant shutdown to take care of over hauling of a particular equipment" – SM (O & M)

"Those equipment/instrument systems which are critical for plant operation are kept in shut down maintenance scheduling. Suppose, if they have serious maintenance issue, the same has to be rectified by stopping plant operations by taking shutdown"- CM (O & M)

It is evident from the above quotations that in petrochemicals shutdown maintenance play a crucial role in performing maintenance of critical equipment which do not have stand-by equipment and further maintenance of instruments/equipment which cannot be carried out during normal operations of the plant. Therefore, shutdown maintenance schedule is important in planning & execution of shutdown maintenance jobs in an effective manner.

The findings from the case data related to these sub-constructs are also shown in Table 5.3.

Table 5.3 – Planning & Scheduling sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Planning &	Plant	Planning &	Plant Equipment	Equipment details are being
Scheduling	Equipment	Scheduling	Register	maintained in SAP PM
	Register			module; As part of plant
				equipment register

		breakdown records &
		reports and trip analysis
		reports are also being
		maintained in SAP system.
Standard	Standard written	Work orders are being
written work	work order	maintained in SAP PM
order		module based on ISO
		Schedules with the
		frequency of PM jobs
		planned. Automatic work
		orders are being generated
		based on schedule
		incorporated in the system.
Availability	Availability PM	PM Schedules are available
PM schedules	schedules	& the same are being
		maintained in SAP PM
		Module. PM Schedules are
		based on frequency & types
		of maintenance. These
		schedules are prepared
		based on OEM
		recommendations and are
		equipment specific.
Priorities of	Priorities of work	Work orders priorities are
work order	order	assigned and being
work order	order	
		maintained in SAP PM
		module. The same is based
		equipment history &
		criticality of the equipment
		and during review in daily
		and fortnightly review
		meetings.
Availability of	Nil	Work schedules are being
work schedule		maintained in SAP PM
for a week		module and can be accessed
ahead		any point of time based
		schedule.
Shutdown	Shutdown	Detailed shutdown
Maintenance	Maintenance	maintenance schedule in the
Schedule	Schedule	form of flow chart along
		with day wise jobs break up
		& department wise job list
		are being maintained by
		are being manitamed by

		maintenance managers in
		petrochemicals processing
		plants.
Measurement	Measurement of	Backlog maintenance jobs
of work	work backlog	are maintained in SAP PM
backlog		module. The same is
		completed in the next
		available opportunity.
		Completion of backlog jobs
		is ensured with proper
		allocation of resources.
Long Term	Long Term Plans	In Petrochemicals,
Plans to	to forecast major	shutdown maintenance is a
forecast major	shutdown/	major part of the long term
shutdown/	maintenance work	maintenance planning. It is
maintenance		well planned in advance and
work		shutdown maintenance jobs
		are partly derived from the
		results of predictive
		maintenance systems.

5.3.3 Materials Management

Materials Management is a critical part in maintenance strategy formulation stage itself. The effective materials management will facilitate efficient implementation of maintenance strategies. A qualitative associative network which is the outcome of data analysis of interviews taken for Petrochemicals case study is presented below in Figure 5.4.

"Material inventory is managed by identifying obsolete parts of equipment/instrument systems. Therefore, material management in operation plant is that we are following regular review of spare parts & reassessment of requirement. Material availability affects the maintenance. Critical spare parts have been identified and their inventory is being maintained properly" – CM (O & M)

"Through SAP, we can monitor spare availability, budget consumption and slippages in preventive maintenance schedules"- Manager (O & M)

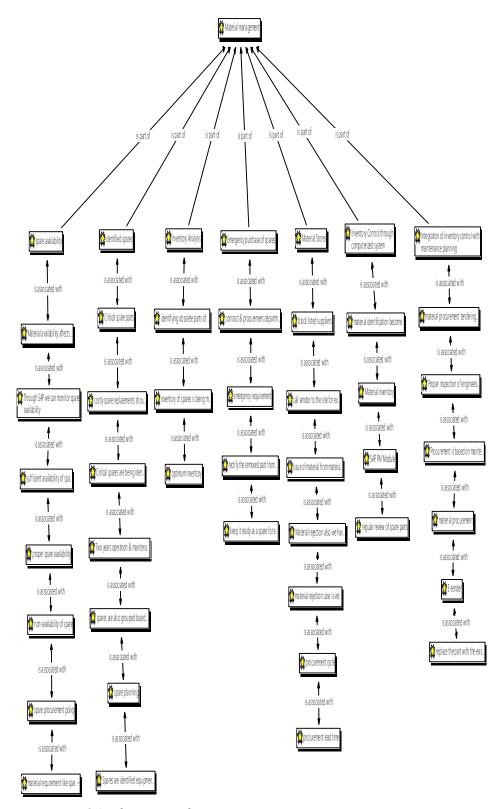


Figure 5.4 QAN for Materials Management

"By our virtue of experience and proper spare availability with the maintenance planning, we need to minimize the shutdown maintenance time" – SM (O & M)

"Material management is very important for performing maintenance function. We have spare procurement policy. Two years operation & maintenance spares are being maintained for all the critical equipment. Critical spares are being identified and such spares availability is ensured so that plant availability does not get affected due to spare availability. Procurement is based on maintenance policy" – SM (O & M-PC)

"Spares are identified equipment wise. All the identified spares are procured and the same is maintained at stock. After consumption, procurement action is initiated for replenishment of spares. This procurement cycle has been structured into process. So that inventory of spares is being maintained at optimum level. Further, these spares are also grouped based on model nos., types, etc. to keep optimum inventory. This reduces the problem of non-availability of spares" – DM (O & M)

In petrochemicals plant, availability of spares is being ensured by maintenance managers by periodic reviewing, reassessment of requirement, maintain proper inventory of critical spares, and spare procurement policy. All these processes are done using SAP system. Further, spares have been grouped based on technical specification so that optimum spares can be procured. Accordingly, optimum inventory can also be maintained. Inventory analysis of spares is being done using types of spares like critical, non-critical, and insurance spares. The same is maintained in SAP MM module (SAP Material Management).

"Basically any maintenance activity is well planned in our company. One of the factors in maintenance is procurement lead time of spares. We initiate the proposal at well early stage. Even if we have any emergency requirement, we have necessary Delegation of Powers to meet such emergency requirements of material, manpower etc."- Manager (O & M)

"In case of spare part requirement, we replace the part with the existing spare. Further, we rectify the removed part from the equipment and keep it ready as a spare for emergency use"- DM (O & M).

Emergency spare requirement is handled by maintenance managers using their delegation of powers such as imprest, contingent purchase, etc. as per Contracts & Procurement procedures of the company. Further, technically the repaired spare part is also kept for emergency use till the receipt of new spare at site.

"Material rejection also we have well- structured process and we call vendor to the site for explaining details about material rejection. But material rejection case is very less... One contract supervisor is nominated to perform coordination job in maintenance such as issue of material from material stores, allocation of jobs to workers, issue/close of job permits etc." - Manager (O & M)

"...material identification becomes easy through SAP system and we could trace required material wherever it is available. Secondly, we could also able to identify surplus spares availability available with other work centres" – DM (O & M)

"Material inventory is managed by identifying obsolete parts of equipment/instrument systems. Therefore, material management in operation plant is that we are following regular review of spare parts & reassessment of requirement" – CM (O & M)

"...while we are going for tendering, we do not have any procedure for avoiding lowest bidder based on quality. This becomes some time challenges while doing maintenance. This is mainly happening in material procurement tendering. In my view, there should be some Low cost cut should be there in tendering process... E-tender is introduced recently so that we can monitor the entire procurement cycle in the SAP Software only so that supplier interaction becomes more effective. Even supplier can view the procurement process information." – Manager (O & M).

From the above quotations from interview data and field observations at petrochemicals plant, the following are evident.

- (i) Material stores are available in petrochemicals plant. The stores is responsible for series of activities like receipt of material, conducting inspection by concerned indenting department, once inspection is passed then store the material in proper place, in case of rejection of material then follow up with vendor for replacements, and keep track of inventory of material.
- (ii) SAP system is implemented in petrochemicals plant. Therefore, SAP MM module is being used by contract & procurement personnel to keep track of all the above activities and inventory analysis. Inventory analysis is being done based on non-moving items during last 3 years in coordination with the concerned indenting department.
- (iii) Maintenance managers are using SAP PM Module for keep tracking of all maintenance activities. C & P managers are using SAP MM Module for keep tracking of contracts and procurement related activities. However, both these modules are well integrated. Therefore, inventory control in line with maintenance planning is possible. It is evident from interview data & informal discussion show that some extent tools available in SAP are being used by GAIL managers but it is required to exploit further.

The case study data along with empirical findings are clearly discussed and depicted in the below given Table 5.4.

Table 5.4 – Materials Management sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Materials	Spare parts	Materials	Availability of	Spares availability is
Management	availability	Management	Spares	ensured by spare
				procurement policy and
				identification of critical
				spares. Inventory of
				spares is being monitored
				periodically using SAP
				system in order to
				maintain proper inventory
				level.
	Reordering		Identified Spares	All the spares have been
	of			identified as routine
	consumable			maintenance spares,
	s/identified			insurance spares, and
	spares			critical spares and the
				same is being maintained
				by C & P Department at
				Stores.
	Inventory		Inventory	Inventory analysis is
	Analysis		Analysis	being done based on
				equipment history, spares
				stock position and
				identification of non-
				moving items on annual
				basis and being
				maintained in SAP system
				Materials Management
				module.
	Emergency		Emergency	Emergency purchase
	purchase of		purchase of spares	procedures are available
	spares			with C & P department
				such procedures are
				imprest, contingent, and
				nomination purchase. The
				same is being done by
				maintenance department

Average Inventory Turnover	Nil	in coordination with C & P Department as per procedures. Further, technically the repaired spare part is also kept for emergency use till the receipt of new spare at site. No evidence of following "Average Inventory Turnover" concept in the company
Inventory control through computerise d system	Inventory control through computerised system	Inventory control is being monitored through SAP system by Stores & concerned maintenance department.
Availability of stores	Material Stores	Material Stores is available in the petrochemicals plant. The stores department is responsible for receipt of material, conducting inspection along with concerned indenting department, storage in proper place, issue of material as and when required, keep tracking of inventory, rejections, and replacements of material.
Integration of inventory control with maintenance planning	Integration of inventory control with maintenance planning	Inventory control with maintenance planning is being integrated through SAP-MM Module and SAP- PM Module in SAP system. The same is being monitored by C & P department and Stores. On regular basis notification are being sent

		to concerned maintenance
		managers/ Engineer-in-
		charges regarding
		inventory of spares.

5.3.4 Human Resources

In petrochemicals plant also Human Resources (HR) function plays a critical role in the gas utility company. In maintenance function, experienced engineers who can able to trouble shoot maintenance problem quickly will be an important HR factor in performing the best maintenance practices. The data analysis outcomes is shown in the below given Figure 5.5 qualitative associative network. The network components such as focused codes and categories are discussed in detail below by presenting representative quotations from the interview data collected. Further, the same is also summarised in Table 5.5.

"...where our maintenance jobs are being done by in-house maintenance crew, the maintenance cost is Cost To Company/employee"- CM (O&M)

"Our unit is headed by General Manager and Deputy General Manager is looking after Operations & maintenance of the processing plant. Ours is the functional organisations. Therefore, various functions are divided into departments like mechanical, electrical, instrumentation. These departments are headed by Senior Manager/ Chief Manager Level. The maintenance organisation provides specialised functional departments so that jobs pertaining to function like mechanical are being done with the specialist in this area. At corporate level Director (Projects) is over all in-charge of processing plant. Further, Executive Director is the interface between corporate and plant head GM.... Since it is functional organisation, maintenance personnel only performs the maintenance jobs" – SM (O & M –PC)

From the above quotations from interview and other documentary evidences, it is evident that the maintenance staff level existing in petrochemicals unit such

as non-executives and executives. Non-executives are like foreman, supervisors, technicians, etc. Executives are like engineers, managers, general managers, etc. There is proper maintenance organisation structure is available at unit level and also at corporate level of the company.

"...Daily we get pending job list from SAP then we decide among our maintenance crew to whom will do which job. After lunch, we review individual jobs together for any requirement of resources such as spares, and man power etc." – DM (O & M).

"...There should be cordial relation among maintenance technicians, engineers and managers. Each and every aspect of the maintenance activity should be discussed before execution of the maintenance activity" – SM (O & M).

"We have maintenance man power benchmarks at corporate level. HRD department is having man power data and the same is communicated to individual unit for further planning. We do not have documentation with unit level. But the corporate guidelines are available" – Manager (O & M).

Adequacy of staff has been ensured at corporate level. HRD department is ensuring the manpower availability to support maintenance function in the gas utility company in order to provide manpower for petrochemical plant operations & maintenance on 24 X 7 Basis.

"Training is very important for performing maintenance function. One is on the job training. Another one is HOD is continuously evaluating the training requirements of their employees. The training needs are captured through structured reporting system. GAIL training institute is capable to organize all the technical requirements of maintenance personnel" – SM (O & M PC).

"On-job training is an important aspect in maintenance. One training per employee is given on functional side to each and every employee by the organisation" – CM (O & M)

"...Specific technical training helps engineers to perform their jobs more effectively and efficiently. Few more technical trainings may be included" – DM (O & M)

In the gas utility company, there is a structured process existing in training need identification and execution of training programs. GAIL Training Institute is the corporate training centre, which is responsible for providing training to employees of the company. Maintenance mangers have emphasized for more focused technical training programs for engineers in petrochemicals plant and on-the-job training programs.

"One contract supervisor is nominated to perform coordination job in maintenance such as issue of material from material stores, allocation of jobs to workers, issue/close of job permits etc."- Manager (O & M).

"Job contractor are regularly interacting with our maintenance team. Sometimes they could not understand the requirement of maintenance in the contract. They took contractors by simply quoting lesser amount, then while performing the job actual they face problem to satisfy our job requirement. So, simply they tell our margin is getting affected. We take appropriate action as per contract. This happens some time, we faced this type of problem in past. But, they have been rectified during next time when work is awarded" – CM (O & M)

Manpower for maintenance jobs are being hired through contracts due to lean power of GAIL. Therefore, quality of manpower supplied by contractor is to be ensured. Many times, contract manpower did not turn up during important/critical maintenance jobs. This makes constraint while doing maintenance.

It is evident from the representative quotations from maintenance managers of petrochemicals plant that the contract manpower is being deployed regularly to perform maintenance jobs. However, maintenance managers face problems like quality of manpower, shortage of manpower, proper technical understanding of job by contract manpower, etc. due to contracts & procurement procedure of selection of contractors & attrition of experienced manpower etc.

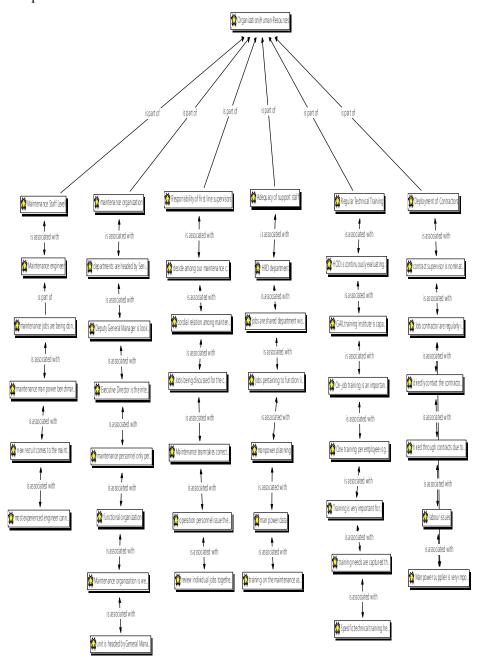


Figure 5.5 QAN for Organisation/Human Resources

Table 5.5 – Organisation/Human Resources sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Organisation/	Maintenance	Organisation/	Maintenance	Maintenance Staff level
Human	Staff Level	Human	Staff Level	exists in petrochemicals
Resources		Resources		plant such as non-
				executives and
				executives who take
				care of maintenance
				function at unit level of
				the plant.
				There is a separate
				maintenance group at
				corporate level also.
	Maintenance		Maintenance	It is evident from the
	Organisation		Organisation	interview data that well
				Structured maintenance
				organisation structure
				exists in petrochemicals
				plant of the gas utility
				company.
	Responsibility		Responsibility	Supervisor
	of first line		of first line	responsibilities are well
	supervisors		supervisors	defined & they are
				responsible for
				execution of day- to-day
				jobs of their concerned
				departments and update
				the job status in SAP
				system.
	Adequacy of		Adequacy of	Support staff is
	Support staff		Support staff	adequate and
				maintenance personnel
				are coming in shifts to
				ensure 24 X 7 basis
				monitoring &
				maintenance and for
				emergency handling

		manpower is also kept
		in standby.
Regular	Regular	Technical training is
Technical	Technical	being imparted to the
Training	Training	employees in the
		structured manner
		including safety
		training. However,
		maintenance managers
		have emphasized on
		more focused technical
		trainings and on-job
		training of maintenance
		engineers in
		petrochemicals plant.
Apprenticeship	Nil	No evidences from
program		interview data.
		However, from
		company secondary
		data Apprentice
		program is available as
		per statutory
		requirements.
Deployment of	Deployment of	The company is
Contractors	Contractors	regularly deploying
		contract manpower
		including expert
		manpower from OEMs
		etc. for performing
		routine planned
		maintenance jobs and
		also for
		breakdown/shutdown
		jobs. Maintenance
		managers face problems
		such as poor quality of
		contract manpower,
		shortage of manpower,
		etc.

5.3.5 Information Technology

Maintenance strategy formulation leverages the information technology for effective formulation of maintenance strategies in petrochemicals maintenance. All the sub-constructs related to information technology identified through literature reviews have been emerged out from our case study-2. The same is displayed in the qualitative associative network Figure 5.6 which is developed through Atlas-Ti software.

"...for critical equipment like Gas Turbine, compressors etc., machine healthiness parameters such as vibration, temperature etc. are being monitored through Distributed Control System (DCS) on real time basis i.e., 24 X 7 basis with historical trends" – SM (O & M –PC)

"...We use SAP system for planning maintenance system. All the maintenance schedules along with task list to be performed in the equipment are built-in with SAP system. Accordingly, work orders are being issued and necessary permits are obtained from operations personnel for performing that particular maintenance... SAP system is having beautiful tools. Through SAP, we can monitor spare availability, budget consumption and slippages in preventive maintenance schedules. IT is being well leveraged in our company like communication facility, SAP system etc." – Manager (O & M)

"Information Technology is being leveraged with many systems such as Supervisor Control and Data Acquisition System (SCADA). Further, IT is being used for MIS purpose, online monitoring purpose using Distributed Control System (DCS). Wireless transmitters are being implemented for capturing the process parameters for monitoring plant operation" – CM (O&M)

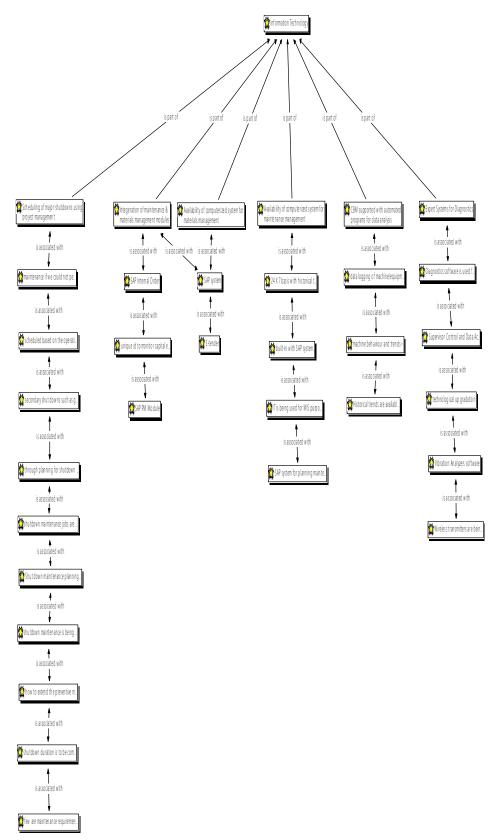


Figure 5.6 QAN for Information Technology

"Information Technology has been leveraged through SAP PM Module. Maintenance planning, work intimation, spare planning etc. is being done through SAP system. Vibration Analysers software is available and the same is done by external experts. The deviation and abnormality is intimated by these experts through reports" – SM (O & M)

"E-tender is introduced recently so that we can monitor the entire procurement cycle in the SAP Software only so that supplier interaction becomes more effective. Even supplier can view the procurement process information" – Manager (O & M)

It is evident from the above representative quotation collected from interview of maintenance managers of Petrochemicals plant of gas utility company that SAP system has been implemented in the plant. SAP- PM Module is performing all the tasks related to maintenance function such as planning, scheduling and execution of maintenance works in the plants. Similarly, SAP-MM Module is performing all the tasks related to material management function such as spare procurement, stores management, inventory control, etc.

Both of these modules PM and MM are integrated well to perform all intermediate functions between maintenance and materials management function.

"...we are doing data logging of machine/equipment on real time basis to keep record of healthiness of that equipment... Parameters measured are vibration, temperature etc. Historical trends are available... Information Technology is being leveraged with may systems such as Supervisor Control and Data Acquisition System (SCADA). Further, IT is being used for MIS purpose, online monitoring purpose using Distributed Control System (DCS). Wireless transmitters are being implemented for capturing the process parameters for monitoring plant operation." – CM (O & M)

"Predictive maintenance is based on experience, collection of data & analysis of equipment parameters like vibration, temperature etc., and machine behaviour and trends" – SM (O&M-PC)

"Diagnostics software is used for predictive maintenance. This software is integrated with centralised monitoring system Distributed Control System (DCS)" – DM (O & M)

In petrochemicals, expert system such as DCS (Distributed Control System), intelligent vibration systems and other diagnostics software are used for condition based monitoring of all equipment and process system. The case study data along with empirical findings are clearly discussed and depicted in the below given Table 5.6.

Table 5.6 – Information Technology sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Information	Availability of	Information	Availability of	Maintenance planning&
Technology	computerised	Technology	computerised	scheduling and execution
	system for		system for	of maintenance work
	maintenance		maintenance	orders are being done
	management		management	through SAP PM Module
				in SAP system for
				petrochemicals plant.
	Availability of		Availability of	Petrochemicals O & M
	computerised		computerised	team is using SAP- MM
	system for		system for	module for material
	materials		materials	procurement, spares
	management		management	management, stores
				management and
				inventory analysis &
				control.
	Integration of		Integration of	In Petrochemicals of the
	maintenance		maintenance &	gas utility company SAP-
	& materials		materials	MM & SAP-PM Modules

management	management	have been integrated for
modules	modules	effective implementation
Scheduling of	Scheduling of	of maintenance strategies.
major	major	
shutdown	shutdowns	
using project	using project	
management	management	
system	system	
CBM	CBM supported	Real Time condition
supported	with automated	monitoring systems such
with	programs for	as vibration monitoring
automated	data analysis	systems, diagnostics
programs for		software and integration
data analysis		of such expert systems
		with centralised control &
		monitoring system
		namely Distributed
		Control System (DCS) are
		available in
		Petrochemicals plant.
Expert	Expert Systems	Distributed Control
Systems for	for diagnostics	Systems (DCS), Vibration
diagnostics		software systems are
		available. Historical and
		real time trends of process
		parameters are available
		for trouble shooting and
		improved operations of
		petrochemicals plant.
Scheduling of	Scheduling of	
major	major	
shutdowns	shutdowns	
using project	using project	
management	management	

5.3.6 Employee Empowerment

The qualitative associative network developed through Atlas-Ti software for construct employee empowerment is shown in the below given Figure 5.7.

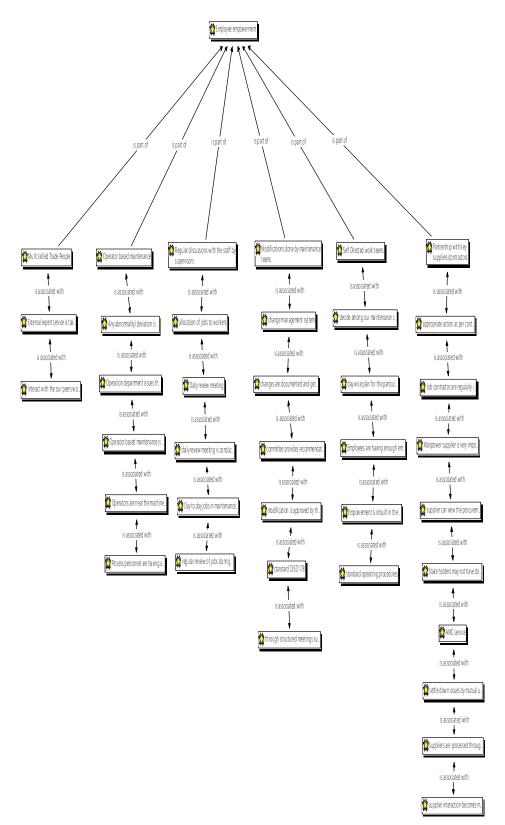


Figure 5.7 QAN for Employee Empowerment

"External expert service is taken from Original Equipment Manufacturers (OEM) where we do not have much expertise on particular machine/instrument/equipment"- CM (O & M)

"Operator based maintenance is prevailing in petrochemicals. Operators are near the machinery and therefore any in machine behaviour is being noticed by operators only. Any abnormality/ deviation is informed by operators to maintenance personnel" – SM (O & M)

"Operator based maintenance is not there in GAIL. Operation department issues the permit and the required jobs are being done by maintenance department"- DM (O & M)

"Operator based maintenance is not available. Process personnel are having authority to hand over the maintenance job to maintenance team. Therefore, they have to ensure proper stoppage of machine and utilities and ensure the clearance for doing the specific maintenance job. Operation personnel are taking care of two things one is plant operations is not getting affected due to performance of maintenance job and ensure safety aspects such as depressurization of fluid lines, isolation of valves, isolation of electrical systems, provision of fire equipment & fire personnel etc." After ensuring the same only, operation personnel issue the work permit to maintenance personnel- Manager (O &M)

"...Since it is functional organisation, maintenance personnel only performs the maintenance jobs. Operator based maintenance is not existing. However, the operators are monitoring the plant continuously so they report abnormalities/deviations to maintenance group. Maintenance team takes corrective actions" – SM (O & M-LPG)

"Operator based maintenance is not being practices in GAIL. This maintenance culture may be implementing in GAIL"- CM (O&M)

It is evident from the above representative quotations that the operator based maintenance is not being practiced in petrochemicals plant as observed in all the maintenance managers except one. However, the meaning of his description is that the operators are only observing the problem with the machine and informing to maintenance crew and issuing permit to perform work. Maintenance job is being treated as specialised job by maintenance technicians/engineers in their respective discipline such as instrumentation, mechanical, electrical, etc.

"Interaction with maintenance supervisors is being done through day-to-day jobs planning. One contract supervisor is nominated to perform coordination job in maintenance such as issue of material from material stores, allocation of jobs to workers, issue/close of job permits etc. If any situation arises that is beyond supervisor level, we directly contact the contractor to mitigate such issues"- Manager (O & M)

"Interaction with maintenance supervisors is being done through structured meetings such as Daily Review meeting at working level. Most of the problems are attended in early stage. Fortnightly review meeting at HOD level is being conducted to take care of resource issues like material procurement, man power etc." – SM (O&M-PC)

"...Interaction with supervisors/ maintenance teams is being done by Daily review meeting. After discussion with operation/maintenance team at plant control room, we assemble at department level. Jobs being discussed for the current status then distributed to the individual employees. Therefore, the same is monitored during day in Shifts/ G-Shift as per requirement" – CM (O & M)

"Interaction with maintenance supervisors is very much important. It is not that mere allocation of the job to technicians will not be good maintenance practice. There should be cordial relation among maintenance technicians, engineers and managers. Each and every aspect of the maintenance activity should be discussed before execution of the maintenance activity" - SM (O & M).

As described above by maintenance managers, it is clear that there are regular & structured discussions are being done by staff with supervisors through planned interventions like daily meeting, job distribution during morning hours & review by end of the day. Further, informal discussions with individuals are also being practiced by the maintenance managers in petrochemicals plant.

"Daily we get pending job list from SAP then we decide among our maintenance crew to whom will do which job. After lunch, we review individual jobs together for any requirement of resources such as spare, man power etc."- DM (O&M)

"Maintenance modification is judged for techno-commercial viability by multi-functional committee. Then committee recommends the proposal to the competent authority for approval. There is a process of change management system. Documentation are also updated accordingly" – Manager (O &M)

"...Maintenance modification is done with the well- structured procedure Change management system. Guidelines for the same are from the standard OISD 178. Any modification is approved by the Officer in-charge. HAZOP analysis is done by the multi- functional team for studying the proposed modification. Then committee provides recommendations. Post review modification is also reviewed by operation in-charges" – SM (O&M-PC)

"For modifications in maintenance, we have a policy called as Change management system. Same is reviewed by multidisciplinary committee and recommended for approval by Competent Authority. After approval, the jobs are shared department wise and completed accordingly. Structured maintenance system is available"- CM (O & M)

"Maintenance modification is done by individual initiative. For example, we face a technical problem in Gas turbine bleed valve. I proposed to introduce bleed valve feedback interlock with speed increase of Gas turbine. The same was sent through Change management system to central engineering cell. After necessary approval, the modification was implemented" – DM (O & M)

As described by maintenance managers, in petrochemicals there is a well-structured & documented change management system procedure available for performing modifications jobs which is duly approved by multi-disciplinary committee & Competent Authority. Accordingly, modifications are being carried out by maintenance personnel & documented.

"Job contractor are regularly interacting with our maintenance team. Sometimes they could not understand the requirement of maintenance in the contract. They took contractors by simply quoting lesser amount, then while performing the job actual they face problem to satisfy our job requirement. So, simply they tell our margin is getting affected. We take appropriate action as per contract. This happens some time, we faced this type of problem in past. But, they have been rectified during next time when work is awarded ... Supplier is getting benefitted in maintenance. Manpower supplier is very important aspect of maintenance. We need plan early & proper planning of manpower enables the supplier to support with proper manpower" – CM (O&M)

"E-tender is introduced recently so that we can monitor the entire procurement cycle in the SAP Software only so that supplier interaction becomes more effective. Even supplier can view the procurement process information... Suppliers are processed through Vendor Rating system, block listed suppliers, etc. is available in our GAIL Intranet. Maintenance decisions are influenced with such data regarding selection of suppliers..." – Manager (O&M)

"Stake holders may not have direct impact due to maintenance. But, maintenance is the deciding factor for the product quality and quantum.

Contractors are playing a very crucial role in maintenance. Their role should be limited to" – SM (O & M)

From the above quotations from maintenance managers and the documentary evidences show that there is well documented procedures are available such as Delegation of Powers and Contracts & Procurement (C & P) procedure which facilitate the partnership with suppliers. Therefore, contractors & suppliers are playing crucial role in executing the maintenance strategies planned. The case study data along with empirical findings are clearly discussed and presented in the below given Table 5.7.

Table 5.7 Employee empowerment related sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Employee	Multi skilled	Employee	Multi skilled	Multi skilled people are
Empowerment	trade people	Empowerment	trade people	being developed in
				petrochemicals plant.
				They are being given
				training in various skills
				such as fire & safety,
				security to handle the
				emergency situation in
				the plant.
	Operators		Operators based	OBM is not being
	based		maintenance	followed in
	maintenance			petrochemicals.
				Interview data is
				emerging clearly that
				operator is responsible
				for issuing work permits
				& to bring the
				equipment
				problems/failures to the
				knowledge of

		maintenance crew.
Regular	Regular	Formal interactions
discussions	discussions with	such as daily review
with the staff	the staff by	meeting, job
by supervisors	supervisors	distribution, etc. &
		informal interactions as
		and when required are
		being practiced by
		maintenance managers
		with the supervisors in
		petrochemicals plant.
Self-directed	Self-directed	Maintenance teams are
work teams	work teams	self-directed. Evidences
		are there such as
		adopting safety norms,
		ready with emergency
		work plan, etc.
Minor	Modifications	Modifications are being
modifications	done by	carried out by
done by	maintenance	maintenance
maintenance	teams	managers/engineers
teams		with the structured
		process of "Change
		Management System"
		exist in the company.
Partnership	Partnership with	Well defined &
with key	key	documented Delegation
suppliers/cont	suppliers/contra	of Powers and Contracts
ractors	ctors	& Procurement
		procedures are
		facilitating the
		partnership with key
		suppliers/contractors.

5.3.7 Maintenance Tactics

Interview data has been analysed through Atlas-Ti software. Maintenance Tactics has been emerged out as a category and data analysis outcome is qualitative associative network as shown in Figure 5.8

"We are basically using preventive maintenance, predictive maintenance and particularly in processing plant, we use shut down maintenance. As I already told to you, maintenance of most critical equipment is planned during annual shut down maintenance" – Manager (O &M)

"Apart from this, predictive maintenance is also being following in process plant. For example, for critical equipment like Gas Turbine, compressors etc., machine healthiness parameters such as vibration, temperature etc. are being monitored through Distributed Control System (DCS) on real time basis i.e., 24 X 7 basis with historical trends... Predictive maintenance is based on experience, collection of data & analysis of equipment parameters like vibration, temperature etc., and machine behaviour and trends.. We sought guidance from OEM for maintenance planning & formulating the maintenance schedules. We also take recommendations from OEM for specific maintenance problem identified in predictive maintenance also" – SM (O & M-PC)

"Another maintenance strategy is Predictive maintenance i.e., condition based maintenance. For that we are doing data logging of machine/equipment on real time basis to keep record of healthiness of that equipment. Parameters measured are vibration, temperature etc. Historical trends are available" –CM (O & M)

As described by maintenance managers with reference to above quotations, predictive maintenance is used in petrochemicals maintenance. The key observations from interview data and field observations are,

 Predictive maintenance is majorly used for critical equipment such as compressors, gas turbines, etc. All equipment parameters are logged in intelligent computerised systems such as Distributed Control System (DCS) and other specific systems to monitor equipment parameters for keeping healthiness of equipment in good condition. Predictive maintenance planning & execution is based on maintenance managers' experience, data analysis, analysis of historical trends and OEM recommendations.

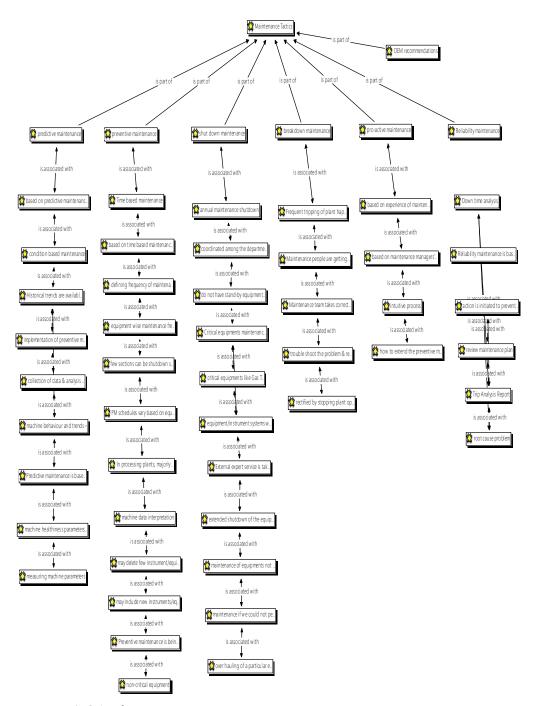


Figure 5.8 QAN for Maintenance Tactics

"Maintenance methods are preventive maintenance, predictive maintenance and break down maintenance. 98 % is of preventive maintenance are based on preventive maintenance schedules. Based on these schedule maintenance is being plant in plant operations" – SM (O & M-PC)

"...My unit is processing plant. Maintenance objective of this unit is ensuring 95% availability of plant. For achieving this target, we are having different maintenance strategies. One of the maintenance strategies is Preventive maintenance. i.e., Time based maintenance... Preventive maintenance is used for stand-by equipment. So that one machine maintenance can be done, while other machine is running." – CM (O&M)

"Maintenance methods are being practiced in petrochemicals is preventive maintenance, predictive maintenance and breakdown maintenance. Preventive maintenance is being used to reduce the downtime and to ensure no problem arises due to equipment/system failure... The equipment/instrument systems are classified into 3 categories such as critical, quality and normal systems. Accordingly, maintenance is being followed by defining frequency of maintenance in preventive maintenance schedules... The equipment/instrument systems are classified into 3 categories such as critical, quality and normal systems. Accordingly, maintenance is being followed by defining frequency of maintenance in preventive maintenance schedules" – DM (O & M)

"...We have to reduce the breakdown of the equipment with the available resources and time. To achieve this objective, we follow the maintenance methods such as preventive maintenance, predictive maintenance and shutdown maintenance. One more type of maintenance is pro-active maintenance, which does wonder for maintenance in process plants. Preventive and predictive maintenance are the existing practices available in most of the processing plants and they have documentation and records" – SM (O &M)

"PM schedules vary based on equipment/process areas such as LG compressor, Gas Sweetening unit, C3/C4 recovery unit, IG Compressor, IA compressor etc. We take permits month wise to do preventive maintenance as per schedule" – DM (O & M)

As described by maintenance managers with reference to above quotations, preventive maintenance is used in Petrochemicals maintenance. The key observations are,

- Preventive Maintenance method is largely used in petrochemicals to achieve the plant availability of 95% in a year.
- Preventive Maintenance planning & execution is based on preventive maintenance schedules. These schedules are prepared on types of equipment, criticality of equipment such as critical, quality, and normal, OEM recommendations, and previous experience of maintenance managers.
- No specific category of preventive maintenance was told by maintenance managers during interview. However, during field observations it is found that these preventive maintenance schedules jobs can be categorised department wise such as mechanical, electrical, and instrumentation.
- Preventive maintenance schedules are included in ISO procedure and ISO system. Completion of PM schedules ensured through ISO internal audits & external audits.

"Maintenance in petrochemical is not very simple. After achieving the MOU targets, shutdown maintenance is being planned every year. The maintenance jobs listed out for doing in shutdown maintenance is taken up during this plant shutdown. No surprise should come during equipment maintenance in performing annual shutdown maintenance. This could be achieved through proper planning based on predictive maintenance of that particular equipment" – SM (O & M)

"...One more maintenance method is shutdown maintenance. Maintenance of major equipment which does not have stand-by will be done during shutdown maintenance... Long term planning is being addressed by shutdown maintenance planning. Annual maintenance planning includes major overhauling & modifications job in the particular equipment/machine." – CM (O &M)

"...Shutdown maintenance is the maintenance if we could not perform during running of the plant/equipment. Such equipment maintenance is taken up during shutdown maintenance. The list of the shutdown maintenance jobs are listed out & also scheduled based on the operation requirement, and few are maintenance requirement. For example, we do maintenance of critical valves during maintenance by dropping them and checking passing of these valves..."- DM (O & M)

It is evident from above representative quotations from maintenance managers that shutdown maintenance is a crucial maintenance method used in petrochemicals plant. Shutdown maintenance is a long term maintenance planning method and it is planned in well advance and jobs are being reviewed & updated before start of shut down maintenance. In petrochemicals, critical equipment do not have stand-by equipment, therefore, major overhauling of these equipment are planned during annual shutdown maintenance.

"Breakdown maintenance is maintenance being done during break down of the particular equipment/ plant. During break down maintenance, we trouble shoot the problem & rectify the failure. In case of spare part requirement, we replace the part with the existing spare. Further, we rectify the removed part from the equipment and keep it ready as a spare for emergency use...Frequent tripping of plant happened i.e., 14 times during last year. The same was analysed and found that the root cause problem was level switch of separator. Then we included the level switch in monthly preventive maintenance schedule. After monitoring regularly, plant tripping improved this year. Further, to ensure

smooth operation we do regular maintenance, modification and upgradation of systems..." – DM (O & M)

- "...Those equipment/instrument systems which are critical for plant operation are kept in shut down maintenance scheduling. Suppose, if they have serious maintenance issue, the same has to be rectified by stopping plant operations by taking shutdown..."- CM (O & M)
- "...Un-avoidable circumstances, we face break down maintenance. But, we ensure to minimize such kind of break down maintenance at unit level & also in department level..."- Manager (O& M)
- "....One more type of maintenance is pro-active maintenance, which does wonder for maintenance in process plants. Preventive and predictive maintenance are the existing practices available in most of the processing plants and they have documentation and records. But, pro-active maintenance is the type of maintenance which is based on experience of maintenance personnel. This is not having documentation or records. But, it can be done. It may help to achieve 100% availability of the plant..." SM (O&M)

As described of maintenance managers, even after following preventive and predictive maintenance methods to minimize the breakdown maintenance, still they face breakdown maintenance during normal plant operations. Such kind of maintenance are taken care by maintenance crew so as to start plant operations at the earliest after rectifying the problem. The case study data along with empirical findings are clearly discussed and depicted in the below given Table 5.8.

Table 5.8 Maintenance Tactics sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Maintenance	Use of	Maintenance	Predictive	Predictive maintenance
Tactics	Condition	Tactics	Maintenance	method is being
	Based		(CBM)	practiced in
	Maintenance			petrochemicals.
	(CBM)			Predictive maintenance
				is based on equipment
				type, criticality and
				previous experience of
				maintenance managers,
				OEM
				recommendations, and
				data analysis from
				expert predictive
				analysis systems.
	CBM is		Nil	Predictive Maintenance
	favoured over			(CBM) & preventive
	Time Based			maintenance (TBM)
	Maintenance			both are used in
	(TBM)			petrochemicals based
				equipment classification
				such as critical, semi-
				critical & Non-critical.
				However, Preventive
				Maintenance is largely
				used to ensure 95%
				plant availability.
	Total		Preventive	Preventive Maintenance
	maintenance		Maintenance	method is being
	man hours		(TBM)	practiced in
	devoted to			petrochemicals plant of
	Preventive/Pre			the company.
	dictive			Preventive Maintenance
	maintenance			procedures/schedules
	(PM)			are prepared based on
				OEM
				recommendations,

		OEM manual,
		equipment types &
		history, recommended
		standards for the
		system, and previous
		experience by
		maintenance managers.
Compliance	Nil	PM Schedules are
of PM		included in ISO
Schedules		Schedules/ ISO
		Procedures. Timely
		completion of PM
		schedules is being
		ensured through ISO
		internal/external audits.
		PM Schedules are also
		being reviewed by the
		company on annual
		basis.
OEM	OEM	OEM recommendations
recommendati	Recommendations	are used to prepare
ons for an		preventive maintenance
equipment		schedules and
regarding PM		predictive maintenance
		systems & procedures
		for equipment in
		petrochemicals plant.
Use of Total	Nil	No evidence of
Productive		following TPM
Maintenance		
(TPM)		
Use of formal	 Use of Reliability	No RCM is being
Reliability	Based	followed in the
Based	Maintenance	company. However,
Maintenance		maintenance managers
(RBM)		are interested to
		implement.
Total	Emergency	Emergency
maintenance	Maintenance	maintenance is being
man hours		carried out in
devoted to		petrochemicals but the
emergencies/b		same is minimized by
 l		

reak down		using various
maintenance		preventive & predictive
		maintenance
		techniques.
	Shutdown	This maintenance
	Maintenance	method is very crucial
		for petrochemicals since
		no stand-by strategy is
		available. It is a method
		practiced as part of long
		term maintenance
		planning.
	Pro-active	This maintenance
	maintenance	method is emerging out
		of this study and pro-
		active maintenance is
		based on previous
		experience of
		maintenance mangers.
		One of the maintenance
		managers suggested for
		documentation of such
		tacit knowledge
		available with the
		maintenance
		managers/engineers.

5.3.8 Reliability Analysis

Reliability Analysis is one among the category emerged out from the data analysis. The qualitative associative network related to Reliability Analysis is presented below in Figure 5.9. The same is prepared through Atlas- Ti software based on interview data from maintenance managers of a large gas utility company in India.

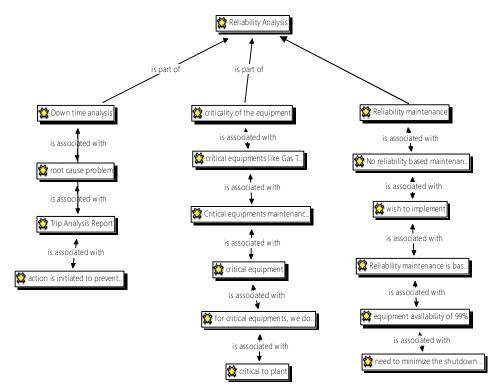


Figure 5.9 QAN for Reliability Analysis

"Reliability maintenance is based on Trip Analysis Report (TAR) of equipment failures and instrument failures. Down time analysis and root cause problem are identified through TAR and further action is initiated to prevent those failures in future"- DM (O & M)

"...During maintenance planning, first of all we identify the criticality of the equipment. Based on the equipment critically, equipment wise maintenance frequency is determined according to plant operations requirement" – Manager (O & M)

"Maintenance objectives are based on critically of the equipment. Accordingly, equipment is classified in to critical, semi-critical and non-critical. Based on this criticality, maintenance is being planned... Critical equipment maintenance is linked to the annual maintenance shutdown. HODs in consultation with OEM decide the maintenance of a particular machine.

OEM experts will be available to perform the maintenance during plant shutdown to take care of over hauling of particular equipment... Reliability maintenance is equipment should available whenever required. This is in line with the maintenance policy of the company." – SM (O & M)

"No reliability based maintenance practices are followed in the company. But we wish to implement" – CM (O & M)

As explained by maintenance managers, the key observations on Reliability Based Maintenance practice at petrochemicals plant of gas utility company are as given under:-

- Reliability Centred Maintenance (RCM) technique is not implemented in petrochemicals maintenance.
- Few basic metrics related to Reliability maintenance such as Trip Analysis Report (TAR), Breakdown records, Criticality of the equipment are being used in petrochemicals in order to identify root cause problem of down time.
- Maintenance mangers of gas utility company suggesting to implement RCM techniques.

The case study data related to the above constructs are discussed & presented in the below given Table 5.9

Table 5.9 Reliability Analysis sub-constructs and empirical findings

Initial	Sub	Categories	Focused codes	Observation on Data
Conceptual	Constructs	from	from empirical	Analysis
Construct		empirical	data	
		data		
Reliability	Documentat	Reliability	Nil	No evidence from
Analysis	ion of	Analysis		interview data shows
	Equipment			that equipment history
	History			records are being
				maintained in
				petrochemicals.

		However, such
		records are available
		in the form of break
		down records and
		break down reports
		while interacting with
		maintenance
		managers during field
		observations.
Root Cause	Root Cause	Trip Analysis
Analysis/Inc	Analysis	Reports' (TAR) are
ident		being prepared by
Analysis		maintenance
		managers in
		petrochemicals and
		the same is available.
Mean Time	Nil	No evidence found in
Between		using such metrics in
Failures		maintenance practice.
(MTBF)		
Value Risk	Nil	No evidence found in
Study of		using such study in
maintenance		maintenance practice.
program		
Equipment	Equipment	Equipment criticality
Criticality	Criticality	is being used in
		formulating
		maintenance
		schedules and based
		on criticality of the
		equipment
		maintenance strategy
		has been decided.
Reliability	Nil	Basic metrics are
Statistics of	INII	
		being used such
equipment/a		equipment
ssets		availability, plant
		availability etc.
		Advanced metrics
		based on RCM are not
		being practiced in
		petrochemicals plant.
 	*	*

Reliability	Nil	RCM based Analysis
Cantered		in maintenance is not
Maintenanc		adopted in
e based		Petrochemicals
analysis		maintenance.

5.3.9 Maintenance Polices/Maintenance Budget

Maintenance Policy and Maintenance Budget is another category emerged out from the data analysis. The qualitative associative network related to Maintenance Policy/Maintenance Budget is presented below in Figure 5.10 & Figure 5.11. The same has been developed through Atlas- Ti software based on interview data from maintenance managers of a large gas utility company in India. Few representative quotations from interview data are presented below:

"Maintenance policy is available at corporate level. At site level, we prepare maintenance objectives in-tune with the corporate maintenance policy. Unit is having their own targets. For example, if plant availability is to be maintained at 99% and individual functional departments are also setting their department wise targets such at equipment availability of 99% etc." – Manager (O & M)

"GAIL, we have a maintenance policy. As per guidelines provided in the policy, we frame maintenance strategies. We have our IMS maintenance manuals. These manuals state very clearly the maintenance strategies being used in the company. Work instructions, standard operating procedures are provided in the maintenance manuals... Maintenance objectives are based on critically of the equipment. Accordingly, equipment is classified in to critical, semi-critical and non-critical. Based on this criticality, maintenance is being planned... Maintenance mission & objectives are defined in maintenance manual. The basic objective of the process plant is to make available of the critical equipment on 24 X 7 basis for operations. We do not have stand-by for critical equipment." – SM (O & M –PC)

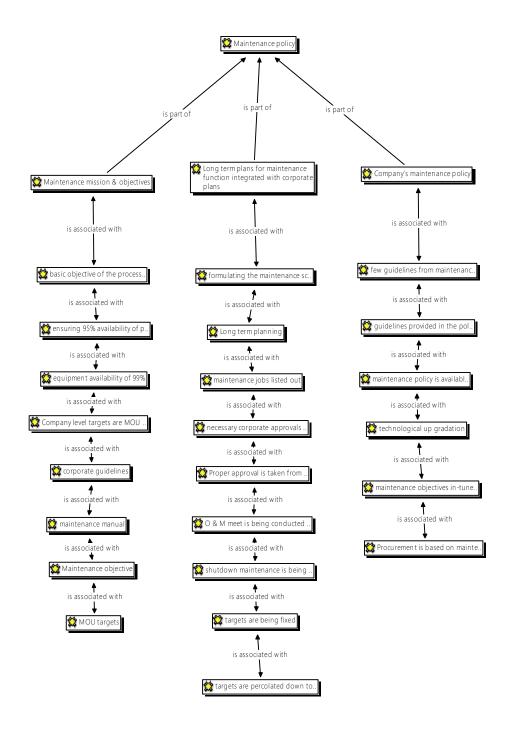


Figure 5.10 QAN for Maintenance Policy

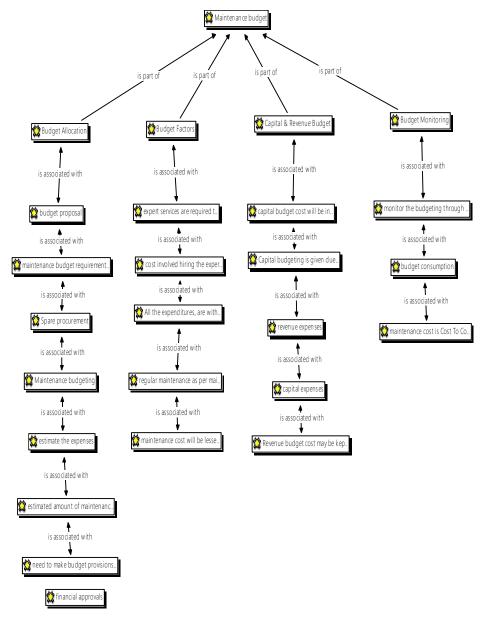


Figure 5.11 QAN for Maintenance Budget

"Our company is having well documented maintenance policy. The maintenance policy is available in our GAIL Intranet. Maintenance guidelines are available in the maintenance policy. As maintenance personnel, we should follow each word of the maintenance policy for implementing the maintenance practices" – SM (O & M)

"My unit is processing plant. Maintenance objective of this unit is ensuring 95% availability of plant. For achieving this target, we are having different maintenance strategies... Long term planning is being addressed by shutdown maintenance planning. Annual maintenance planning includes major overhauling & modifications job in the particular equipment/machine..." – CM (O & M)

"Maintenance objective is majorly based on targets provided by top management. For example, plant down time for processing plant should be less than 14 hours due to instrumentation systems. Similarly, the targets are being fixed for other departments also. These targets are unit level targets. Company level targets are MOU targets. Further, these targets are percolated down to unit level, departmental level targets" – DM (O & M)

It is evident from above representative quotations that the well documented corporate maintenance policy is available with gas utility company for petrochemicals. In maintenance policy, maintenance mission, maintenance objectives, etc. has been clearly defined and the same is made available on company's intranet so that all units follow the maintenance policy uniformly. However, operational targets are based on MOU targets executed with petroleum ministry. Further, long term maintenance planning i.e., shut down maintenance planning is being done rigorously by maintenance crew and shut down maintenance is being executed every year as annual turnaround shutdown.

"Maintenance budget is being done on annual basis. We identify the maintenance budget requirement based on past experience. Based on this, we put up the budget proposal. The same is reviewed by unit head & corporate level by ED. All the expenditures are within this budget only... Capital budgeting is given due importance in our company. All these expenses are properly mapped in SAP system. Through SAP Internal Order, which is the unique id to monitor capital expenditures, capital budgeting is being

monitored. At a single go, one can monitor the budgeting through SAP system which is linked to maintenance activities." – Manager (O & M)

"Maintenance budget is to be within the budget of overall budget allocated by GAIL. There is no resource constraint. GAIL maintenance department needs to put up proposal with proper justifications for necessary approval and we know the estimated amount of maintenance based on our previous experience" – SM (O & M)

"Maintenance budget has impact from the spares procurement. If proper preventive maintenance is being followed, spare consumption is reduced and also breakdown of the equipment is minimized" – DM (O & M)

"Maintenance budgeting is based on few factors. Where our maintenance jobs are being done by in-house maintenance crew, the maintenance cost is Cost To Company/employee. Where the expert services are required to do maintenance, the cost involved hiring the expert is the cost of maintenance. Spare procurement is also another factor to be considered during maintenance budgeting. During long run, if we do regular maintenance as per maintenance schedules then maintenance cost will be lesser... capital budget cost will be increased due to lapses in maintenance. Revenue budget cost may be kept optimum by using proper preventive and predictive maintenance monitoring." – CM (O & M)

"As a common philosophy of the companies, we also prepare budget on annual basis. In budget, equipment wise maintenance cost like capital expenses & revenue expenses are proposed by plant and the same is get it approved from Board of directors. This is a yearly approval process" – SM (O & M –PC)

As described by the maintenance managers, the following are evident:-

 Well-structured annual budgeting process existing in the company and all petrochemicals maintenance expenditure such as capital, revenue,

- etc. are mapped in annual budgeting process. Expenditures are being bone accordingly.
- Few maintenance factors affecting maintenance budget are cost of hiring experts from outside for performing maintenance, unnecessary inventory of spares, lack in completion of regular maintenance
- Budgeting exercise is integrated with SAP Finance Module and Budget is also being monitored regularly & reviewed during mid-term.

The case data for the above sub constructs are discussed and presented in the below shown Table 5.10.

Table 5.10 Maintenance Policy/ Budget sub-construct and empirical findings

Initial	Sub	Categories	Focused	Observation on Data
Conceptual	Constructs	from	codes from	Analysis
Construct		empirical	empirical	
		data	data	
Maintenance	Maintenance	Maintenance	Maintenance	Clear maintenance mission &
policies/	mission &	Policies/	mission &	objectives are available in
budget	objectives	Budget	objectives	the company as per
				Maintenance Policy & MOU
				targets. The targets have
				been further divided into
				objectives of individual
				units/ maintenance
				departments.
	Long term		Long term	Company's mission & vision
	plans for		plans for	is integrated with the
	maintenance		maintenance	maintenance policy &
	function		function	objectives
	integrated		integrated	
	with corporate		with corporate	
	plans		plans	
	Maintenance		Company's	Maintenance Policy is
	Policies		maintenance	documented & available in
			policy	company's Intranet in the
				company.
	Maintenance		Maintenance	Well defined budgeting
	budget		budget	system is available in the

		company. Maintenance
		Budget is function of
		Preventive maintenance,
		predictive maintenance, and
		shutdown maintenance job
		requirements/plan; Budget
		allocation/resource
		requirement is being
		reviewed by the company
		every six months. Budget is
		integrated in SAP Finance
		Module.

5.3.10 Maintenance Challenges

A new category has been emerged from the interview data which is collected from maintenance managers of the large gas utility company in India. Maintenance managers are of the opinion that the maintenance challenges are actually helping in formulating maintenance strategies for the company. The data analysis outcomes shows that the new category maintenance challenges contributing to maintenance strategy formulation, selection, and implementation of maintenance strategies. Qualitative Associative Network developed for this category is presented in the Figure 5.12 and few representative quotations from maintenance managers are also discussed below.

"The basic challenge of maintenance is that how to ensure the 24 X 7 basis availability of critical equipment for plant operations. To keep the equipment availability on continuous basis with the existing maintenance practices is a challenge for maintenance personnel ... Maintenance challenges are there. While we are going for tendering, we do not have any procedure for avoiding lowest bidder based on quality. This becomes some time challenges while doing maintenance. This is mainly happening in material procurement tendering. In my view, there should be some Low cost cut should be there in tendering process. Obviously maintenance challenges are there. However, we are capable to meet those challenges with Delegation of Powers, sufficient

availability of spares and, OEM support. We are in the position to cope-up with any situation with the flexibility in our company and come out with the solutions for maintenance challenges..." – Manager (O & M)

"When the machinery/equipment undergoes maintenance, one cannot what well predict the equipment failure. Even the most experienced engineer cannot predict the exact failure of the equipment. Therefore, the extended shutdown of the equipment may be possible. This is the major maintenance challenge. So one should be well prepared for such kind of situation and planning should be done accordingly and costly spare replacements should be limited. Predictive and pro-active maintenance strategies should take care of this" – SM (O & M)

"Maintenance Challenges in implementing the above maintenance schedules are like, 1) Spare availability suppose we isolated one instrument and take up the maintenance of that instrument, if we require any spare, we need to replace the same to bring the instrument to working condition; 2) Proper work permit is to be taken and then only the maintenance to be done in that particular equipment" – DM (O & M)

"One contract supervisor is nominated to perform coordination job in maintenance such as issue of material from material stores, allocation of jobs to workers, issue/close of job permits etc. If any situation arises that is beyond supervisor level, we directly contact the contractor to mitigate such issues... We have certain problems with contractors such as statutory issues like PF deduction, labour issues etc. But, these issues are being controlled with contract terms like contract penalties etc. Online PF system has been introduced by Government of India. This facilitates our work..." – Manager (O & M)

"Manpower for maintenance jobs is being hired through contracts due to lean power of GAIL. Therefore, quality of manpower supplied by contractor is to be ensured. Many times, contract manpower did not turn up during important/critical maintenance jobs. This makes constraint while doing maintenance" – DM (O& M)

"For example, we may have a case that supplier who is supplying gas to GAIL for processing and consumer who is using the lean gas for their plant operations like power plant. The specific situation can arise that consumer do not want to shut down the plant. Then, we also cannot shut down our plant for preventive maintenance. Therefore, we should have alternative to prolong our preventive maintenance schedule with the proper OEM recommendations" – SM (O & M - PC)

"In AMC service, we face some problem with the contractor; we try to settle down issues by mutual understanding of the issues. Inn worst case, we refer the same to our contract & procurement department. We have well- structured procedure to block-list the contractor for not delivering the required outputs as per contract terms & conditions. This is also not a very frequent phenomenon. But we have in two such cases at our unit level" – Manager (O & M)

"...Fortnightly meeting is being conducted regularly along with top management to identify critical jobs and arrangements of resources to complete those jobs such as material procurement, manpower, assistance from peer departments and expert services if any etc." – CM (O & M)

"...more decision making power may be given to plant O & M personnel to decide on preventive maintenance schedules based on their experience and machine data interpretation. So that PM schedule frequency can be fixed at actual experience of maintenance personnel..." – SM (O & M PC)

"No standardisation of Maintenance practices in the industry. Therefore, maintenance compliance is based on past experience and few guidelines from maintenance policy of the company" – CM (O & M).

"Maintenance challenges during implementation of particular maintenance strategy are there like 1)External expert service is taken from Original Equipment Manufacturers (OEM) where we do not have much expertise on particular machine/instrument/equipment; 2) Obsolete of technology. To keep with face of technological changes & improve performance of the plant equipment, obsolete of technology is being reviewed according to the maintenance policy; 3) Innovation in new technological changes is also being tracked for necessary implementation" – CM (O & M)

The case data for the above sub constructs are discussed in detail and presented in the below given Table 5.11.

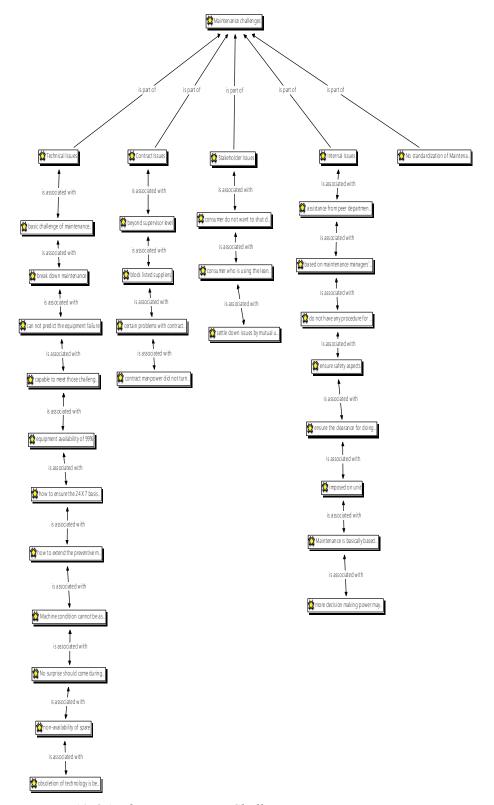


Figure 5.12 QAN for Maintenance Challenges

Table 5.11 Maintenance Challenges factors and empirical findings.

Categories from	Focused codes from	Observation on Data Analysis
empirical data	empirical data	
Maintenance	Technical Issues	Few technical issues have been identified from
Challenges		the data analysis such as ensuring availability
		of plant on 24 X 7 basis, prediction of
		equipment failures, quick restoration of
		equipment after breakdown, availability of
		spares, obsolete of technology, innovation in
		new technological implementation etc.
	Contact Issues	Few contract related issues have been
		identified from data analysis. They are
		deployment of contractor manpower, contract
		selection based on lowest bid (L1) basis,
		training of newly deployed contract manpower,
		deviation in statutory and labour requirements
		by contractors etc.
	Stakeholder Issues	Few stakeholders related issues identified from
		data analysis are customer & supplier related
		issues in consuming gas, issues with vendors,
		etc.
	Internal Issues	The issues faced in maintenance due to internal
		functions are ensuring cooperation among peer
		departments, no standard/uniform maintenance
		procedures among the units of the plant, more
		independency to maintenance managers to
		decide on maintenance jobs, etc.
	No Standardisation of	New factor emerging out from this study i.e.,
	maintenance practices	maintenance managers are of opinion that there
		is no standardisation in maintenance practices.
		This may lead to poor execution of
		maintenance strategies even though world class
		maintenance strategies have been selected.

5.4 MAINTENANCE STRATEGIES SELCTION PROCESSES IN PETROCHEMICALS

This section describes about maintenance strategies selection related activities in petrochemicals plant of the large gas utility company. Data collected from the maintenance managers/engineers of the company were analysed as per the data analysis strategy described in Section 3.6. After Phase I, the conceptual analysis of the case study was undertaken in order to identify various activities carried out by the maintenance managers for maintenance strategies selection and their practices in Petrochemicals. Then, these activities were combined into categories/concepts based on processes related to maintenance strategies & maintenance practices. The detailed data analysis based on literature review Section 2.5.3 (selection of maintenance strategies) and Section 2.5.5 (maintenance decision support system).

Interview data has also been analysed in terms of selection of formulated maintenance strategies. A Qualitative Associative Network has been developed to understand the existing methods available in the gas utility company for maintenance strategy selection. QAN for maintenance strategy selection is shown in Figure 5.13 and the same is supported with the representative quotations as described by the maintenance managers of petrochemicals plant of gas utility company.

"Maintenance strategies are varied based on equipment/ instrument systems types. Based on the type of the system, frequency of maintenance is fixed. For example, mass flow meters calibration is fixed every five years. Further, based on system reliability and accuracy maintenance schedules are being planned... We are also using few inputs to formulate maintenance strategy planning which are observed & noted from shop floor operation personnel. They can tell about the machine/equipment behaviour change during running of that equipment" – CM (O & M)

"...We sought guidance from OEM for maintenance planning & formulating the maintenance schedules. We also take recommendations from OEM for specific maintenance problem identified in predictive maintenance also..." – SM (O & M - PC)

"Maintenance in petrochemical is not very simple. After achieving the MOU targets, shutdown maintenance is being planned every year. The maintenance jobs listed out for doing in shutdown maintenance is taken up during this plant shutdown. No surprise should come during equipment maintenance in performing annual shutdown maintenance. This could be achieved through proper planning based on predictive maintenance of that particular equipment... Vibration Analysers software is available and the same is done by external experts. The deviation and abnormality is intimated by these experts through reports" – SM (O & M)

"...Technical obsolesces of the system is being reviewed every year and accordingly upgradation of systems is done..." – DM (O & M)

"...online monitoring purpose using Distributed Control System (DCS). Wireless transmitters are being implemented for capturing the process parameters for monitoring plant operation" – CM (O & M)

"...We are following international standards for industry norms compliance. Internal norms are MOU targets..."- SM (O & M)

"...We are following standards such as AGA, PNGRB, SIL level etc. for compiling the Industry Norms... Annual audits are being conducted to see the maintenance practices compliance & performance measures of maintenance systems. Such audits are Inter Unit Safety Audit (IUSA), OISD Audit, etc. with different frequency..." – CM (O & M)

The case data for the sub constructs related to maintenance strategy selection process is discussed & presented in the below given Table 5.12.

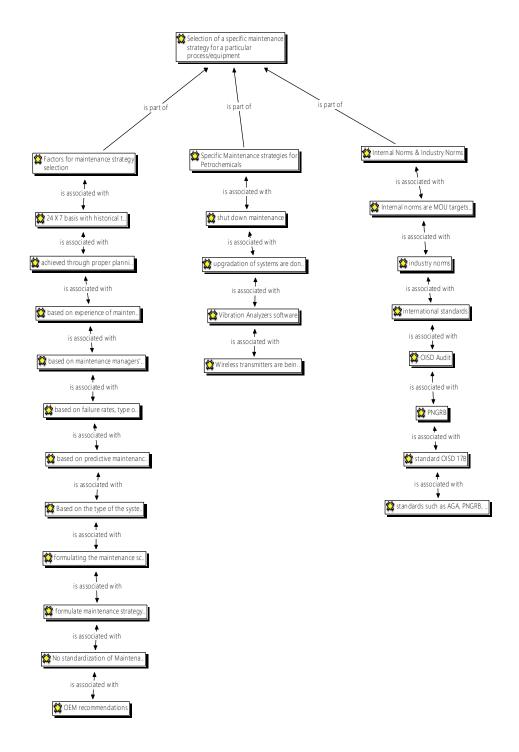


Figure 5.13 QAN for maintenance strategy selection process in petrochemicals

Table 5.12 Maintenance Strategies Selection Processes-empirical findings.

Categories from	Focused codes	Data Analysis
empirical data	from empirical	
	data	
Selection of	Factors	Few factors which are contributing to the
Maintenance Strategy	Contributing to	selection of maintenance strategy have been
for particular operation	maintenance	identified from the data analysis. Such factors
process/equipment	strategy selection	are previous experience of maintenance
		managers, criticality of the system/equipment,
		OEM recommendations, Maintenance Policy,
		equipment complexity, equipment availability,
		process severity, complexity of the process
	Specific	Shutdown maintenance is a specific & crucial
	maintenance	maintenance method in petrochemicals plant.
	strategy for	
	Petrochemicals	
	Internal & Industry	Gas utility company is following industry
	Norms	norms such as standards of OISD, PNGRB and
		other international standards such as AGA,
		API, ASME etc. and internal norms are such as
		IMOU targets, sharing maintenance problems
		among units and maintain SAP system so that
		all data can be accessed by all among
		petrochemicals units like GPU, GCU, HDPE &
		LLDPE etc. These norms help the
		petrochemicals plant to implement uniform
		maintenance strategy selection process across
		the units in the plant.

5.5 RELATIONSHIP BETWEEN MAINTENANCE STRATEGY SELECTION PROCESS AND MAINTENANCE STRATEGIES & PRACTICES

This section describes the relationship between factors contributing to maintenance strategies and maintenance practices and maintenance strategy selection processes in Petrochemicals plant of the gas utility company. As shown above in Figure 5.14, maintenance strategies & maintenance practices planning and execution in NG Pipelines of the gas utility company depends on

the factors contributing to maintenance strategies & maintenance practices including benchmarking practices and reliability maintenance practices in the company. Maintenance strategies selection process identified in section 5.4 play a crucial role in maintenance strategies & practices.

The key findings from the above discussion are summarised as given under: Predictive Maintenance (CBM) & preventive maintenance (TBM) both are used in petrochemicals based equipment classification such as critical, semicritical & Non-critical; Total Productive Maintenance (TPM) technique is not being practiced in the gas utility company Petrochemicals; Planned Shutdown maintenance is the major maintenance tactics being used for the equipment/systems where standby is not available in Petrochemicals. This is the new tactics emerged out from this study; Proactive maintenance is the new maintenance tactics emerged out from this study. This is in nascent stage in the company. The same to be further explored & implemented; Reliability Centred Maintenance (RCM) technique is not being practiced in the gas utility company Petrochemicals. Therefore, the RCM metrics such as MTBF, Value Risk Study are not being used in maintenance; No International Benchmarks are being followed. But, MOU targets are treated as benchmarks. From the documentary evidence, it is found that maintenance cost is benchmarked i.e., 0.83 % of Gross Block (Inflation Adjusted); Maintenance managers are referring MOU targets/ operational targets as Key Performance Indicators (KPI) for maintenance also. This shows that there is no specific KPIs are identified for measuring maintenance performance; Maintenance performance is assessed through Internal Audits & External Audits. Since, these audits are being conducted based on some standards such as OISD, API standards etc., these audit recommendations & their implementations are guiding the maintenance performance in the large gas utility company; there is no evidence of awareness or usage of metric related to labour cost/material cost from the interview data. However, maintenance cost is benchmarked by the company as given above; No evidence of following "Average Inventory Turnover" concept in the company; during interview, maintenance managers are not telling about Apprentice program. However, from company secondary

data Apprentice program is available as per statutory requirements; Maintenance Challenges is the new category of maintenance strategies emerged out from this study. This includes the major issues being faced by maintenance managers in their day-to-day jobs. These are grouped in to technical issues, contract issues, stake holder issues, internal issues & unexpected issues. These factors will play crucial role in development of maintenance strategies & maintenance practices. Presently, these challenges are managed by individual/team as and when required. The same has to be formalised & documented for better maintenance practice; Key maintenance challenges of Petrochemicals plant which are to be considered before formulating the maintenance strategy and while implementation of maintenance practices are time extension preventive maintenance scheduled time based on informed decision, technology obsolesce of equipment & systems, earlier prediction of equipment failure, surprises during overhauling of equipment, deployment of contract manpower & workmanship of contract employees, award of contracts, legal & statutory requirements, customer/supplier plant issues, quality of maintenance & inexperience maintenance personnel, and dependency on OEM support.

Further, selection of maintenance strategies for a particular equipment/operation process in petrochemicals includes factors such as past experience of maintenance managers, OEM recommendations, etc., specific maintenance strategies for Petrochemicals are shutdown maintenance, proactive maintenance, industry norms based international & national level standards and internal norms based on MOU targets & other practices such as SAP system for integration of maintenance function.

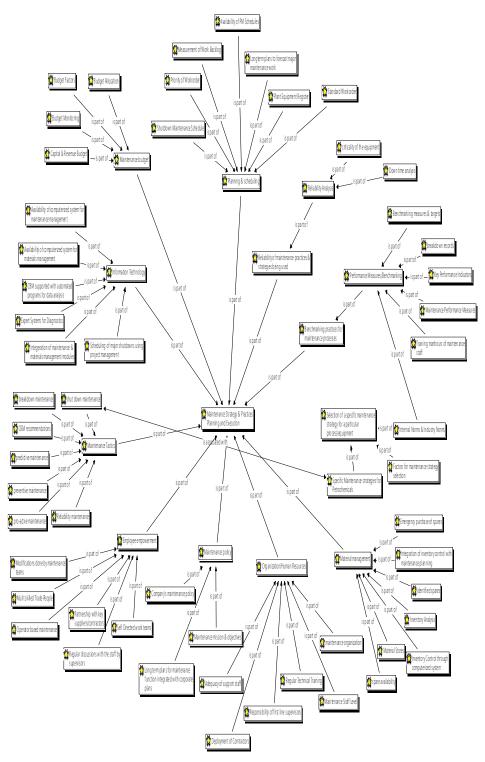


Figure 5.14 QAN for Case Study 2 (Petrochemicals)

This completes the description of relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in Petrochemicals. This also concludes the reporting of findings of the petrochemicals case study. Next section discusses the findings of the petrochemical case.

5.6 FINDINGS AND DISCUSSIONS

This section discusses the findings from empirical data analysis on maintenance strategies & maintenance practices of the large gas utility company business vertical Petrochemicals, maintenance strategy selection processes specific to Petrochemicals equipment/process and further relationship between maintenance strategies selection process and maintenance strategies & maintenance practices in the company.

5.6.1 Maintenance Strategies & Maintenance Practices in Petrochemicals

The above detailed data analysis results with the following categories which contributes to maintenance strategies selection and maintenance practices.

- 1. Performance Measures/Benchmarking
- 2. Planning & Scheduling
- 3. Materials Management
- 4. Organisation/ Human Resources
- 5. Employee Empowerment
- 6. Information Technology
- 7. Maintenance Policies/Budget
- 8. Maintenance Tactics
- 9. Reliability Analysis
- 10. Maintenance Challenges

Earlier literature on maintenance strategies & maintenance practices has identified nine categories of factors contributing to maintenance strategies selection & practices as discussed in the literature review chapter section 2.6.

This research study could find evidence for all these nine contributing factors. There are one new factor emerged out from this study is maintenance challenges.

Earlier literature on performance measures as discussed in section 2.6.3 has identified sub-constructs such as labour and material cost, breakdown records, maintenance performance measures, key performance indicators, downtime records, training man hours of maintenance staff, internal norms/industry norms, benchmarking measures & targets. From the data analysis, there is evidence of all these constructs except labour/material cost. Even though, maintenance cost is the only benchmarked parameter in the gas utility company's document, no evidence is found from interview data. i.e., maintenance managers/engineers are practically not using this measure. The interviewees indicated that the key performance measures and benchmarking parameters are based on MoU (Memorandum of Understanding) with concerned ministry of Government of India. It is observed that the most of the parameters are related to operational targets and maintenance performance is not being measured. Benchmarking exercise was carried out by the gas utility company during 2002 only. Benchmarking is majorly related to operational/financial aspects of the business. There is no separate maintenance benchmarking parameters available.

Earlier literature identified the construct planning & execution to cover the sub-constructs (Refer section 2.6.4) such as plant equipment register, standard written work order, availability of PM schedules, priorities of work order, availability of work schedule for a week ahead, shutdown maintenance schedule, measurement of work backlog, long term plans to forecast major shutdown/maintenance work. This case study has found the evidences for all these elements. As indicated by maintenance managers/engineers of the gas utility company, planning & execution activities of the gas utility company in Petrochemicals are being executed, maintained, and documented in the SAP system.

Earlier literature on material management as discussed in section 2.6.5 has identified with sub-constructs such as spares availability, identified spares, inventory analysis, emergency purchase of spares, average inventory turnover, availability of stores, inventory control through computerised system, and integration of inventory control with maintenance planning. This case study has found the evidences for the all these elements except average inventory turnover. This concept has not been used by the gas utility company. As per interview data analysis, the material management activities in Petrochemicals of the company are being managed through SAP MM Module in SAP system. Further, material management module is also integrated with SAP PM Module which is used for maintenance planning & execution. Therefore, practice of proper planning, organising, and controlling of the spare procurement in alignment with the maintenance planning process exists in Petrochemicals of the company.

Earlier literature identified the construct organisation/human resources to cover the sub-constructs (Refer section 2.6.6) such as maintenance staff level, maintenance organisation, responsibility of first line supervisors, adequacy of support staff, regular technical training, apprenticeship program, and deployment of contractors. Evidences are found for all these elements of organisation/human resources from interview data except apprenticeship program. However, interaction during site visits and documentary evidences show that the company is following apprentice program and this is statutory also. Especially, training systems are well structured in the company as indicated by interviewees. This facilitates technical training in maintenance in order to ensure smooth operation and quick restoration of equipment/processes after breakdown.

Earlier literature on employee empowerment as discussed in section 2.6.7 has identified the sub-constructs such as multi-skilled trade people, operators based maintenance, regular discussion with the staff by supervisors, self-directed work teams, minor modifications done by maintenance teams, and partnership with key suppliers/contractors. This case study could find

evidences for all these elements. Operator based maintenance is not being practiced in petrochemicals. As indicated by the maintenance mangers/engineers and observed during site visits, operator is responsible for issuing work permits and bring the equipment failures to the knowledge of maintenance personnel by issuing job intimation slip. Further, modification process in petrochemicals is managed by "central engineering cell" in the plant through well- structured change management system.

Earlier literature identified the construct information technology to cover the sub-constructs (Refer section 2.6.8) such as availability of computerised system for maintenance management, availability of computerised system for materials management, integration of maintenance management & materials management modules, scheduling of major Shutdown using project management system, CBM supported with automated programs for data analysis, and Expert systems for diagnosis. This case study could find evidences for all these elements of activities related leveraging information technology in Petrochemicals of the gas utility company. Expert systems used in Petrochemicals in operation & maintenance are Distributed Control Systems (DCS) and Vibration analysis software.

Earlier literature on maintenance polices and maintenance budget has identified the sub-constructs as discussed in section 2.6.9 such as maintenance mission & objectives, long term maintenance plans integrated with business plans, maintenance policies, and maintenance budget. Interview data analysis provides evidences for all these elements related to maintenance policies and maintenance budget. Interviewees indicated that clearly defined maintenance mission and maintenance objectives are available in the maintenance policy document. Further, maintenance managers/engineers have explained about well-structured budget system and its role in maintenance.

Earlier literature on maintenance tactics has identified the sub-constructs as discussed in section 2.6.1 such as use of Condition Based Maintenance/ Predictive Maintenance, Condition Based Maintenance is favoured over Time Based Maintenance (TBM), total maintenance hours devoted to Predictive Maintenance/ Preventive Maintenance, compliance of PM Schedules, OEM (Original Equipment Manufacturer) Recommendations for an equipment regarding PM, use of formal Reliability Based Maintenance (RBM), and use of Total Productive Maintenance (TPM). This case study could found evidences for all these elements of maintenance tactics in NG Pipelines of the gas utility company except use of Reliability Based Maintenance and Total Productive Maintenance. Shutdown maintenance is the maintenance method which has emerged out from this case study. Maintenance jobs cannot be carried out when the petrochemicals plant is under production. All such maintenance jobs are listed out by maintenance managers and planned to execute during pipelines shutdown (shutdown is the period in which Petrochemicals plant is under planned annual shutdown). During shutdown period, maintenance jobs are carried out. This type of maintenance is called as shutdown maintenance. One more category has emerged out from this case study i.e., Proactive Maintenance. This type of maintenance method is based on previous experience of maintenance managers/engineers and maintenance strategies are selected based on that. This type of maintenance exists in petrochemicals. However, maintenance managers/engineers are of the opinion that the proactive maintenance must be documented and standardisation can be done in maintenance systems.

Earlier literature identified on reliability analysis to cover documentation of equipment history, equipment criticality, Root Cause Analysis (RCA)/Incident Analysis (IA), Mean Time Between Failures (MTBF), Value Risk Study of maintenance program, reliability statistics of equipment/assets, and Reliability Centred Maintenance (RCM) based analysis. This case study could not find evidences for most of the elements from interview data analysis. Interviewees has indicated that the reliability based maintenance or reliability centred maintenance is not being practiced in Petrochemicals plant. However, few reliability measures like RCA/IA and equipment history are being practiced in petrochemicals of the large gas utility company as indicated by maintenance managers/engineers of the company.

This case study could find evidences of *Maintenance Challenges as a new category* of factor contributes to maintenance strategies planning and execution in the company. This includes the major issues being faced by maintenance managers in their day-to-day jobs. These are grouped in to technical issues, contract issues, stake holder issues, internal issues & standardisation of maintenance practices. These factors play crucial role in maintenance strategies & maintenance practices. Presently, these challenges are managed by individual/team as and when required. These maintenance challenges factors are to be formalised and documented for better maintenance practices in the company as indicated by the interviewees.

5.6.2 Maintenance Strategies Selection Process in Petrochemicals

As discussed in Chapter 2, section 2.5.3, literature indicated that the maintenance strategies selection process is being carried out using mathematical modelling. In the organisations, selection of maintenance strategies for particular equipment/process is treated as Multiple Criteria Decision Making (MCDM) Problem. This type of problem can be solved using techniques like AHP, Fuzzy AHP, VIKOR model etc. This case study could not find any evidences of using such techniques in Petrochemicals of the gas utility company for maintenance strategies selection process.

Further, as discussed in section 2.5.5, literature indicated that Decision Support System (DSS) models have been used for optimizing the maintenance strategies mix use in the organisations in order to ensure better implementation of maintenance strategies and improving maintenance. No evidences are found in this case study regarding implementation DSS models in Petrochemicals plant of the gas utility company.

As detailed above in section 5.4, Petrochemicals maintenance strategies selection process includes the following elements such as previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity,

equipment availability, process severity, and complexity of the process in selecting a particular maintenance strategy for a specific equipment/process. Shutdown maintenance is a specific maintenance method applicable to Petrochemicals. It plays a crucial role in maintenance of petrochemicals plant. Further, maintenance strategies selection is based on the internal norms & industry norms in petrochemicals. Internal norms are the procedures such as Integrated Management Systems (IMS), Standard Operating Procedures (SOPs), etc. Industry norms are the guidelines from OISD, PNGRB, etc.

5.6.3 Relationship between Maintenance Strategies Selection Processes and Maintenance Strategies & Practices in Petrochemicals

Earlier literature identified with various maintenance strategies related models to explain the processes related to maintenance strategies selection and maintenance practices and contributing factors as discussed in chapter 2, section 2.6 & section 2.7. Such processes are deliberated like formulation of maintenance strategies (McAllister, 1999; Waeyenbergh & Pintelon, 2002; Kelly, 2006), maintenance strategy selection (Dekker, 1996; Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Murthy, Atrens & Eccleston, 2002; Bertolini & Bravilacqua, 2005; Lin et al., 2009), and implementation of maintenance strategies (Campbell & Picknell, 2006; Eti M.C., 2006; Crespco, 2005; Pinjala, Pintelon & Vereecke, 2006; Veldman, Klingenberg & Wortmann, 2011), e-maintenance and its impact (Liptrot, David & Palarchio, Gino, 2000; Muller, Alexander; Crespo, Marquez, Adolfo & Lung, Benoit, 2007; Swanson, 2003; Elliot & Tobias, 2005). Maintenance performance provides key inputs to maintenance strategies selection and maintenance practices as indicated by various literatures (Albert et al., 1999; Tsang, 1999; Sherwin, 2000; Swanson, 2001; Kutucuoglu et al., 2001; Visser & Pretorious, 2003; Weber & Thomas, 2006; Parida & Chattopadhyay, 2007; Parida & Uday, 2009; Muchiri et al., 2011; Simoes et al., 2011).

This case study could find evidences of relationship among the processes related to maintenance strategies & maintenance practices such as formulation

of maintenance strategies, maintenance strategy selection, and implementation of maintenance strategies. e-maintenance implementation in Petrochemicals is majorly based on the implementation of SAP system and other intelligent diagnostic systems. There is an evidence of using maintenance performance assessment in framing maintenance strategies and improvement in maintenance practices.

This case study could find evidences showing maintenance processes in the gas utility company such as maintenance strategies formulation, maintenance strategy selection, implementation of maintenance strategies and practices in the company. Further, this case study could come out with the factors contributing to those maintenance strategy related processes.

5.6.4 Case Study Findings in terms of Research Questions

The constructs and sub-constructs identified through literature review have been verified in data analysis of empirical data collected from maintenance managers/engineers of the large gas utility company in India. The detailed discussions, observations and findings have been presented above in section 5.3 & section 5.4. Further, the relationships among these factors emerged from data analysis and holistic picture for answering the central research question, a Qualitative Associative Network has been developed and the same is shown in section 5.5. The case study findings are summarised in terms of research questions and discussed in subsequent paragraphs.

- Findings related to CRQ (Maintenance strategies & practices planning and Execution & specific maintenance strategies of gas utility company):
 - Petrochemicals of gas utility company is planning & executing its maintenance strategies majorly based on: overall company's maintenance policy guidelines, MOU/ IMOU targets, maintenance challenges faced by maintenance

- managers/engineers such as ageing of assets, dependency on OEM, contract issues, etc.
- Specific maintenance strategies are selected in Petrochemicals majorly based on: OEM (Original Equipment Manufacturer) recommendations, standard industry practices and past experience of maintenance managers.
- Findings related to ARQ1- Common & different maintenance strategies between petrochemicals & NG Pipelines:
 - Preventive maintenance is used more in petrochemicals than NG Pipelines
 - Emergency maintenance is minimized by applying various maintenance tactics in petrochemicals
 - o Shutdown maintenance plays a crucial role in petrochemicals
 - Maintenance challenges play a crucial role in deciding on maintenance strategies & impact the maintenance practices in Petrochemicals.
- Findings related to ARQ2- Benchmarking in Maintenance of Petrochemicals:
 - o Benchmark report (2002) is available but it is not being practiced fully in petrochemicals of the gas utility company
 - It is found that one parameter maintenance cost is benchmarked i.e., 0.83 % of Gross Block (Inflation Adjusted) from the documentary evidence
 - MOU targets are being treated as benchmarks by the maintenance managers and these targets are mostly based on operational targets
 - Maintenance performance is assessed through Internal Audits & External Audits by OISD, PNGRB, etc. and through these audits maintenance practices are validated in petrochemicals of the large gas utility company.

- Findings related to ARQ3- Reliability in maintenance:
 - Reliability Centered Maintenance (RCM) technique is not being practiced in Petrochemicals of the large gas utility company
 - RCM metrics such as MTBF, Value Risk Study are not being used in Petrochemicals maintenance practices
 - However, Root Cause Analysis (RCA) of maintenance failure
 & Incident Analysis Report (IAR) are being used to identify
 root cause failure of equipment and report failure incident
 respectively.

5.7 CONCLUDING REMARKS

This chapter presented and discussed the analysis and results of petrochemicals case study of Indian gas utility company. Categories of factors contributing to maintenance strategies & maintenance practices and maintenance strategy selection process in Petrochemicals of the large gas utility company have been presented and discussed. One new type of category maintenance challenges and two new types of maintenance tactics/methods such as shutdown maintenance and proactive maintenance emerged out from the empirical data.

The relationship between maintenance strategies selection process in Petrochemicals and categories of factor contributing to maintenance strategies & maintenance practices have been presented and discussed. The findings of the case study illustrate that interviewees considered the following categories such as performance measures, planning & Scheduling, materials human resources. information management, technology, employee empowerment, maintenance tactics, reliability analysis, maintenance policies/maintenance budget, and maintenance challenges are important in deciding on maintenance strategies selection process & maintenance practices in Petrochemicals of the large gas utility company.

Further, interviewees indicated that the maintenance strategies selection process is not based on mathematical modelling using quantitative techniques & tools and it is based on previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity, equipment availability, process severity/complexity, and internal and industry norms.

This chapter presented and discussed petrochemicals case study. Next chapter presents and discusses the cross case analysis and its findings of both the case studies NG Pipelines & Petrochemicals.

CHAPTER 6 CROSS CASE ANALYSIS AND FINDINGS

6.1. INTRODUCTION

This chapter presents the cross case analysis of Natural Gas Pipelines and Petrochemicals plant of the large gas utility company cases and discusses the findings. In first section similarities and dissimilarities between the two case studies are presented along with summary of major observations. Then findings of these two case studies are compared for maintenance strategies & maintenance practices, maintenance strategies selection processes, and relationship between the factors contributing to maintenance strategies & maintenance practices and maintenance strategies selection processes. Propositions suggesting relationships between factors related to maintenance strategies & practices and the processes of maintenance strategies selection are also developed.

6.2 SIMILARITIES AND DISSIMILARITIES BETWEEN CASES

A brief comparison of the business verticals NG Pipelines and Petrochemicals of the large gas utility company is presented in Table 6.1 for ready reference.

Table 6.1 Comparison of business verticals of the large gas utility company

Parameters NG Pipelines		Petrochemicals	
	(Case Study- 1)	(Case Study -2)	
Nature of	Gas Transmission,	Polymer & Liquid	
Business	Processing, and Distribution	Hydrocarbon production	
Capacity	10,700 KMs of NG pipeline	0.45 MMTPA of Polymers	

Existing	network; 210 MMSCMD	LLDPE & HDPE
Capacity	Expanding to 15,000 KMs of	0.45 MMTPA of Polymers
Expansion	pipeline network	LLDPE & HDPE
Domestic	70 %	20%
Market Share		
No. of	Approx. 1300	Approx. 900
Employees		
Location	All across India (Majorly in	PATA, UTTAR PRADES, 100
	North part of India)	KMs away from KANPUR

In this cross-case analysis of the study, data has been analysed across both the cases (Petrochemicals & NG Pipelines) in order to identify similarities and differences in maintenance strategy formulation and maintenance practices of the gas utility company. By identifying similarities and differences, further insight into issues concerning the maintenance strategy selection & maintenance practices (analytically) by generalizing the case study results. The details of similarities and differences are as given under in the Table 6.2.

Table 6.2 Similarities & Dissimilarities between Case Study 1 & Case Study 2

Categories	Focused codes	Observation on	Focused codes from	Observation on	Cross -Case Analysis
from empirical	from empirical	Data Analysis	empirical data (Case	Data Analysis	Observations
data (Case	data (Case Study-	(Case Study-2)	Study -1) NG	(Case Study -1)	
Study-1 &	2) -Petrochemicals	Petrochemicals	Pipeline	NG Pipeline	
Case Study-2)					
Maintenance	Predictive	CBM is being used	Predictive	CBM is being	Both units are using
Tactics	Maintenance/	in Petrochemicals	Maintenance/	used in NG	CBM techniques in
	Condition Based	unit	Condition Based	Pipelines	their maintenance
	Maintenance (CBM)		Maintenance (CBM)	maintenance	planning
	Preventive	TBM is being	Preventive	TBM is being	Both units are using
	Maintenance/ Time	practiced in	Maintenance/ Time	practices in NG	TBM in maintenance
	Based Maintenance	Petrochemicals	Based Maintenance	Pipelines also.	strategy planning &
	(TBM)		(TBM)		scheduling
	Ratio between	Predictive	Ratio between	Predictive	Both the units are
	Predictive	Maintenance (CBM)	Predictive	Maintenance	using CBM & TBM
	Maintenance (CBM)	& preventive	Maintenance (CBM)	(CBM) is more in	techniques. However,
	& Preventive	maintenance (TBM)	& Preventive	NG Pipelines than	application of these
	Maintenance (TBM)	both are being used	Maintenance (TBM)	preventive	techniques is
		in petrochemicals		maintenance	depending on

	based on equipment		(TBM)	equipment type,
	classification such			process type,
	as critical, semi-			pipelines, and
	critical & Non-			compressor stations.
	critical			
PM schedule	Timely completion	PM schedule	Timely	PM schedule
completion	of PM schedules is	completion	completion of PM	completion is being
completion	being followed in	completion	schedules is being	monitored through
	Petrochemicals		followed in NG	ISO Schedules & SAP
	Tetrochemicals			
			Pipelines	system in both the
				units.
OEM	Maintenance	OEM	Maintenance	The interview data
Recommendations	schedules are being	Recommendations	schedules are	shows that the
	prepared based on		being prepared	maintenance managers
	OEM		based on OEM	are using OEM
	recommendations of		recommendations	recommendations for
	critical equipment		for Compressors,	preparing maintenance
	such as Compressor,		UPS systems, etc.	schedules of critical
	Gas Turbine,			equipment.
	Extruder, Bagging			
	Machines, etc.			
Total Productive	No evidence of	Total Productive	No evidence of	TPM is not followed
Maintenance (TPM)	following TPM	Maintenance (TPM)	following TPM	in both Petrochemicals
				& NG Pipelines
Use of Reliability	No RCM is being	Use of Reliability	No RCM is being	RCM Techniques are
Based Maintenance	followed in the	Based Maintenance	followed in the	not followed in both
	company. However,		company.	Petrochemicals & NG
	maintenance		However,	Pipelines.
	managers are		maintenance	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	interested to		managers are	
	implement.		interested to	
	implement.		implement.	
Emergency	Emarganov	Emarganov	_	Emergency
Emergency	Emergency maintenance is	Emergency	Emergency maintenance is	Emergency maintenance is rare in
Maintenance		Maintenance		
	being carried out in		lesser in NG	NG Pipelines &
	petrochemicals as		pipelines due to	minimum in
	and when required.		standby	Petrochemicals.
	However, the same		equipment	
	is minimized by		strategy are being	
	using various		followed.	
	preventive &			
	predictive			
	maintenance			
	techniques.			
Shutdown	Shutdown	Shutdown	Shutdown	Both the units are
Maintenance	maintenance is	Maintenance	maintenance is	using shutdown
 <u> </u>	I.	<u>l</u>	<u> </u>	

		crucial in		rare in NG	maintenance method.
		petrochemicals unit		Pipelines. Due to	This method is
		since no stand-by		ageing of	emerging out from this
		strategy is available.		pipelines, the	empirical study.
		Annual Turnaround		shutdown	empiriour study.
		Shutdown is being		maintenance is	
		planned every year		being carried out	
		in petrochemicals		in NG Pipelines	
		in petrochemicals		also.	
	Pro actions	This maintenance	Nil	Nil	Pro-active
	Pro-active	method is based on	INII	INII	maintenance is
	maintenance				
		experience of			emerged out in case
		maintenance			study 2 petrochemicals
		managers.			interview.
		Therefore,			
		maintenance			
		managers decide on			
		selection of			
		maintenance			
		strategy considering			
		their previous			
		experience.			
Reliability	Documentation of	No evidence is	Documentation of	Equipment history	Documentation of
Analysis	Equipment History	found from	Equipment History	is being	Equipment History is
		interview data.		documented in	being followed in both
		However,		Compressor	Petrochemicals & NG
		documentary		Stations of NG	Pipelines.
		evidence show that		Pipelines unit	
		Equipment History			
		records are being			
		maintained in			
		Petrochemicals			
	Root Cause Analysis	Root Cause Analysis	Root Cause Analysis	Root Cause	RCA is being followed
	(RCA)	of plant shutdowns		Analysis (RCA)	in both the units.
		are being done &		of incidents of	
		well documented by		pipeline &	
		maintenance		compressor	
		managers.		shutdowns are	
				being done and	
				documented	
	MTBF	No evidence found	MTBF	No evidence	No RCM metrics is
		in using such		found in using	used in both
		metrics in		such metrics in	Petrochemicals & NG
		maintenance		maintenance	Pipelines.
		practice.		practice.	
	Value Risk Study of	No evidence found	Value Risk Study of	No evidence	No RCM technique is
	maintenance	in using such study	maintenance program	found in using	used in both
	program	in maintenance		such study in	Petrochemicals & NG
1	I.	1	l .	I .	

		practice.		maintenance	Pipelines.
				practice.	
	Equipment	Equipment & other	Equipment Criticality	Equipment	Equipment criticality
	Criticality	instruments are		criticality is not	factor is common to
		being classified in to		applicable since	both the units.
		critical, semi-critical		stand-by strategy	oom me amo.
		& non-critical;		is being followed	
		Accordingly,		in NG Pipelines	
		maintenance is		iii NO r iperines	
	B 11 1 11 11 11 11 11 11 11 11 11 11 11	being carried out.	D 11 1 11 11 11 11 11 11 11 11 11 11 11	37.1.1.1.1	
	Reliability Statistics	Not being is used.	Reliability Statistics of	Not being is used.	Few basic metrics of
	of equipment/ assets	Simple metrics is	equipment/ assets	Simple metrics is	Reliability Statistics is
		being used such		being used such	being practiced in both
		equipment		equipment	Petrochemicals & NG
		availability, plant		availability, plant	Pipelines.
		availability etc.		availability etc.	
	RCM based analysis	RCM Analysis is	RCM based analysis	RCM Analysis is	RCM Analysis is not
		not being used in		not being used in	being used in both
		Petrochemicals		NG Pipelines	petrochemicals & NG
		maintenance		maintenance	Pipelines.
Performance	Breakdown Records	Records are being	Breakdown Records	Records are being	Breakdown records are
Measures/		maintained by		maintained by NG	available in both the
Benchmarking		petrochemicals unit		Pipelines for	units & being
		for measuring		measuring	maintained
		maintenance		maintenance	
		performance		performance	
	Key Performance	KPIs are available.	Key Performance	KPIs are	KPIs are based on
	Indicators	Basically, these are	Indicators	available.	MOU Targets assigned
		derived from MOU		Basically, these	by Petroleum Ministry
		Targets with		are derived from	in both the units.
		Petroleum Ministry		MOU Targets	
				with Petroleum	
				Ministry	
	Training man hours	Each employee gets	Training man hours of	Each employee	Structured Training
	of maintenance staff	2 days/ year training	maintenance staff	gets 2 days/ year	process is available in
		in Technical areas &		training in	the company
		behavioural skills in		Technical areas &	the company
		petrochemicals		behavioural skills	
		petrochemicals		in NG Pipelines	
	Maintenance	Maintenance	Maintenance	Maintenance	Both units assessing
	Performance	Performance is	Performance Measures	Performance is	their maintenance
	Measures	largely based on	1 criormance preasures	largely based on	performance based on
	ivicasures	Internal & External		Internal &	audits only. No
					separate Performance
		Audit Process being		External Audit	^
		conducted by		Process being	metrics are available.
		external agencies		conducted by	
		like OISD, etc.		external agencies	
				like PNGRB, etc.	

	Internal Norms &	Petrochemical unit	Internal Norms &	NG Pipeline is	Both units are
	Industry Norms	is following relevant	Industry Norms	following relevant	following applicable
		Internal & Industry		Internal &	industry norms &
		Norms as per		Industry Norms as	internal norms are
		applicable standards		per applicable	being practiced as per
		& statutory		standards &	standards.
		requirements.		statutory	
				requirements.	
	Benchmarking	No International	Benchmarking	No International	Industry
	measures & targets	Benchmarks are	measures & targets	Benchmarks are	Benchmarking
		being followed. But,		being followed.	measures being
		MOU targets are		But, MOU targets	followed
		treated as		are treated as	internationally does
		benchmarks since		benchmarks since	not exist in both the
		the company is		the company is	units' petrochemicals
		market leader.		market leader.	& NG Pipelines.
	Labour & Material	No evidence of	Labour & Material	No evidence of	Common to both & No
	Cost	maintenance	Cost	maintenance	evidence of cost
	Cost	managers are giving	Cost	managers are	consciousness among
		importance to labour		giving importance	maintenance
		and material cost.		to labour and	managers.
		and material cost.		material cost.	managers.
Planning &	Plant Equipment	Being maintained in	Plant Equipment	Being maintained	Both the units are
		SAP PM module		in SAP PM	
Scheduling	Register	SAP PIVI module	Register	module	maintaining the equipment registers in
				module	
	G: 1 1 1:	Work orders are	C: 1 1 iv 1	Work orders are	SAP ERP System.
	Standard written		Standard written work		In both petrochemicals
	work order	being maintained in	order	being maintained	and NG Pipelines
		SAP PM module		in SAP PM	work order generation
		based on ISO		module based on	is being done
		Schedules with the		ISO Schedules	automatically through
		frequency of PM		with the frequency	SAP system based on
		jobs planned.		of PM jobs	ISO PM schedules.
				planned.	
	Availability PM	PM Schedules are	Availability PM	PM Schedules are	Both petrochemicals &
	schedules	developed &	schedules	developed &	NG Pipelines are
		configured in SAP		configured in SAP	keeping PM schedules
		PM module		PM module and	available
				ISO Schedules are	
				maintained in	
				Pipelines.	
	Priorities of work	Work orders	Priorities of work	Work orders	Both units are
	order	priorities are	order	priorities are	following the practice
		assigned and being		assigned and	of prioritization of
				Later to the contract of the c	
		maintained in SAP		being maintained	work orders.
		maintained in SAP PM module. The		in SAP PM	work orders.
					work orders.

	criticality of the		equipment history	
	equipment &		& criticality of the	
	process application		equipment.	
	type.		1.1.1	
Availability of work	Work schedules are	Availability of work	Work schedules	Both units are
schedules for a week	being maintained in	schedules for a week	are being	following the practice
ahead	SAP PM module	ahead	maintained in	of prioritization of
unoud	and can be accessed	uncud	SAP PM module	work orders.
	any point of time		and can be	work orders.
	based schedule.		accessed any point	
	based schedule.		of time based	
			schedule.	
Shutdown	Shutdown jobs	Shutdown	Shutdown	Petrochemicals unit is
Maintenance	schedules are being	Maintenance Schedule	maintenance is	maintaining detailed
		Maintenance Schedule		-
Schedule	maintained by		rare. Therefore,	shutdown maintenance
	maintenance		there is no such	schedule. But, NG
	managers separately.		detailed planning	Pipelines is not
	The shutdown jobs		available with NG	maintaining such
	schedules are being		Pipelines.	schedule due to nature
	prepared based on			of their operations.
	standards provided			
	by OISD.			
Measurement of	Backlog	Measurement of work	Backlog	In SAP system, both
work backlog	maintenance jobs	backlog	maintenance jobs	the units are
	are maintained in		are maintained in	maintaining work
	SAP PM module.		SAP PM module.	backlog schedules.
	The same is		The same is	This gives
	completed in the		completed in the	measurement of work
	next available		next available	backlog.
	opportunity.		opportunity.	
Long Term Plans to	Shutdown	Long Term Plans to	Intelligent pigging	Type of long term plan
forecast major	maintenance	forecast major	is the primary	varies between
shutdown/	planning is the long	shutdown/	activity from	petrochemicals & NG
maintenance work	terms plans to	maintenance work	which long term	Pipelines due to nature
	forecast major jobs		planning is being	of their operations.
	in petrochemicals		done in the	
	unit. Each sub-unit		company. Long	
	maintains detailed		term planning is	
	shutdown		based on types of	
	maintenance plan.		equipment,	
			processes in plant	
			and centralised	
			procurement	
			facilitates such	
			planning in NG	
			Pipelines'	
			compressor	
			stations.	
	<u> </u>			

Materials	Availability of	Being ensured by	Availability of Spares	Availability of	Availability of spares
Management	Spares	maintenance	,	spares are being	are ensured by
		department &		ensured by	Contracts &
				maintenance	Procurement
				department using	department in both the
				Centralised	units
				procurement	units
				method in NG	
				pipelines for	
				optimum cost of	
				procurement &	
				_	
				long term	
	71 .: 7 1 0	5	71 - 10 - 10	planning.	71
	Identified Spares	Being maintained by	Identified Spares	Being maintained	Identification of spares
		C & P Department		by C & P	is being done through
				Department	SAP MM Module by
					C & P Department.
	Inventory Analysis	Being maintained in	Inventory Analysis	Being maintained	Inventory Analysis is
		SAP MM module		in SAP MM	being done through
				module	SAP MM Module by
					C & P Department in
					both the units.
	Emergency purchase	Being done by	Emergency purchase	Being done by	Both units following
	of spares	maintenance	of spares	maintenance	the same methods as
		department in		department in	per C & P Department
		coordination with C		coordination with	procedures.
		& P Department		C & P Department	
	Average Inventory	No evidence of	Average Inventory	No evidence of	AIT is not being
	Turnover (AIT)	following "Average	Turnover	following	practiced in both the
		Inventory Turnover"		"Average	units.
		concept in the		Inventory	
		company		Turnover"	
				concept in the	
				company	
	Inventory control	Being maintained in	Inventory control	Being maintained	Inventory control is
	through	SAP PM module by	through computerised	in SAP PM	being ensured in both
	computerised	Stores & concerned	system	module by Stores	the units through SAP
	system	maintenance		& concerned	system.
		department		maintenance	
				department	
	Material Stores	Material Stores is	Material Stores	Material Stores is	Material stores
		available in all in the		available in all the	available in both the
		petrochemical plant		major work	units. In NG pipelines,
				centres' in the	the practice of
				company	centralised stores is
				Company	there.
	Integration of	It is being done	Integration of	It is being done	Integration of
	inventory control	through SAP PM	inventory control with	through SAP PM	inventory control and

	with maintenance	Module by C & P	maintenance planning	Module by C & P	maintenance planning
	planning	department		department	is done through SAP
					system.
Organisation/	Maintenance Staff	Maintenance Staff	Maintenance Staff	Maintenance Staff	Maintenance staff
Human	Level	level is existing in	Level	level is existing in	level is maintained in
Resources		the organisation		the organisation	both the units.
11050 111 005	Maintenance	Well Structured	Maintenance	Well Structured	Common to both &
	Organisation	maintenance	Organisation	maintenance	followed
	Organisation	organisation is	Organisation	organisation is	Tonowed
		existing		existing	
	D	-	D	_	G
	Responsibility of	Supervisors'	Responsibility of first	Supervisors'	Common to both &
	first line supervisors	responsibilities are	line supervisors	responsibilities	followed
		well defined.		are well defined.	
	Adequacy of	Support staff is	Adequacy of Support	Support staff is	Common to both &
	Support staff	adequate. And staffs	staff	adequate. And	followed
		are also kept for		staffs are also kept	
		emergency		for emergency	
		situations.		situations.	
	Regular Technical	Technical training is	Regular Technical	Technical training	Common to both &
	Training	being imparted to	Training	is being imparted	followed
		the employees in the		to the employees	
		structured manner		in the structured	
		including safety		manner including	
		training.		safety training.	
	Apprenticeship	No evidences from	Apprenticeship	No evidences	Common to both &
	program	interview data.	program	from interview	followed
		However, from		data. However,	
		company secondary		from company	
		data Apprentice		secondary data	
		program is available		Apprentice	
		as per statutory		program is	
		requirements.		available as per	
		1		statutory	
				requirements.	
	Deployment of	The company is	Deployment of	The company is	Common to both &
	Contractors	regularly deploying	Contractors	regularly	followed
		contract manpower	251111111111111111111111111111111111111	deploying contract	
		including expert		manpower	
		manpower from		including expert	
		OEMs etc.		manpower from	
				OEMs etc.	
Employee	Multi skilled trade	Multi skilled people	Multi skilled trade	Multi skilled	Common to both &
		are working in the			followed
Empowerment	people		people	people are	Tollowed
		company. They are		working in the	
		being given training		company. They	
		in various skills to		are being given	
		handle the		training in various	
		emergency.		skills to handle	

				the emergency.	
(Operators based	OBM is not being	Operators based	OBM is being	OBM is based on
r	maintenance	followed in	maintenance	followed in small	nature of gas terminal/
		petrochemicals.		gas	compressor station/
		Interview data is		terminals/work	petrochemical.
		emerging clearly		centers and not	Therefore, depends on
		that operator is		being followed in	the work centre.
		responsible for		major work	
		issuing work permits		centers. Interview	
		& to bring the		data is emerging	
		equipment failures		with contra	
		to the knowledge of		arguments among	
		maintenance		the interviewees.	
		personnel.			
I	Regular discussions	Formal & informal	Regular discussions	Formal &	Common to both &
v	with the staff by	interactions are	with the staff by	informal	followed
s	supervisors	being done by	supervisors	interactions are	
		maintenance		being done by	
		managers with the		maintenance	
		supervisors.		managers with the	
				supervisors.	
5	Self-directed work	Maintenance teams	Self-directed work	Maintenance	Common to both &
t	teams	are self-directed.	teams	teams are self-	followed
		Evidences are there		directed.	
		such as adopting		Evidences are	
		safety norms, ready		there such as	
		with emergency		adopting safety	
		work plan, etc.		norms, ready with	
				emergency work	
				plan, etc.	
N	Modifications done	Modifications are	Minor modifications	Minor	Common to both &
l t	by maintenance	being taken care by	done by maintenance	modifications are	followed but nature
t	teams	maintenance with	teams	being taken care	varies in both the cases
		the structured		by maintenance	
		process of "Change		with the structured	
		Management		process of	
		System".		"Change	
				Management	
				System".	
I	Partnership with key	Delegation of	Partnership with key	Delegation of	Common to both &
s	suppliers/contractors	Powers and C&P	suppliers/contractors	Powers and C&P	followed
		procedures are		procedures are	
		facilitating the		facilitating the	
		partnership with key		partnership with	
		suppliers/contractors		key suppliers/	
				contractors.	
		•			
Information A	Availability of	SAP PM module is	Availability of	SAP PM module	Common to both &

	system for	company	for maintenance	the company	
	maintenance		management		
	management				
	Availability of	SAP PM module is	Availability of	SAP PM module	Common to both &
	computerised	being used in the	computerised system	is being used in	followed
	system for materials	company	for materials	the company	
	management		management	, ,	
	Integration of	SAP PM module is	Integration of	SAP PM module	Common to both &
	maintenance &	being used in the	maintenance &	is being used in	followed
	materials	company & SAP	materials management	the company &	
	management	Sales module for	modules	SAP GMS module	
	modules	material	Scheduling of major	for material	
	Scheduling of major	management	shutdowns using	management	
	shutdowns using	management	project management	management	
	project management		system		
			system		
	System CPM supported	Dool Timet	CDM gumgarta d accid	Pool Tim-	Common to both &
	CBM supported with automated	Real Time systems are available.	CBM supported with	Real Time	followed
		are available.	automated programs	systems are	Tollowed
	programs for data		for data analysis	available.	
	analysis				
	Expert Systems for	Distributed Control	Expert Systems for	SCADA,	Common to both.
	diagnostics	Systems (DCS),	diagnostics	Intelligent Pigging	Types of expert
		Vibration software		& Satellite based	systems vary between
		systems are		monitoring are	two cases.
		available.		available.	
Maintenance	Maintenance	Clear maintenance	Maintenance mission	Clear maintenance	Common to both &
Policies/	mission &	mission &	& objectives	mission &	followed
Budget	objectives	objectives are		objectives are	
		available in the		available in the	
		company as per		company as per	
		Maintenance Policy		Maintenance	
		& MOU targets		Policy & MOU	
				targets	
	Long term plans for	Company's mission	Long term plans for	Company's	Common to both &
	maintenance	& vision is	maintenance function	mission & vision	followed
	function integrated	integrated with the	integrated with	is integrated with	
	with corporate plans	maintenance policy	corporate plans	the maintenance	
		& objectives		policy &	
				objectives	
	Company's	Maintenance Policy	Company's	Maintenance	Common to both &
	maintenance policy	exists in the	maintenance policy	Policy exists in	followed
		company.		the company.	
	Maintenance budget	Well defined	Maintenance budget	Well defined	Common to both &
	-	budgeting system is	-	budgeting system	followed
		available in the		is available in the	
Maintenance	Technical Issues	available in the company. New factor	Technical Issues	is available in the company.	Depends on individual

		this study		this study	
	Contact Issues	New factor	Contact Issues	New factor	Depends on individual
		emerging out from		emerging out from	case
		this study		this study	
	Stakeholder Issues	New factor	Stakeholder Issues	New factor	Depends on individual
		emerging out from		emerging out from	case
		this study		this study	
	Internal Issues	New factor	Internal Issues	New factor	Depends on individual
		emerging out from		emerging out from	case
		this study		this study	
	No Standardisation	New factor	Unexpected Issues	New factor	Depends on individual
	of maintenance	emerging out from		emerging out from	case
	practices	this study		this study	
Selection of	Factors Contributing	New factor	Factors Contributing	New factor	Depends on individual
Maintenance	to maintenance	emerging out from	to maintenance	emerging out from	case
Strategy for	strategy selection	this study	strategy selection	this study	
particular					
operation					
process/					
equipment					
	Specific	New factor	Specific maintenance	New factor	Depends on individual
	maintenance	emerging out from	strategy for NG	emerging out from	case
	strategy for	this study	pipeline	this study	
	Petrochemicals				
	Internal & Industry	New factor	Internal & Industry	New factor	Depends on individual
	Norms	emerging out from	Norms	emerging out from	case
		this study		this study	

From the above Table 6.2, the critical observations are summarised as given under:-

Refers to the maintenance methods/maintenance approaches, the key observations are predictive maintenance is more used compare to preventive maintenance in NG Pipelines than petrochemicals, TPM & RCM techniques are not followed in both NG Pipelines & Petrochemicals, emergency maintenance is rare in NG Pipeline where in Petrochemicals the same is minimized by various maintenance tactics, and shutdown maintenance is crucial and plays an important role in petrochemicals.

Further, there is no evidence of cost minimisation concepts in maintenance in both NG Pipelines & petrochemicals. Operator based maintenance is being followed in small terminals/ SV stations in NG Pipelines. However, it is not followed in other major plants & compressor stations. Expert Systems used in equipment diagnosis are very specific to NG Pipelines & Petrochemicals and cannot be used interchangeably. The maintenance techniques used are also specific to a particular equipment/process in both NG Pipelines & Petrochemicals.

Proactive maintenance is the new maintenance tactic emerged out from the case study of petrochemicals and there is no evidence found regarding practice of proactive maintenance in NG Pipelines. It is worth to understand the maintenance challenges described by maintenance managers in order to effective maintenance planning. As mentioned above, these maintenance challenges are specific to a particular plant/process.

6.3 MAINTENANCE STRATEGIES & MAINTENANCE PRACTICES IN THE LARGE GAS UTILITY COMPANY— CROSS CASE FINDINGS

Based on the earlier literature on maintenance strategies & maintenance practices, nine constructs such as maintenance tactics, reliability analysis, performance measures/benchmarking, planning & scheduling, materials management, organisation/Human Resources, employee empowerment, information technology, maintenance policies/budget were expected to be identified as discussed in Chapter 2 (Section 2.6). This study has found evidences for all the nine constructs as empirical data categories in the cases of NG Pipelines and petrochemicals. One new category "maintenance challenges" is emerged out from this study in both the cases. Table 6.3 given below shows the cross case comparison of presence of processes and categories of constructs related to maintenance strategies & maintenance practices in both the case studies Petrochemicals & NG Pipelines of the large gas utility company in India. '1' in a column denotes the presence of the corresponding category in that case, where as a '0' denotes the absence. Shaded cells show the difference between both cases.

Table 6.3 Cross case Comparison of Case Study 1 & Case Study 2

Categories from	Sub-categories from empirical	(Case	(Case
empirical data (Case	data (Case Study-1 & Case	Study-2)	Study -1)
Study-1 & Case Study-	Study-2)	Petro-	NG
2)		chemicals	Pipelines
Maintenance Tactics	Predictive Maintenance (CBM)	1	1
	Predictive Maintenance (CBM) &	1	1
	preventive maintenance (TBM)		
	Ratio		
	Preventive Maintenance (TBM)	1	1
	Completion of PM schedules	1	1
	OEM Recommendations	1	1
	Total Productive Maintenance	0	0
	(TPM)		
	Reliability Based Maintenance	0	0
	(RCM)		
	Emergency Maintenance	1	1
	Shutdown Maintenance	1	1
	Pro-active maintenance	1	0
Reliability Analysis	Documentation of Equipment	0	1
	History		
	Root Cause Analysis	1	1
	Mean Time Between Failures	0	0
	(MTBF)		
	Value Based Risk Study	0	0
	Equipment Criticality	1	1
	Reliability Statistics	0	0
	RCM Based Analysis	0	0
Performance	Breakdown Records	1	1
Measures/			
Benchmarking			
	Key Performance Indicators	1	1
	Training man hours of maintenance	1	1
	staff		
	Maintenance Performance	1	1
	Measures		
	Internal Norms & Industry Norms	1	1
	Benchmarking measures & targets	1	1
	Labour & Material Cost	0	0

Planning &	Plant Equipment Register	1	1
Scheduling			
	Standard written work order	1	1
	Availability PM schedules	1	1
	Priorities of work order	1	1
	Availability of work schedules	1	1
	Shutdown Maintenance Schedule	1	1
	Measurement of work backlog	1	1
	Long Term Plans to forecast major	1	1
	shutdown/ maintenance work		
Materials	Availability of Spares	1	1
Management	, , , , , , , , , , , , , ,		
	Identified Spares	1	1
	Inventory Analysis	1	1
	Emergency purchase of spares	1	1
	Average Inventory Turnover	0	0
	Inventory control through	1	1
	computerised system	1	1
	Material Stores	1	1
	Integration of inventory control	1	1
	with maintenance planning	1	1
Organisation/Human	Maintenance Staff Level	1	1
Resources	Waintenance Staff Level	1	1
Resources	Maintenance Organisation	1	1
	Responsibility of first line	1	1
	supervisors	1	1
	Adequacy of Support staff	1	1
	Regular Technical Training	1	1
	Apprenticeship Program	1	1
T. 1	Deployment of Contractors	1	1
Employee	Multi skilled trade people	1	1
Empowerment			
	Operators based maintenance	1	1
	Regular discussions with the staff	1	1
	by supervisors		
	Self-directed work teams	1	1
	Modifications done by maintenance	1	1
	teams		
	Partnership with key	1	1
	suppliers/contractors		

Information	Availability of computerised system	1	1
Technology	for maintenance management		
	Availability of computerised system	1	1
	for materials management		
	Integration of maintenance &	1	1
	materials management modules		
	Scheduling of major shutdowns	1	1
	using project management system		
	CBM supported with automated	1	1
	programs for data analysis		
	Expert Systems for diagnostics	1	1
Maintenance Policies/	Maintenance mission & objectives	1	1
Budget			
	Long term plans for maintenance	1	1
	function integrated with corporate		
	plans		
	Company's maintenance policy	1	1
	Maintenance budget	1	1
Maintenance	Technical Issues	1	1
Challenges			
	Contact Issues	1	1
	Stakeholder Issues	1	1
	Internal Issues	1	1
	Standardisation of maintenance	1	0
	practices		
	Unexpected Issues	0	1

Refers to the above Table 6.3, certain inferences about the nature of maintenance strategies selection processes and maintenance practices in the large gas utility company can be drawn as discussed below.

Both the case studies found evidences for all the maintenance tactics types such as Preventive maintenance/time based maintenance, predictive maintenance/condition based maintenance, emergency maintenance, OEM Recommendations except Total Productive Maintenance (TPM) and Reliability Centred Maintenance (RCM). These maintenance methods are not being practiced in both the business verticals of the large gas utility company. Two new categories emerged out from this study such as shutdown maintenance and proactive maintenance. Both the case studies show the

evidences for shutdown maintenance. However, case study-2 on petrochemicals shows the evidences for proactive maintenance. Maintenance managers/engineers indicated that the NG Pipeline uses the predictive maintenance to the large extent compare to preventive maintenance since because NG Pipelines are operating on continuous basis (24 X 7 Basis) and it is having standby equipment. It does not require any shutdown maintenance. But, in petrochemicals shutdown maintenance plays a crucial role because the plant does not have standby equipment. Based on these inferences following propositions are made with regard to maintenance tactics used for maintenance strategies formulation.

P1 (a): Predictive Maintenance approach is more likely to be used compare to Preventive Maintenance approach in NG Pipelines

P1 (b): Shutdown Maintenance approach plays a crucial role in Petrochemicals plant

Evidences were found for all the sub-categories (focused codes) in reliability analysis category of empirical data in both the case studies. As indicated by the maintenance managers/engineers during interview, the reliability based analysis, reliability statistics, value based risk study, and MTBF metrics are not being practiced in the company. However, the maintenance mangers/engineers know the important of these statistics & analysis. Further, they wish to implement the same.

Both the case studies have found evidences for all the sub-categories in performance category of empirical data except "labour & material cost" in both the case studies as shown in Table 6.3. Benchmarking exercises was carried out by the gas utility company 12 years back. Benchmark parameters are not related to maintenance measures instead the parameters are mostly of operational targets.

Evidences were found for all the sub-categories in planning & scheduling category of empirical data from both the case studies. All these sub-categories emerged out are being practiced by the large gas utility company. The activities related to planning & scheduling are managed by enterprise resource planning application SAP in the company. Since shutdown maintenance is crucial to petrochemicals plant, the long term planning & scheduling is more relevant to petrochemical plant. Based on this inference, following proposition is made with regard to planning & scheduling of maintenance strategies and their implementation.

P2: Petrochemicals plant is more likely to use long-term planning & scheduling as compared to NG Pipelines.

Both the case studies have found evidences for all the sub-categories in materials management category of empirical data. All these sub-categories emerged out are being practiced by the large gas utility company. Material management is being done through enterprise resource planning application SAP MM Module. Both NG Pipelines & petrochemicals are using similar systems & methods for materials management. Based on the inferences following proposition is made with regard to materials management approaches used in maintenance.

P3: There is no difference in use of materials management approaches in both NG Pipelines & Petrochemicals plant.

Evidences were found for all the sub-categories in organisation/HR category of empirical data on both the case studies. All these sub-categories emerged out are being practiced by the large gas utility company. Human resources support for maintenance practices are same in both NG Pipelines & petrochemicals plant as described by maintenance managers. Based on the inferences following proposition is made with regard to organisation/HR support to maintenance strategies development and implementation.

P4: There is no difference in nature of organisation/HR support to both NG Pipelines & Petrochemicals plant.

This study has found evidences for all the sub-categories in information technology category of empirical data in both the case studies. The gas utility company has leveraged information technology to the possible extent in implementing maintenance activities in the organisation. For material management, maintenance management and their integration with planning & execution are being managed through enterprise resource planning application SAP in the gas utility company. The category emerged out expert systems for diagnostics category from empirical data reveals that the expert systems are different in both business vertical. Further, expert systems are based nature of process and type of equipment. These inferences lead to the following proposition with reference to information technology application in maintenance strategies selection and maintenance practices.

P5: There is a difference in types of expert systems used for maintenance diagnostics in NG Pipelines & Petrochemicals and the expert systems are likely to be based on the nature of process & type of equipment.

Evidences were found for all the sub-categories in maintenance policies/budget category of empirical data in both the case studies. Maintenance policies provide guidelines for maintenance strategy selection in NG Pipelines & Petrochemicals. Well-structured budget system helps maintenance mangers to streamline maintenance related jobs. Based on these inferences following proposition is made with regard to maintenance policies & maintenance budget systems prevailing in the gas utility company.

P6: There is no difference in maintenance policies/maintenance budget systems in both NG Pipelines & Petrochemicals plant.

The empirical data analysis of both the case studies has emerged out with the new category "Maintenance Challenges". The first four sub-categories are

technical issues, contract issues, internal issues, and stakeholder issues are depending on the individual case. i.e., the issues are difference in both NG pipelines & petrochemicals. Similarly, NG Pipelines case study emerged with a sub-category unexpected issues which are pertaining to NG Pipeline only. Petrochemicals case study emerged with a sub-category standardisation of maintenance practices. These inferences lead to the following propositions with reference to role of maintenance challenges in maintenance strategies selection and maintenance practices.

P7 (a): Maintenance challenges are likely to be of different nature in Petrochemicals & NG Pipelines. These challenges are likely to be specific to plant operations/processes/equipment.

P7 (b): Unexpected issues in NG Pipelines are the major maintenance challenges to maintenance managers/engineers in NG Pipelines.

P7 (c): Standardisation of maintenance practices in Petrochemicals is the major maintenance challenge to maintenance managers/engineers in Petrochemicals.

The categories identified from the empirical data are found similar with the Initial Conceptual Constructs identified from literature review. But, the extent of application of these categories varies in both the cases NG Pipelines & Petrochemicals. The details of cross case findings in terms of these categories are presented in above Table 6.2. Therefore, this study indicates that the categories emerged out such as maintenance tactics, reliability analysis, performance measures, planning & scheduling, employee empowerment, materials management, human resources, information technology, maintenance policy/budget, and maintenance challenges which forms the basis for maintenance strategies selection & maintenance practices in the large gas utility company. Based on these inferences, the following proposition is developed.

P8: The factors such as maintenance tactics, reliability analysis, performance measures, planning & scheduling, employee empowerment, materials management, human resources, information technology, maintenance policy/budget, and maintenance challenges form basis for maintenance strategies selection & maintenance practices.

This completes the cross case comparison of factors contributing to maintenance strategies & maintenance practices in the gas utility company. Next, section discusses the cross case findings for maintenance strategies selection processes.

6.4 MAINTENANCE STRATEGIES SELECTION PROCESSES IN THE LARGE GAS UTILITY COMPANY – CROSS CASE FINDINGS

Based on the earlier literature on Section 2.5.3 (selection of maintenance strategies) and Section 2.5.5 (maintenance decision support system), it is expected to identify the processes related to maintenance strategy selection such as application of mathematical models such as AHP, Fuzzy AHP, VIKOR, etc. and use of optimisation models for selection of maintenance strategy mix. As discussed in section 4.4 & section 4.5, no evidences are found of using such mathematical or optimisation models for selection of maintenance strategies in NG Pipelines and Petrochemicals of the large gas utility company.

As indicated by maintenance managers of the large gas utility company, maintenance strategies selection process of the company involve the following major activities (i) maintenance strategies selection based on previous experience of maintenance managers, criticality of the system/equipment, recommendations, maintenance policy guidelines, complexity, equipment availability, process severity, and complexity of the process, (ii) specific maintenance strategies pertaining NG

Pipelines/Petrochemicals, and (iii) internal & industry norms. Based on these activities, the cross case comparison is as shown in Table 6.4 below.

Table 6.4 Cross case findings: maintenance strategies selection process

Activities related	NG Pipelines	Petrochemicals
maintenance	(Case Study -1)	(Case study- 2)
strategies selection		
Maintenance strategies	Previous experience of	Previous experience of
selection guidelines &	maintenance managers,	maintenance managers,
practices	criticality of the	criticality of the
	system/equipment, OEM	system/equipment, OEM
	recommendations,	recommendations, maintenance
	maintenance policy	policy guidelines, equipment
	guidelines, equipment	complexity, equipment
	complexity, equipment	availability, process severity,
	availability, process severity,	and complexity of the process.
	and complexity of the	
	process.	
Specific maintenance	Intelligent pigging, vibration	Shutdown maintenance,
strategies	monitoring system, standby	upgradation of equipment based
	equipment, cathodic	on technology changes,
	protection, helicopter	implementation of vibration
	patrolling & pipeline	analysis application, and use of
	integrity management.	smart instruments.
Internal & industry	Implementation of T4S	Implementation of international
norms	standard, PNGRB	standards, OISD standards like
	guidelines, and OISD	OISD 178, PNGRB guidelines
	standards. & Internal norms	& Internal norms such
	such Integrated Management	Integrated Management
	Systems (IMS).	Systems (IMS).

As discussed in the above Table 6.3, almost all of the processes/sub-processes was found to be present in both the case studies. Based on these inferences, the following propositions are made with regard to maintenance strategies selection processes in the gas utility company.

P9 (a): In NG Pipelines & Petrochemicals operations, mathematical modelling and maintenance optimisation models are least likely to be used for maintenance strategy selection process.

P9 (b): Maintenance strategy selection process involves maintenance strategies selection guidelines & practices, specific maintenance strategies for a particular process/equipment, and internal & industry norms.

6.5 RELATONSHIP BETWEEN MAINTENANCE STRATEGIES & PRACTICES AND MAINTENANCE STRATEGIES SELECTION PROCESSES - CROSS CASE FINDINGS

Earlier literature has found various models in chapter 2 (section 2.7) which explains the relationship among various factors contributing to maintenance strategies & maintenance practices. Such models/frameworks discuss about maintenance strategies formulation, selection of maintenance strategies, and implementation of the selected maintenance strategies. A common thread in all these models/frameworks is alignment between business strategies and maintenance strategies in an organisation (McAllister, 1999; Kelly, 2006; Salonen, 2011). In a model proposed by Pintelon & Parodi (2008), outcome of maintenance strategies are shown as maintenance concepts such RCM, TPM, BCM, LCC, etc. and maintenance policies such as Preventive Maintenance, Predictive maintenance, etc. A framework for maintenance strategic planning identified nine function such as identification of major stakeholders, formulation mission statement, setting of the strategic objectives of maintenance, analysis of the current situation, identification of the strategic issues, strategic options, strategy selection, development of performance measures, and implementation planning (Umar, 2011). Further, a framework on maintenance strategies formulation, selection and implementation and its impact on maintenance function discuss about factors contributing to maintenance strategy formulation and selection such as maintenance tactics, reliability analysis, performance measures/benchmarking, planning & scheduling, materials management, organisation/HR, information technology,

and maintenance policies/budget based on detailed literature survey (Velmurugan & Dhingra, 2014).

The study could find evidence of relationship between the factors contributing to maintenance strategies & maintenance practices and the maintenance strategies selection processes in both the case studies. As indicated by the maintenance managers/engineers during interview, the alignment between business strategies and maintenance strategies are done through the MOU/IMOU targets in the gas utility company. Corporate MOU targets are formulated based on business strategies. Further, these targets are percolated to work centre level, unit level, and individual level by linking corporate MOU targets to individual level targets. Further, strategy 2020 activities of the large gas utility company are broken into department levels to achieve the overall objectives of the company. Based on these inferences the following proposition is made with reference to relationship between the factors contributing maintenance strategies selection and its processes.

P10: Business objectives & operations objectives are most likely to be aligned with maintenance objectives at an organisation level in the gas utility company.

Organisation's business strategy has been aligned with maintenance strategy with the help of MOU targets. These targets are developed at corporate level aligning with the company's business strategy. Then, these targets are percolated down into the level to work centre level, unit level, department level and further to individual level. There is a clear evidence is available for such an integration in the gas utility company from the empirical data.

P11: Integration between organisation's business strategy and maintenance strategy provides an effective implementation of maintenance strategies.

There is sufficient evidence available from empirical data that both the petrochemicals & NG Pipelines are using the e-maintenance concepts for

effective & efficient implementation of maintenance strategies. Few such maintenance concepts are shown in the below given Table 6.5.

Table 6.5 e-Maintenance concepts being practiced in NG Pipelines & Petrochemicals

e- Maintenance Concept	Petrochemicals	NG Pipeline
Distributed Control System	Majorly used in Plant	Not used
(DCS)	Operations & process	
	optimisation.	
Supervisory Control And	Not used	Majorly used in NG
Data Acquisition (SCADA)		Pipeline Operations &
System		Remote monitoring of
		gas terminals/stations
Vibration Monitoring	Used to monitor the	Used to monitor the
System & Software	healthiness of equipment	healthiness of equipment
	such as Compressors,	such as Compressors.
	turbines etc. Inputs are	Inputs are being used to
	being used to do	do predictive
	predictive maintenance.	maintenance.
SAP – Plant Maintenance	Used to integrate all	Used to integrate all
Module (SAP PM)	maintenance process and	maintenance process and
	co-processes such as	co-processes such as
	material management,	material management,
	sales management etc.	sales management etc.

Based on the above inferences the following proposition is made with reference to e-maintenance concept in implementation of maintenance strategies.

P12: *e-* maintenance concepts are likely to be used for efficient implementation of the maintenance strategies.

In the gas utility company, e-maintenance concepts are implemented through enterprise resource planning application SAP system. In SAP system, specific module is available for managing maintenance function i.e., Plant Maintenance module (SAP-PM module). SAP PM Module manages and integrates the maintenance activities such PM scheduling, planning, issuing of work permits, maintaining equipment history, work instructions records etc., Further, PM Module is integrated with material management module (SAP-MM module) for planning of spares, issuing of material etc. The data available in the SAP system helps the company to review its maintenance policy at the company level.

P13 (a): Enterprise resource planning application is likely to be used in the company to integrated maintenance management activities with material management activities.

P13 (b): Enterprise resource planning application is likely to be used to implement the maintenance strategies & formulate maintenance policies at company level.

It is evident from the empirical data that manufacturing/production capabilities of the company are getting enhanced by integrating maintenance strategy companywide. For example, all gas processing plants of the large gas utility company are grouped and uniformity maintained in maintenance activities, production targets, MOU targets, internal norms, etc. Similar common processes/norms are available in the company for petrochemicals, NG pipelines and LPG pipelines. Such kind of companywide integration helps the company to enhance its production capabilities.

P14: The manufacturing/ production capabilities of the large gas utility company enhances by integrating maintenance strategies companywide.

6.6 CROSS CASE FINDINGS INTERMS OF RESERACH QUESTIONS

The cross case study findings are summarised in terms of research questions and presented below:-

Findings related to CRQ: How the gas utility company is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as petrochemicals & pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment?

Maintenance strategies & maintenance practices of the gas utility company are based on the activities in the areas of categories such as performance measures/benchmarking, planning & execution, materials management, employee organisation/HR, empowerment, information technology, maintenance policies, maintenance budgeting systems, reliability in maintenance, and maintenance challenges. Further, maintenance strategies selection process of the company involve the following major activities (i) maintenance strategies selection based on previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity, equipment availability, process severity, and complexity of the process, (ii) specific maintenance strategies pertaining to NG Pipelines/Petrochemicals, and (iii) internal & industry norms.

The large gas utility company in India is planning & executing its maintenance strategies majorly based on: overall company's maintenance policy guidelines, MOU/ IMOU targets, maintenance challenges faced by maintenance managers/engineers such as ageing of assets, dependency on OEM, and contract issues. Specific maintenance strategies are selected in the gas utility company majorly based on: OEM (Original Equipment Manufacturer) recommendations, standard industry practices and past experience of maintenance managers.

Findings related to additional RQ1:- What are the common and different maintenance strategies & practices to both the business verticals (and) how the maintenance strategy & practices differ with the specific assets available

in one operation process/plant/pipeline network from others business verticals?

In both business verticals such as NG Pipelines & petrochemicals, the maintenance methods in practices are preventive maintenance, predictive maintenance, emergency/breakdown maintenance. Predictive Maintenance is more used compare to preventive maintenance in NG Pipelines than petrochemicals. Emergency maintenance is very rare in NG Pipeline where in Petrochemicals the same is minimized by various maintenance tactics. Shutdown maintenance is very crucial & plays an important role in petrochemicals. Maintenance techniques used are also very specific to systems in NG Pipelines & Petrochemicals. For example cathodic protection, intelligent pigging, helicopter patrolling, etc. are the specific maintenance strategies used in NG Pipelines. However, shutdown maintenance is the specific maintenance strategy in Petrochemicals. Also, proactive maintenance is the new maintenance tactic emerged out from the case study of petrochemicals and the same is not being practiced in NG Pipelines. Proactive maintenance is based on experience of maintenance managers/engineers. Maintenance challenges are different in petrochemicals & NG Pipelines. Standardisation of maintenance practices is the major maintenance challenge in Petrochemicals. However, natural disaster & sabotage of pipelines are the major maintenance challenges in NG Pipelines.

Findings related to additional RQ2:- How the reliability of the operation process/equipment/assets is ensured by the maintenance strategy used for the particular operation process/equipment/assets?

Reliability Centred Maintenance (RCM) technique is not being practiced in the large gas utility company. Therefore, the RCM metrics such as MTBF, Value Risk Study are not being used in maintenance. To take care of reliability of maintenance, the methods being practiced in the company that is Root Cause Analysis of maintenance failure & Incident Analysis Report (IAR).

Findings related to additional RQ3: What are the benchmarks being used in petrochemicals/ NG pipelines? What is extent of achievement of benchmark parameters in practices?

Benchmark report (2002) is available but it is not being practiced fully in the company. From the documentary evidence, it is found that one parameter maintenance cost is benchmarked i.e., 0.83 % of Gross Block (Inflation Adjusted). MOU targets are being treated as benchmarks by the maintenance managers since the company is market leader in NG Pipelines. Maintenance performance is assessed through Internal Audits & External Audits.

Benchmarks parameters related to maintenance performance are being used in the company are very few. Most of the parameters are operational parameters which are derived from MOU targets. Comparison of benchmark was done with *Benchmark metrics (John S Mitchell, 2002)*. From the comparison, it is found that the gas utility company is not using most of the maintenance benchmark practices in practice. Detailed cross case findings on benchmarking in maintenance are discussed in next section.

6.6.1 Bench marking in Maintenance - Cross Case Findings

Further to understand the existing practices of benchmarking of the gas utility company, it is evident benchmarks are being used in both the business verticals petrochemicals & NG pipelines of the large gas utility company. However, few maintenance managers feel that the company is the market leader in the NG Pipeline, therefore whatever achieving in their business can be claimed as benchmarks. "Internal norms are based on MOU & IMOU targets which are defined by ministry & corporate management. GAIL is a market leader in gas industry therefore, GAIL's operating parameters itself can be taken as benchmarks which are comparable to global benchmarks" – Senior Manager (Mechanical). Another view is the company could achieve 99 percentage pipelines availability therefore, no benchmarking is required. "The bench mark for NG pipeline is availability of pipeline must be 99.9 %. GAIL

is always achieving this target. Therefore, bench marks may be taken as parameters which come from MOU targets" – Manager (Pipeline O & M). However, industry practices of benchmarking have been studied for comparison of existing maintenance practices of the large gas utility company. The details are discussed in subsequent paragraphs thoroughly.

Benchmarking is an evolutionary process. The types of benchmarking are internal benchmarking, similar Industry/Competitive industry benchmarking, and best practices benchmarking (Wireman, 2002). Internal benchmarking involves different departments or processes within a plant/company. The greatest disadvantage of internal benchmarking is that it is unlikely to result in any major breakthrough in improvements. Nevertheless, internal benchmarking will lead to small, incremental improvements and should provide adequate return on investment (ROI) for any improvements that are implemented. Similar industry or competitive benchmarking uses external partners in similar industries or processes. In competitive benchmarking, small or incremental improvements are noted, but paradigms for competitive businesses are similar. Thus, the improvement process will be slow.

Best practice benchmarking focuses on finding the unarguable leader in the process being benchmarked. This search, which crosses industry sectors and geographical locations, provides the opportunity for developing breakthrough strategies for a particular industry. The organisation studies business processes outside its industry, adapts or adopts superior business processes, and makes a quantum leap in performance compared to its competitors. Being the early adaptor or adopter will give the organisation an opportunity to lower costs or aggressively capture market share.

Best Practice benchmarking focuses on finding the unarguable leader in the process being benchmarked. This search, which crosses industry sectors and geographical locations, provides the opportunity for developing breakthrough strategies for a particular industry. The organisation studies business processes outside its industry, adapts or adopts superior business processes, and makes a

quantum leap in performance compared to its competitors. Being the early adaptor or adopter will give the organisation an opportunity to lower costs or aggressively capture market share.

John S Mitchell et.al (2002) discussed benchmark parameters for maintenance in their book. The same is as shown in the below given Table 6.6. These metrics are based on the data collected from various industries. These metrics may vary from industry to industry and with time.

Table 6.6- Benchmark Metrics (John S Mitchell, 2002) for Maintenance & Comparison with GAIL's Metrics

Category	Metrics	Benchmark	GAIL's Metrics
Yearly	Total Maintenance Cost/	< 10-15 %	0.83% of Gross
Maintenance Costs	Total Manufacturing		Block (Inflation
	Cost		Adjusted)
	Maintenance Cost/	< 3 %	No metric is
	Replacement Asset		available
	Value of the plant or		
	equipment		
Hourly Maintenance	e workers as a % of Total	15 %	No metric is
			available
Planned	Planned Maintenance /	>85 %	No metric is
Maintenance	Total Maintenance		available
	Planned and Scheduled	85% - 95%	No metric is
	maintenance as a % of		available
	Hours Worked		
Unplanned Down Ti	me	0 %	No metric is
			available
Reactive Maintenan	ce	< 15%	No metric is
			available
Run-To-Fail (Emerg	gency + Non-Emergency)	< 10%	No metric is
			available
Maintenance	Maintenance Overtime/	< 5%	No metric is
Overtime	Company's total		available
	overtime		
Monthly	Work orders Reworked /	0 %	No metric is
maintenance	Total Work orders		available

Rework			
Inventory Turns	Turns Ration of Spare	>2-3	No metric is
	Parts		available
Training	For at least 90% of	>80 hrs./year	Training Policy is
	workers, hrs./year		available 2 days
			training/ per
			employee/per year
			to cover all the
			employees
	Spending on worker	4%	2%
	training (% of payroll)		
Safety Performance	OSHA recordable	<2	Yes available
	injuries per 200,000		
	labour hours		
	House keeping	96%	No metric is
			available
Monthly	PM= Total PM Hours /	20%	No metric is
Maintenance	Total Maintenance Hours		available
Strategies	Available		
	PDM/CBM = Total PDM	50%	No metric is
	Hours / Total		available
	Maintenance Hours		
	Available		
	PRM = Total PRM	20%	No metric is
	Hours / Total		available
	Maintenance Hours		
	Available		
	REM= Total REM Hours	2%	No metric is
	/ Total Maintenance		available
	Hours Available		
	RNEM = Total RNEM	8%	No metric is
	Hours / Total		available
	Maintenance Hours		
	Available		
Plant Availability	Available Time/	>97%	Metric is available
	Maximum Available		for NG pipelines
	Time		availability is 99%
			& for
			Petrochemicals
			plant availability is
			95%
Contactor's Cost	Contractor's Cost/ Total	35-64 %	No metric is
	Maintenance Cost		available

In addition to the above comparison, one more comparison with industry benchmarks is also presented below. While some metrics are easier to quantify than others, below table (Table 6.7) provide guidelines for tracking and trending metrics against industry benchmarks (NASA 2000).

Table 6.7- Benchmark Metrics (NASA, 2000) for Maintenance & Comparison with GAIL's Metrics of both the Case Studies 1 & 2

Metric	Variables	Benchmark	GAIL's	NG	Petrochemicals
	and		Metrics	Pipelines	(Case Study 2)
	Equation			(Case	
				Study 1)	
Equipment	% = [Hours	> 95%	% Availability =	> 99%	> 95%
Availability	each unit is		[Total hours -		
(%)	available to		(Planned &		
	run at		Unplanned		
	capacity /		Down Time)] x		
	Total hours		100		
	during the		Total Hours		
	reporting				
	time period				
]				
Schedule	% = [Total	> 90%	No metric is	-	-
Compliance	hours		available		
(%)	worked on				
	scheduled				
	jobs/ Total				
	hours				
	scheduled]				
Emergency	% = [Total	< 10%	No metric is	-	-
Maintenance	hours		available		
Percentage	worked on				
	emergency				
	jobs /Total				
	hours				
	worked]				
Maintenance	% = [Total	< 5%	No metric is	-	-
Overtime	maintenance		available		
Percentage	overtime				

	during				
	period/				
	Total				
	regular				
	maintenance				
	hour during				
	period]				
Preventive	% =	> 90%	No metric is	-	-
Maintenance	[Preventive		available		
Completion	maintenance				
Percentage	actions				
	completed				
	/Preventive				
	maintenance				
	actions				
	scheduled]				
Preventive	% =	15% – 18%	No metric is	-	-
Maintenance	[Preventive		available		
Budget/Cost	maintenance				
	cost /Total				
	maintenance				
	cost]				
Predictive	% =	10% – 12%	No metric is	-	-
Maintenance	[Predictive		available		
Budget/Cost	maintenance				
	cost /Total				
	maintenance				
	cost]				

Based on above data, it is clearly understood that gas utility company is not using various benchmark metrics which are being used by various industries. Even though, all the maintenance strategies highlighted in the metrics are being practiced by the company, these practices are not being measured in formal way.

6.7 CONCLUDING REMARKS

This chapter presented and discussed the cross-case analysis of Petrochemicals and Natural Gas Pipeline of large gas utility company cases. Similarities and dissimilarities between these two case studies have been discussed in detail.

The findings from the two cases were compared for maintenance strategies & maintenance practices, maintenance strategies selection processes, and relationship between the factors contributing to maintenance strategies & maintenance practices and maintenance strategies selection processes. All the initial conceptual constructs related to maintenance strategies & maintenance practices from literature were found to present in both the case studies NG Pipelines and Petrochemicals. Even all the sub constructs from literature are also common to both the case studies. Inference were drawn from the cross case comparisons and these inferences were converted into propositions. A total of 14 propositions have been developed.

Next chapter summarises the research findings and provides conclusions of this research study.

CHAPTER 7 CONCLUSIONS

7.1 INTRODUCTION

This chapter summarises the findings and results of this research study. The contributions of this research to theory and management practice are discussed in detail in this chapter. First, the theoretical framework is revisited covering all qualitative associative networks for maintenance strategies & maintenance practices, maintenance strategies selection processes, and the relationship between these processes & maintenance strategies (Section 7.2). Next emergent categories of activities are described (Section 7.3) along with the detailed contributions to theory and practice (Section 7.4 & 7.5). This chapter concludes with a discussion on the limitations of this research and the scope for future research (Section 7.6 & 7.7).

7.2 REVISITING THEORETICAL FRAMEWORK

Chapter two describes the theoretical framework developed for maintenance strategies & maintenance practices. Initial conceptual constructs and subconstructs for maintenance strategies & maintenance practices are discussed in section 2.6. Maintenance strategies selection processes are discussed in section 2.5.3 & 2.5.5. Further, relationship between maintenance strategies selection and maintenance strategies & practices are discussed through various maintenance strategy models/frameworks in section 2.5.7. This section

presents the updated conceptual framework by incorporating the findings of the research for maintenance strategies selection processes and maintenance strategies & practices.

7.2.1 Maintenance Strategies and Maintenance Practices

As shown in Table 7.1, earlier literature discussed nine conceptual constructs which forms the basis for maintenance strategies & maintenance practices (Section 2.6). These constructs were expected to be found in the maintenance strategies & maintenance practices of the large gas utility company. Ten categories have been found from the empirical data in this research study which includes the new category emerged out i.e., Maintenance Challenges. A list of all the categories found from empirical data is as given under:-

- 1. Maintenance Tactics
- 2. Reliability Analysis
- 3. Performance measures/Benchmarking
- 4. Planning & Scheduling
- 5. Organisation/ Human Resources
- 6. Materials Management
- 7. Employee Empowerment
- 8. Information Technology
- 9. Maintenance Policies/ Budget
- 10. Maintenance Challenges

Table 7.1 Categories contributing to Maintenance Strategies & Maintenance Practices

Initial	Sub-constructs	Categories	Sub-categories emerged
conceptual	identified in LR	emerged out	out from this study
construct		from this	
identified in LR		study	
	Predictive Maintenance/		Predictive Maintenance/
Maintenance	Condition Based	Maintenance	Condition Based
Tactics	Maintenance (CBM)	Tactics	Maintenance (CBM)
	Preventive Maintenance /		Preventive Maintenance /

	Time Based Maintenance		Time Based Maintenance
	(TBM)		(TBM)
	Total maintenance hours	1	Ratio between Predictive
	devoted to Predictive		Maintenance / Preventive
	Maintenance / Preventive		Maintenance
	Maintenance		
	Compliance of PM	-	PM Schedules
	Schedules		completion
	OEM (Original	-	OEM (Original
	Equipment Manufacturer)		Equipment Manufacturer)
	Recommendations		Recommendations
	Reliability Based	-	No evidences for use of
	Maintenance (RBM)		RBM
	Total Productive	-	No evidences for use of
	Maintenance (TPM)		TPM
	Emergency/breakdown	-	Emergency Maintenance
	Maintenance		
	Nil	-	Shutdown Maintenance
	Nil		Proactive Maintenance
Reliability	Documentation of	Reliability	Documentation of
Reliability Analysis	Documentation of Equipment History	Reliability Analysis	Documentation of Equipment History
_			
_	Equipment History		Equipment History
_	Equipment History Equipment Criticality		Equipment History Equipment Criticality
_	Equipment History Equipment Criticality Root Cause Analysis		Equipment History Equipment Criticality Root Cause Analysis
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA)		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA)
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF)		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few basic metrics. However,
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few basic metrics. However, reliability statistics are
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of equipment/assets		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few basic metrics. However, reliability statistics are not being practiced.
_	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of equipment/assets		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few basic metrics. However, reliability statistics are not being practiced. No evidences found in
-	Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) Mean Time Between Failures (MTBF) Value Risk Study of maintenance program Reliability statistics of equipment/assets Reliability Centred Maintenance (RCM)		Equipment History Equipment Criticality Root Cause Analysis (RCA)/Incident Analysis (IA) No evidences found regarding use of this metric MTBF No evidences found in this study regarding value risk study Evidences found regarding use of few basic metrics. However, reliability statistics are not being practiced. No evidences found in this study regarding use

Measures/		Measures/	regarding use of Labour
Benchmarking		Benchmarking	cost/Material cost for
J			maintenance performance
			measurement
	Maintenance Performance		External/ Internal Audits
	Measures		
	Key Performance		MOU Targets
	Indicators (KPI)		
	Downtime Records		Downtime Records
	Training man hours of		Training man hours of
	maintenance staff		maintenance staff
	Internal Norms &		Internal Norms &
	Industry Norms		Industry Norms
	Benchmarking measures		No evidences found
	& targets		regarding benchmarks
Planning &	Plant Equipment Register	Planning &	Plant Equipment Register
Scheduling	Standard written work	Scheduling	Standard written work
	order		order
	Availability of PM		Availability of PM
	Schedules		Schedules
	Priorities of work order		Priorities of work order
	Availability of Work		Availability of Work
	schedule for a week ahead		schedule for a week
			ahead
	Shutdown Maintenance		Shutdown Maintenance
	Schedule		Schedule
	Measurement of work		Measurement of work
	backlog		backlog
	Long Term Plans to		Long Term Plans to
	forecast major		forecast major
	shutdown/maintenance		shutdown/maintenance
	work		work
Materials	Spares availability	Materials	Spares availability
Management	Identified spares	Management	Identified spares
	Inventory analysis		Inventory analysis
	Emergency purchase of		Emergency purchase of
	spares		spares
	Average Inventory		Average Inventory
	Turnover		Turnover
	Availability of Stores		Availability of Stores
	Inventory control through		Inventory control
	computerised system		through computerised
			system

	Integration of Inventory		Integration of Inventory
	Control with maintenance		Control with maintenance
	planning		planning
Organisation/	Maintenance staff level	Organisation/	Maintenance staff level
Human	Maintenance organisation	Human	Maintenance organisation
Resources	Responsibility of first line	Resources	Responsibility of first line
	supervisors		supervisors
	Adequacy of support staff		Adequacy of support staff
	Regular Technical		Regular Technical
	training		training
	Apprenticeship program		Apprenticeship program
	Deployment of		Deployment of
	Contractors		Contractors
Employee	Multi-skilled Trade	Employee	Multi-skilled Trade
Empowerment	People	Empowerment	People
•	Operators Based		Operators Based
	Maintenance		Maintenance
	Regular discussion with		Regular discussion with
	the staff by supervisors		the staff by supervisors
	Self-directed work teams		Self-directed work teams
	Minor modifications done		Minor modifications done
	by maintenance teams		by maintenance teams
	Partnership with key		Partnership with key
	suppliers/contractors		suppliers/contractors
Information	Availability of	Information	Availability of
Technology	computerised system for	Technology	computerised system for
	maintenance management		maintenance management
	Availability of		Availability of
	computerised system for		computerised system for
	materials management		materials management
	Integration of		Integration of
	maintenance management		maintenance management
	& materials management		& materials management
	modules		modules
	Scheduling of major		Scheduling of major
	Shutdown using project		Shutdown using project
	management system		management system
	CBM supported with		CBM supported with
	automated programs for		automated programs for
	data analysis		data analysis
	Expert systems for		Expert systems for
	diagnosis		diagnosis
Maintenance	Maintenance mission &	Maintenance	Maintenance mission &

Policies/	objectives	Policies/	objectives
Maintenance	Long term maintenance	Maintenance	Long term maintenance
Budget	plans integrated with	Budget	plans integrated with
	business plans		business plans
	Maintenance Policies		Maintenance Policies
	Maintenance budget		Maintenance budget

As shown in above Table 7.1, two new sub-categories have also been emerged out from this research study. They are,

- 1. Shutdown Maintenance
- 2. Proactive Maintenance

These two types of maintenance tactics play a vital role in maintenance strategies selection & maintenance practices of the large gas utility company.

Further, this research uncovered the above categories related to maintenance strategies & maintenance practices planning and execution in detail. Figures (Figure 7.1 & 7.2) below show the all-inclusive qualitative associative networks for both the case studies such as NG Pipelines and Petrochemicals. Even though, all most all of the categories & sub-categories emerged out from empirical data are matching in both the case studies, the extent of maintenance practices related to these categories & sub-categories are different in both these cases.

Major differences lie in the cases of NG Pipelines & Petrochemicals are (i) maintenance challenges and (ii) specific maintenance strategies for a particular equipment/ process used in maintenance strategies selection process. It is clearly evident from the empirical findings that these two factors have large impact in maintenance strategies and practices planning & execution in the gas utility company. The reasons behind are as given under:-

Maintenance Challenges are specific to the type of environment the business is operating. For example, in NG Pipelines maintenance, involvement of various stakeholders is quite evident from the study but this is not the case in

petrochemicals wherein stakeholders involvement comparatively less and manageable. Therefore, maintenance strategies have to be formulated and selected accordingly. No maintenance related theory is clearly explaining about such kind of maintenance challenges. Presently these maintenance challenges are being handled by maintenance managers based on their previous experiences but they need to be documented and standardisation can be done; Maintenance strategies are equipment oriented (or) process oriented, therefore maintenance strategies are either recommended by Original Equipment Manufacturer (OEM) or by the process licensor. Maintenance managers are required to implement such strategies as recommended by the manufacturer or licensor and deviations can be taken by doing thorough analysis of equipment data with the justifying reasons for delay in maintenance schedules.

As shown in Table 7.1, earlier literature on performance measures covers labour and material cost, breakdown records, maintenance performance measures, key performance indicators, downtime records, training man hours of maintenance staff, internal norms/industry norms, benchmarking measures & targets. The key findings based empirical data analysis are, MOU targets of the large gas utility company are treated as key performance indicators; no separate metrics are used for maintenance performance measures in the company, external/internal audits are used to measure maintenance performance compliances indicated maintenance as bv the managers/engineers.

As per Table 7.1, earlier literature identified planning & execution activities cover plant equipment register, standard written work order, availability of PM schedules, priorities of work order, availability of work schedule for a week ahead, shutdown maintenance schedule, measurement of work backlog, long term plans to forecast major shutdown/maintenance work as part of it. The large gas utility company is using all these elements in their maintenance planning & execution and these activities are integrated through enterprise resource planning software.

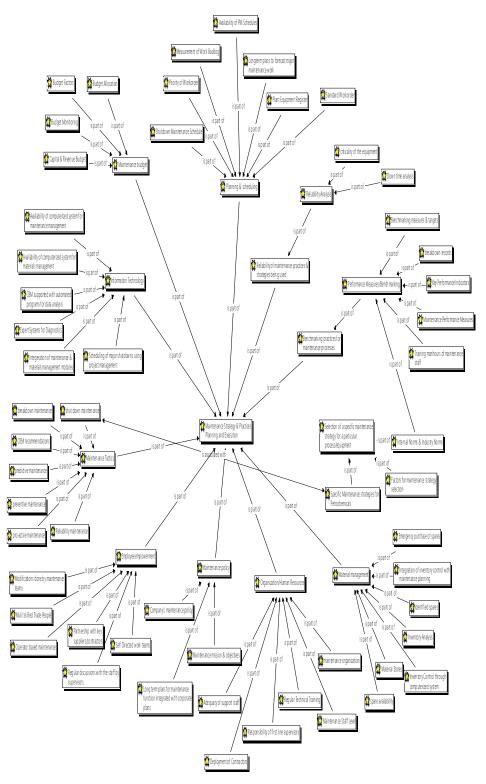


Figure 7.1 NG Pipelines Maintenance Strategies and Practices Planning & Execution

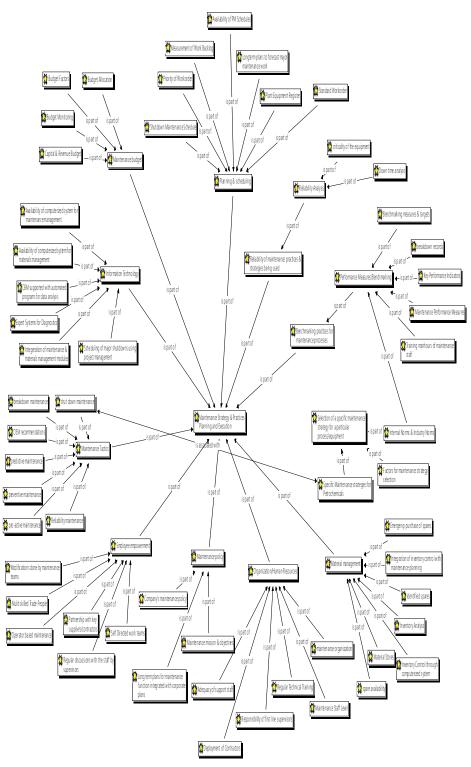


Figure 7.2 Petrochemicals Maintenance Strategies and Practices Planning & Execution

As per Table 7.1, earlier literature on materials management cover spares availability, identified spares, inventory analysis, emergency purchase of spares, average inventory turnover, availability of stores, inventory control through computerised system, and integration of inventory control with maintenance planning. All these activities related to materials management are integrated through enterprise resource planning software application in the gas utility company. As indicated by the maintenance managers/engineers, it is found that the annual inventory turnover concept is not being practiced in the company.

As per Table 7.1, earlier literature identified organisation/human resources to cover the elements such as maintenance staff level, maintenance organisation, responsibility of first line supervisors and adequacy of support staff, regular technical training, apprenticeship program, and deployment of contractors. This research found these elements are well integrated with the maintenance strategies & maintenance practices processes in the company. The findings are well-structured training system & maintenance organisation and systematic interventions are available for interaction with first line supervisors & contractors in the company.

As per Table 7.1, earlier literature on employee empowerment covers the aspects of multi skilled trade people; operators based maintenance, regular discussion with the staff by supervisors, self-directed work teams, minor modifications done by maintenance teams, and partnership with key suppliers/contractors. The key findings in this research study are maintenance personnel are multi skilled; operator based maintenance are not completely adopted in the company; interactions among the maintenance personnel and also with suppliers/contractors are through structured daily/weekly/monthly meeting among the operations & maintenance groups; modifications are carried out through "change management" system in the gas utility company.

As per Table 7.1, earlier literature identified information technology construct to cover the sub constructs such as availability of computerised system for maintenance management, availability of computerised system for materials management, integration of maintenance management & materials management modules, scheduling of major shutdown using project management system, CBM supported with automated programs for data analysis, and Expert systems for diagnosis. This research study could find evidences to all these elements of information technology. The key findings from empirical data are maintenance management & material management activities are well integrated through enterprise resource planning software application; maintenance managers/engineers are maintaining long term/shut down planning schedules; CBM monitoring are supported with the expert systems like DCS, SCADA, Vibration monitoring system, etc.; Expert diagnostics systems are specific to NG Pipelines/Petrochemicals.

As per Table 7.1, earlier literature on maintenance polices and maintenance budget covers maintenance mission & objectives, long term maintenance plans integrated with business plans, maintenance policies, and maintenance budget. This research study could provide evidences for all these elements related to maintenance policies and maintenance budget. The key findings of this research study are business plans are integrated with unit level, individual level plans through MOU/IMOU targets; well written maintenance policy, maintenance mission/objectives are available with the large gas utility company; structured budgeting system is also available and maintenance managers are practicing religiously.

As per Table 7.1, earlier literature on maintenance tactics has identified the sub constructs such as use of Condition Based Maintenance (CBM)/ Predictive Maintenance, Condition Based Maintenance is favoured over Time Based Maintenance (TBM), total maintenance hours devoted to Predictive Maintenance/ Preventive Maintenance, compliance of PM Schedules, OEM (Original Equipment Manufacturer) Recommendations for an equipment regarding PM, use of formal Reliability Based Maintenance (RBM), and use of Total Productive Maintenance (TPM). The key findings of this research study are CBM & TBM methods are majorly used in the large gas utility

company and these methods and they play critical role in selection of maintenance strategies in the gas utility company; OEM recommendations are used for selection of maintenance strategies for a particular equipment/process; TPM & RBM maintenance methods are not being used in the gas utility company as indicated by the maintenance managers/engineers.

As per Table 7.1, earlier literature on reliability analysis covers documentation of equipment history, equipment criticality, Root Cause Analysis (RCA)/Incident Analysis (IA), Mean Time Between Failures (MTBF), Value Risk Study of maintenance program, reliability statistics of equipment/assets, and Reliability Centred Maintenance (RCM) based analysis in this category. The key finding of this research study is that no element of reliability analysis is being practices in the company except RCA/IA in identifying root cause problem of plant/ equipment failure. However, maintenance managers/engineers show their wish for implementation of reliability based maintenance.

7.2.2 MAINTENANCE STRATEGIES SELECTION PROCESSES

As per Table 7.2, earlier literature discussed two types of maintenance strategies selection processes, which were expected to be found in the large gas utility company (Section 2.5.3 & 2.5.6). They are,

- 1. Mathematical modelling which treats maintenance strategies selection as Multi Criteria Decision Problem (MCDM). This problem is solved with the techniques AHP, Fuzzy AHP, VIKOR, etc.
- Maintenance optimisation models to choose right mix of maintenance strategies such as Preventive Maintenance, Predictive Maintenance, RCM, etc. using Decision Support Systems (DSS)/ Plant Maintenance Decision Support Systems (PMDSS).

This research study could not find evidences of using above mathematical models for maintenance strategies selection in the large gas utility company. The key finding is that the maintenance managers/engineers did not share any

such use of mathematical models in maintenance strategies selection during interview and further during site visits also the researcher could not find any evidences of using such models.

However, empirical data show that how maintenance managers/engineers are selecting maintenance strategies in the gas utility company. The key findings are summarised in Table 7.2.

Table 7.2 Maintenance Strategies Selection Processes

Literature review	Empirical data analysis	Key inferences
outcomes on maintenance	outcomes on maintenance	
strategies selection	strategies selection	
processes	processes	
Selection of maintenance	Factors contributing to	Mathematical modelling
strategies is the selection	maintenance strategies	is not used in the gas
among the maintenance	selection are previous	utility company for
approaches such as TBM,	experience of maintenance	selection of maintenance
CBM, etc.; Selection of	managers, criticality of the	strategies; maintenance
maintenance strategies is	system/equipment, OEM	strategies selection
treated by authors' as	recommendations,	process is based on few
Multiple Criteria Decision	maintenance policy,	criteria which is of
Making (MCDM) problem.	equipment complexity,	qualitative nature and
The same was solved with	equipment availability,	depends on the previous
the techniques AHP,	process severity, and	experience of
FAHP, VIKOR, etc.	complexity of the process	maintenance
		managers/engineers.
Maintenance Decision	Specific maintenance	MDSS is not being
Support System (MDSS)	strategies being used in NG	practiced in the company;
models prove that the	Pipelines are intelligent	Specific maintenance
implementation of suitable	pigging, integrity	strategies are used based
maintenance methodology	management system,	on OEM
helps in improving	Cathodic Protection,	recommendations,
maintenance function &	Vibration monitoring system,	applicable national/
optimise the operational/	Stand-by equipment strategy,	international standards,
maintenance costs;	Helicopter Patrolling, Line	and guidelines from
Reliability assessment, risk	walk, Cleaning Pigging; in	PNGRB, OISD, etc.
levels and failure	petrochemicals shutdown	
management in	maintenance strategy is used	
maintenance can be	majorly; Gas utility company	

effectively handled with the is following industry norms help of models using tools such as standards of OISD, PNGRB, etc. and internal such as fuzzy Bayesian methods, fuzzy modelling, norms are such as sharing Analytical Hierarchy maintenance problems among Processing etc. work centres and maintain SAP system so that all data can be accessed by all work centres across the country. These norms help the company to implement uniform maintenance strategy selection process across the work centres in the country

7.2.3 Relationship between Maintenance Strategies Selection Process and Maintenance Strategies & Maintenance Practices

The relationship between maintenance strategies selection process and maintenance strategies & maintenance practices are explained through various maintenance strategies related models in Chapter 2 (Section 2.7). The basic frameworks of these models are discussed and the model developed based on empirical data of this research study is presented in this section.

Maintenance strategy depends on various maintenance policy sectors & practices which consist of system elements such as asset management support, performance and strategy audits, etc. & organisation elements such as people development, planning etc. (McAlister et al., 1999). Maintenance strategy supports translation of business objectives into maintenance objectives so that formulation of maintenance strategy can be done effectively. The factors contributing to maintenance strategy formulation are life plan, preventive schedule, resources, work planning system, administrative structure, and maintenance control (Kelly, 2006). The key elements for maintenance strategies and practices are strategy alignment, performance indicators for maintenance performance, target action plan along with time frames (Salonen, 2011).

Maintenance management framework must include system design aspects such as maintenance philosophies & production control systems, planning & control aspects such as maintenance objectives, resources & performance reporting and managerial tool kit such as failure modelling techniques & computer support (Pintelon & Gelders, 2002). Key elements related to maintenance strategies & maintenance practices are such as maintenance measure of effectiveness, work control, maintenance organisation. management information system, personnel records, logistic support, maintenance tasks & maintenance engineering (Eti et al., 2006). Alignment of corporate strategy with the maintenance strategy is the key element in formulating the maintenance strategy. The leading performance indicators related to maintenance strategies selection are work execution; scheduling, planning & work identification and lagging performance indicators are performance targets, benchmarks, maintenance results like equipment performance & maintenance cost (Muchiri et al., 2011). Main focus on maintenance management is still on the tactical and operation planning. Bridging the gap between business strategy and maintenance strategy is the key challenge in maintenance (Pintelon & Parodi, 2008). Maintenance strategic planning are based on nine functions such as identification of major stakeholders, formulation mission statement, setting of the strategic objectives of maintenance, analysis of the current situation, identification of the strategic issues, strategic options, strategy selection, development of performance measures, and implementation planning (Umar, 2011).

This research study could find evidences from empirical data to the various functions described in the above models and it could find the relationships among these functions which describe holistically the maintenance strategies & maintenance practices planning and execution at an organisation level as discussed in cross case analysis chapter 6 (Section 6.4). Based on these inferences, the key functions identified from empirical data in the process of maintenance strategies & maintenance practices are maintenance strategy formulation, maintenance strategy selection, implementation of maintenance

strategies, e-maintenance impact in maintenance, development of maintenance models for maintenance strategies selection, specific maintenance strategies for a particular process/equipment, companywide integration of maintenance strategies, alignment of business strategies with maintenance strategies.

Categories contributing to maintenance strategies & maintenance practices such as maintenance tactics, reliability analysis, performance measures/ benchmarking, materials management, employee empowerment, organisation/ HR, planning & scheduling, information technology, maintenance policies/ budget, maintenance challenges from the empirical data of both the case studies and key functions identified such as maintenance strategy formulation, selection of maintenance strategies, implementation of maintenance strategies, e-maintenance from the empirical data of both the case studies were used as a template for comparing and generalizing the empirical results of the two case studies NG Pipelines and Petrochemicals. Multiple cases studies help to build a logical chain of evidence (Yin 1994; Miles & Huberman, 1994). In other words, cross case analysis is used to identify a chain of evidence for the relationships studied on the basis of the framework.

A model for maintenance strategies & maintenance practices planning and execution is proposed in this research study. The model is as shown in Figure 7.3

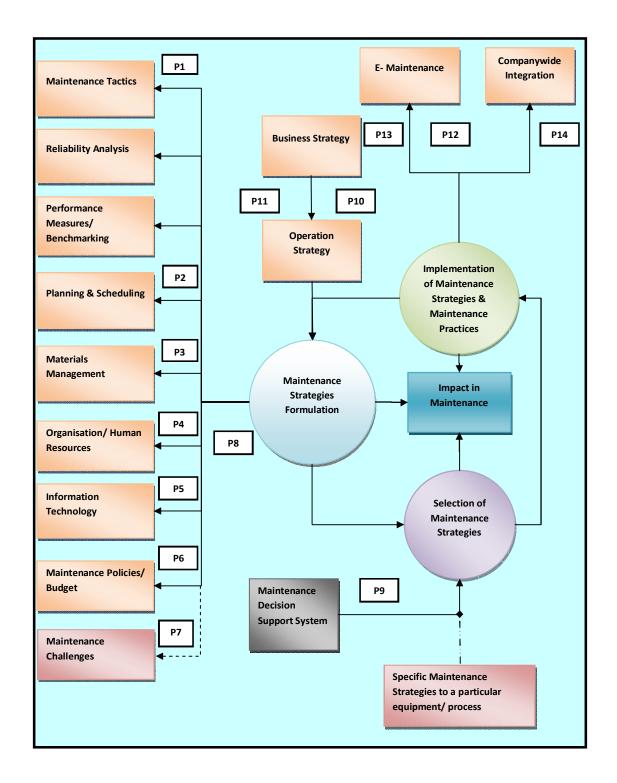


Figure 7.3 – Model for Maintenance Strategies & Maintenance Practices Planning & Execution

As shown in above Figure 7.3, maintenance strategies formulation, selection of maintenance strategies, and implementation of maintenance strategies/ maintenance practices are interlinked processes. All these processes are impacting maintenance planning & execution in an organisation. The contributing factors to these processes are the activities related to the functions such as performance measures, planning & scheduling, materials management, human resources, information technology, employee empowerment, maintenance tactics, reliability analysis, maintenance policies/maintenance budget, and maintenance challenges. Maintenance strategies selection process is based on two functions such as development of Maintenance Decision Support System (MDSS) suitable to an organisational requirement and execution of specific maintenance strategies for a particular process/equipment as recommended by equipment manufacturer or process licensor. Maintenance strategy related processes such as formulation, selection, and implementation & maintenance practices must be aligned with the business strategies and operational strategies of an organisation. Implementation of maintenance strategies & maintenance practices is followed by the formulation of maintenance strategies and selection of proper mix of maintenance strategies suitable to the process/equipment/operations. Effective implementation of maintenance strategies can be achieved by using latest e-maintenance tools, techniques, and software applications. Further, companywide integration of maintenance practices will help the organisation to implement the maintenance strategies efficiently. Total 14 propositions have been developed from cross case analysis and these propositions are incorporated in the model sequentially. This model could describe the processes of maintenance strategies & maintenance practices planning and execution at an organisation level.

7.3 FINDINGS SUMMARY INTERMS OF RESEARCH QUESTIONS

As a means to fulfil the objectives of this research study, the research questions are formulated. The findings summary for these research questions are presented below.

7.3.1 Planning & Execution of Maintenance Strategies & Maintenance Practices

CRQ: How the gas utility company is planning and executing its maintenance strategy & practices to ensure smooth operation process in the company's business verticals such as petrochemicals & pipeline systems (NG transmission) and why the specific maintenance strategy has been selected for a particular operation process/equipment?

The gas utility company is planning and executing its maintenance strategies & practices based on the processes such as maintenance strategies formulation, selection of maintenance strategies, and implementation of maintenance strategies. Formulation of maintenance strategies is based on the company's well-defined maintenance policies & maintenance objectives. Maintenance targets are basically based on production targets which are derived from the corporate MOU targets. The major maintenance tactics being used by the gas utility company are Preventive Maintenance, Predictive Maintenance, Shutdown Maintenance, and Emergency Maintenance. The gas utility company maintenance managers indicated the linkages of the maintenance strategy related processes with the functions such as information technology, HR, planning & scheduling, materials management, reliability analysis, and performance measures. The activities of these functions are being leveraged & integrated using advanced software applications to performance maintenance in order to ensure smooth operation in the company.

Further, maintenance strategies selection process of the company involve the following major activities (i) maintenance strategies selection based on previous experience of maintenance managers, criticality of the system/equipment, OEM recommendations, maintenance policy guidelines, equipment complexity, equipment availability, process severity, and complexity of the process, (ii) specific maintenance strategies pertaining to NG Pipelines/Petrochemicals, and (iii) internal & industry norms.

Maintenance managers/engineers of the gas utility company have raised their concerns regarding maintenance challenges. Presently, these challenges are being managed by previous experience of managers/engineers on case to case basis. The factors contributing to maintenance challenges in both the business verticals can be documented & standardised as indicated by the maintenance manager/engineer to improve maintenance strategies & maintenance practices in the organisation.

The gas utility company religiously following specific maintenance strategies pertaining to particular equipment/ process as recommended by equipment manufacturer or licensor. However, it is not using the maintenance methods such as Reliability Centred Maintenance and Total Productive Maintenance. Further, maintenance performance are not based on industry benchmarked maintenance parameters, it is based on internal/external audits performance by Subject Matter Experts and other external agencies such as OISD, PNGRB, etc.

Therefore, it can be concluded that the gas utility company is having set of procedures & polices in maintenance function for planning & execution of maintenance strategies and maintenance practices. Since the gas utility company is the public sector company, maintenance strategy related processes are having impact from Indian industry norms set by Government agencies such as OISD, PNGRB, etc. Presently, the company is not following few

industry best practices such as Reliability Centred Maintenance, Benchmarking, Maintenance Decision Support System, etc.

7.3.2 Common and Different Maintenance Strategies & Maintenance Practices in the large Gas Utility Company

RQ1: What are the common and different maintenance strategies & practices to both the business verticals (and) how the maintenance strategy & practices differ with the specific assets available in one operation process/plant/pipeline network from others business verticals?

From the data analysis as shown in Figure 7.1 & Figure 7.2, the maintenance strategies formulation, selection and implementation are based on the ten categories identified from the empirical findings. However, depends on the nature of process and type of equipment the degree of maintenance varies in both petrochemicals and NG pipelines. For example, shutdown maintenance is the major maintenance strategy used in petrochemicals and it is not the case in NG Pipelines. Preventive Maintenance is more in petrochemicals. But, in NG Pipeline predictive maintenance is more. Both the business verticals are using similar enterprise resource planning system SAP for integrating its maintenance activities with the functions materials management, maintenance management and human resources.

Maintenance techniques used are specific to process/equipment in NG Pipelines & Petrochemicals. For example, cathodic protection, intelligent pigging, helicopter patrolling, etc. are the specific maintenance strategies used in NG Pipelines. However, shutdown maintenance is the specific maintenance strategy in Petrochemicals. Also, proactive maintenance is the new maintenance tactic emerged out from the case study of petrochemicals and the same is not being practiced in NG Pipelines. Proactive maintenance is based on experience of maintenance managers/engineers. Maintenance challenges are different in petrochemicals & NG Pipelines. Standardisation of maintenance practices is the major maintenance challenge in Petrochemicals.

However, natural disaster & sabotage of pipelines are the major maintenance challenges in NG Pipelines.

Therefore, it can be concluded that even empirical data analysis of both the business verticals are emerging out with the similar processes related to maintenance strategies & maintenance practices in the gas utility company, the extent of use of maintenance strategies are vary with the process/equipment/plant. Maintenance practices are also different in NG Pipelines & Petrochemicals.

7.3.3 Reliability in Maintenance

RQ2: How the reliability of the operation process/ equipment/ assets is ensured by the maintenance strategy used for the particular operation process/ equipment/ assets?

Reliability in maintenance performance is the ultimate objective of the right selection of maintenance strategy. Reliability is the one among the factors which plays crucial role in maintenance strategy formulation and selection as evident from the literature review. A qualitative associative network is developed for reliability from interview data and the same is presented and discussed in section 4.3.8 and section 5.3.8. From the empirical data, it is evident that the company is not using any reliability metrics in assessing maintenance performance and it is also not following the Reliability Centred Maintenance (RCM). Presently, reliability of the equipment is fairly depending on the maintenance execution based on previous experiences of maintenance managers. However, OEM recommendations are being implemented in equipment maintenance in order to ensure the equipment's reliability and maintenance managers are keen in implementation of RCM method.

7.3.4 Maintenance Benchmarking

RQ3: What are the benchmarks being used in petrochemicals/NG pipelines? What is extent of achievement of benchmark parameters in practices?

A qualitative associative network is developed for reliability from interview data and the same is presented and discussed in section 4.3.1 and section 5.3.1. It is evident from empirical data that the company is not following any benchmarks for measuring the maintenance performance. However, maintenance performance is being monitored indirectly from the operational targets such as MOU targets, IMOU targets. Since the company is market leader in the industry, few maintenance managers are of the opinion that the targets what they are achieving like 99% availability of pipeline and 95% availability of petrochemicals can be taken as benchmarks. Detailed study on gaps between maintenance strategies & maintenance practices and benchmarks in maintenance was carried out and presented in section 6.5.1. The result of this study shows that the industry maintenance benchmarks in maintenance are not being followed by the large gas utility company.

7.4 SIGNIFICANCE OF THE FINDINGS

This section discusses the significance of the findings of this research. Contributions of this research study to theory, methodology and practice are very important. Maintenance strategy related processes are discussed in literature such as formulation of maintenance strategies (McAlister, 1999; Waeyenbergh & Pintelon, 2002; Cooke, 2003), maintenance strategies selection (Bevilacqua & Braglia, 2000; Murthy, Atrens, & Eccleston, 2002; Bertolini & Bravilacqua, 2005), implementation of maintenance strategies (Pinjala, Pintelon, & Vereecke, 2006; Veldman, Klingenberg, & Wortmann, 2011), and maintenance practices (Swanson, 1997). However, these frameworks are not discussing all the maintenance strategy related processes in a holistic manner and also not incorporating the tacit & implicit knowledge

available with maintenance managers/engineers based on existing practices at an organisation level in operations intensive industry like natural gas industry.

Therefore, in the area of maintenance management, there has been a need to understand and describe the maintenance strategies formulation, selection, implementation, and maintenance practices based on the existing maintenance practices at an organisation level in operations intensive industry like natural gas industry. Especially in an Indian context of the industry, this kind of study could contribute much to the industry. Accordingly, this research fills the gap by developing the multilevel framework which provides thick description of all the processes related to maintenance strategies & maintenance practices planning and execution in an organisation.

Selection of maintenance strategies is treated as Multiple Criteria Decision Making (MCDM) problem and this problem is solved with the mathematical techniques such as AHP, Fuzzy AHP, VIKOR etc. as identified in literature (Dekker, 1996; Bevilacqua & Braglia, 2000; Kodali & Chandra, 2001; Murthy, Atrens, & Eccleston, 2002; Bertolini & Bravilacqua, 2005; Li, Ambani, & Ni, 2009). This study found that the maintenance managers/engineers are not using such mathematical techniques for maintenance strategy selection. Selection of maintenance strategy is based on the factors such as industry norms, specific maintenance methods recommended by equipment manufacturer or process licensor, and previous experiences of maintenance managers/engineers. Standardisation of these factors contributes to the theory of maintenance management.

This research study brought out the significance findings for the large gas utility company in the Indian gas industry to manage maintenance activities more efficiently & effectively in order to operate the process/equipment smoothly. These findings will help maintenance managers/engineers to streamline processes of maintenance strategies & maintenance practices in the company. The findings are as given under:-

- Company's maintenance strategy processes can be assessed with the categories emerged out from empirical data in this research study through survey.
- Reliability maintenance concepts are not being used by the company except root cause analysis/incident analysis report. Maintenance managers are of the opinion that these concepts are to be used for improving maintenance performances. Therefore, RCM can be implemented in the company.
- Maintenance executives of the company have not spoken about the use
 of Total Productive Maintenance (TPM). Either they are not aware of
 this maintenance method or not using the same. The possibility of
 implementation of TPM may also be explored by maintenance team of
 the company.
- Benchmarking measures are not being used by the company. Not much data is available with the company. However, they use primarily MOU targets as performance measures. Since company is market leader as a gas utility company, maintenance managers of the company feels that their present operating conditions are benchmark. So far, the company is achieving all the MOU targets successfully. The company can go for benchmarking of maintenance for both the business verticals such as NG Pipelines & Petrochemicals.
- Maintenance challenges as described by the maintenance manages/ engineers influence the maintenance practices and also affect the maintenance strategy processes. Therefore, company has to give due priority to these issues and effective system is to be developed to mitigate these maintenance challenges and further there is a need to optimise the maintenance function.
- Proactive Maintenance is the new type of maintenance tactics emerging out from this study. There is a need to work more on this maintenance tactic and apply in practice.

7.4.1 Theoretical Contributions

This research study shows that simple and non-resource demanding processes may be used in formulation & selection of maintenance strategies which can be aligned to overall strategic goals of the company. This process is based on a set of Ten (10) factors that the company regards strategically important for their maintenance.

One new type of factor contributing to maintenance strategies selection & maintenance practices emerged from the data such as Maintenance Challenges. Apart from this, two types of maintenance tactics are also emerged out from the empirical data such as Shutdown maintenance and Proactive maintenance. Both of these maintenance tactics are very crucial for maintenance strategies formulation, selection, and implementation & maintenance practices at an organisation level. Further, a process model for maintenance strategies & maintenance practices planning and execution has been developed. This research study provides rich description to the theory of maintenance strategies & practices in maintenance management at an organisation level in the operations intensive industry like gas industry and in general also.

7.4.2 Practical Contributions: Implication for Managers

The scope of this research work was well appreciated by the maintenance managers/engineers in the large gas utility company in India. There is a growing demand among the maintenance managers/engineers that there is a large improvement potential within their maintenance programs at an organisation level. Even though maintenance managers/engineers are aware about potential improvements required for betterment of maintenance performance, it could be inferred from the research study that the maintenance practices are not having strategic perspectives of maintenance management. The conducted research study could provide guidelines to assess the existing maintenance strategies & maintenance practices based on the factors and

processes emerged out in this study at an organisation level. Further, this study could also suggest set of maintenance guidelines & parameters for maintenance strategy formulation, selection, implementation, and maintenance practices. Therefore, this study would help the maintenance managers to benchmark the maintenance practices in their organisation and their teams to understand the maintenance strategies development. This research study also found evidences to formalise & improve the maintenance strategy adapted since importance attached to industry/ operation/ equipment specific maintenance strategies in both NG Pipelines & Petrochemicals.

7.5 LIMITATIONS

The conclusions offered in this research are based on an in-depth study of the large gas utility company in India. The conclusions are derived by applying a qualitative interpretive approach as research methodology in this study. It is often considered as subjective and having limited generalizability (Klein and Myers, 1999). The relationship between maintenance strategies selection process and maintenance strategies & maintenance practices developed in this research are based to a large extent on the perception of interviewees, which may be subjective. To reduce the subjectivity of interview of data, evidences were also collected from internal & external documentation and observations in the case studies as suggested by Yin (2003) and Eisenhardt (1989). These evidences are considered to be more objective sources.

7.6 SCOPE FOR FUTURE RESEARCH

The results of this research study provide an insight into the processes of maintenance strategies & maintenance practices of the large gas utility company in India. A number of topics can be suggested for a future research.

• Further studies can design and conduct surveys across operations intensive industries to test the propositions developed in this research.

- There is a need to explore the relative strength of relationships between maintenance strategies selection processes and maintenance strategies & maintenance practices.
- Further studies using qualitative research approach can explore other countries / other industries / other types of business verticals
- Further studies can develop Quantitative Associative Networks, which might further enhance the understanding of maintenance strategies & maintenance practices

Researcher feels that it is worth mentioning few literature gaps related to maintenance strategy formulation and selection which could be identified from the in-depth literature review so that further research can be carried out in the area of maintenance strategies selection. The literature gaps are as given under:-

- Study on integration of real time condition monitoring methods into development of maintenance strategies so that achieving maximum availability of equipment/operations can be carried out.
- Inclusion of human model in Maintenance Decision Support
 System (MDSS) for making more accurate decisions in
 selection of optimal maintenance strategy is not done.
 Therefore, human model based study might able to capture
 efficiency of maintenance manpower in terms efficient
 implementation of maintenance strategy.
- Further study on Decision Support Systems (DSS) for maintenance can include the recent developments in their models such as sustainability, bottleneck resources, restoration cost, etc.
- Not much research work is available on e-maintenance implementation to integrate various approaches of condition based monitoring and development of comprehensive model for failure management in maintenance.

- Case studies that epitomise maintenance strategy implementation and further verify the relation between maintenance and manufacturing capabilities are not available.
- Study on impact of training and resources in maintenance strategies selection & maintenance practices in an industry/ organisation can provide value addition to maintenance management.

REFERENCES

- Aaltonen, P., & Ikavalko, H. (2002). Implementing strategies successfully in integrated manufacturing systems. *Journal of Integrated Manufacturing Systems*, *13*(6), 415-418.
- Abardeen, G. (2006). Collaborative Asset Maintenance Strategies. Abardeen.
- Ahmadi, A., Gupta, S., Karim, R., & Kumar, U. (2010). Selection of maintenance strategy for aircraft systems using multi-criteria decision making methodologies. *International Journal of Reliability, Quality & Safety Engineering*, 17(3), 223-243.
- Ahuja, I. P., & Khambha, J. S. (2008). Strategies and success factors for overcoming challenges in TPM implementation in Indian manufacturing industry. *Journal of Quality in Maintenance Engineering*, *14*(2), 123-147.
- Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development. *Journal of Management Informantion System, 8*(4), 45-62.
- Al-Najjar, B. (1999). Economic Criteria to select a cost-effective maintenance policy.

 **Journal of Quality in Maintenance Engineering, 5(3), 236-247.
- Al-Najjar, B., & Alsyouf, I. (2004). Enhancing a company's profitability and competitiveness using integrated vibration-based maintenance: A case study. *European Journal of Operations Research*, *15*(7), 643-657.
- Al-Najjar, B., Alsyouf, I., Salgado, E., Khosaba, S., & Faaborg, K. (2001). *Economic importance of maintenance planning when using vibration-based maintenance policy*.
- Alsyouf, I. (2007). The role of maintenance in improving companies productivity and profitability. *International Journal of Production Economics*, *105*(1), 70-78.
- Alsyouf, I. (2009). Maintenance practices in Swedish industries: Survey results.

 *International Journal of Production Economics, 12(1), 212-223.
- Al-Turki, U. (2011). A framework for strategic planning in maintenance. *Journal of Quality in Maintenance Engineering*, 17(2), 150-162.
- Andersen, B., & Fagerhaug, T. (2002). *Performance Measurement Explained.*Milwaukee, Wisconsin: ASQ Quality Press.

- Angelica, A. M., & Jose Luis, D. R. (2014). Establishment of a maintenance plan based on quantative analysis in the context of RCM in a JIT Production Scenario.

 *International Journal of Reliability & System Safety, 127(1), 21-29.
- Ashayeri, J., Teelen, A., & Selen, W. (1996). A production and maintenance planning model for the process industry. *International Journal of Production Research*, *34*, 3311-3326.
- Ayadi, Y., Chaib, R., & Verzea, I. (2014). Contribution to the Optimization of Strategy of Maintenance by Lean Six Sigma,. *8th International Conference on Material Sciences, CSM-ISM5, Physics procedia, Elsevier, 55*(1), 512-518.
- Backlund, F., & Akersten, P. A. (2003). RCM introduction: process and requirement management aspects. *Journal of Quality in Maintenance Engineering, 9*(3), 250-264.
- Bell, E., & Bryman, A. (2007). The ethics of management research: An exploratory content analysis. *British Journal of Management*, 18(1), 63-77.
- Ben-daya, M., & Duffua, S. O. (1995). Maintenance and quality: the missing link.

 **Journal of Quality in Maintenance Engineering, 1(1), 20-26.
- Bennett, D. (2006). *Operations Management*. SAGE Publication Limited.
- Berger, P., & Luckmann, T. (1967). *The social construction of reality: a treatise in the sociology of knowledge.* London: Penguin Publishers.
- Bertolini, M., & Bevilacqua, M. (2005). A combined goal programming AHP approach to maintenance selection Problem. *Reliability Engineering & System Safety*, *91*(7), 839-848.
- Bevilacqua, M., & Braglia, M. (2000). Fuzzy modelling and analytical hierarchy processing as a means of quantifying risk levels associated with failure modes in production systems. *Journal of Technology, Law and Insurance, 5*, 125-135.
- Brown, S. (1996). Strategic manufacturing for competitive advantage: Transforming

 Operation from shop floor to Strategy, Prentice Hall, Hertfordshire.
- Campbell, J. D., & Reyes-Picknell, J. V. (2006). *Uptime: Strategies for Excellence in Maintenance Management, 2nd Edition, New York: Productive Press.*
- Campbell, J. D., Jardine, A., Marshall, K. S., & Decker, A. G. (2001). *Maintenance*excellence: optimising equipment lifecycle decisions. Eastern Hemisphere
 Distribution.

- Carnero, M. C. (2006). An evaluation system of the setting up of predictive maintenance programmes. *Reliablity Engineering & system Safety- Elsevier, 91*(1), 945-963.
- Carnero, M. C. (2014). Multi-criteria model for maintenance benchmarking. *Journal of Manufacturing Systems*, *33*(2), 303-321.
- Charles, A. S., & Alan, C. B. (2005). Asset life cycle management: Towards improving physical asset performance in the process industry. *International Journal of Operations & Production Management*, *25*(6), 566-579.
- Charmaz, K. (2006). *Constructing grounded theory: a practical guide through qualitative analysis.* London: SAGE Publications.
- Chitra. (2003). Life based maintenance policy for minimum cost. *Reliability and Maintainablity Symposium* (pp. 470-474). Conference Publication.
- Chris, K. M., & Wang, Z. (2001). Using fuzzy linguistics to select optimum & condition based strategies. *International Journal of Mechanical Systems & Signal Processing*, *15*(6), 1129-1140.
- Cooke, F. L. (2003). Plant maintenance strategy: evidence from four British manufacturing firms. *Journal of Quality in Maintenance Engineering*, *9*(3), 239-249.
- Crespo, M. A. (2005). Modeling critical failures maintenance: a case study for mining. *Journal of Quality in Maintenance Engineering, 11*(4), 301-317.
- Crespo, M. A., & Gupta, J. N. (2005). Contemporary maintenance management: process, framework and supporting pillars. *The International Journal of Management Science*, *34*(1), 313-326.
- Creswell, J. (2003). *Research Design:Qualitative, Quantitative, Mixed Methods Approaches.* California: SAGE Publication.
- Creswell, J. (2007). *Qualitative Inquiry & Research Design: Design: Choosing among five Approaches*. California: 2nd Edition SAGE Publication.
- David, O., & Shahram, T. (1993). Preventive maintenance in a multiple shift and high volume manufacturing operation. *International Journal of Operations & Production Management*, *13*(10), 76-83.
- Dekker, R. (1996). Applications of maintenance optimization models: A review and analysis. *Reliability Engineering and System Safety*, *52*(3), 229-240.
- Denzin, N. K., & Lincoln, Y. S. (2005). *Handbook of Qualitative Research* (3 ed.). Thousand Oaks: SAGE Publications.

- Dhillon, B. S. (2002). *Engineering Maintenance: A modern Approach.* CRC Press.
- Duffuaa, S., Al-Ghamdi, A. H., & Al-Amer, A. (2002). *Quality function deployment in maintenance work planning process.* The 6th Saudi Engineering Conference, KFUPM, Dhahran.
- Eisenhardt, K. (1989). Building Theories from Case Study Research. *Acadmey of Management Review*, *14*(4), 532-550.
- Elliot, B., & Tobias, S. (2005). ERP system and implementation process benefits:

 Implication for B2B e-procurement. *International Journal of Operations & Production Management, 25*(4), 304-319.
- Eti, M. C., Ogaji, S. O., & Probert, S. D. (2006). Development and implementaion of preventive maintenance practices in Nigerian industries. *Journal on Applied Energy*, *83*(3), 1163-1179.
- Eti, M. C., Ogaji, S. O., & Probert, S. D. (2006). Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability- focused culture.

 Journal of Applied Energy, 83, 1235-1248.
- Eti, M. C., Ogaji, S. O., & Probert, S. D. (2006). Strategic maintenance management in Nigerian Industries. *Journal on Applied Energy, 83*(3), 211-227.
- Fenema, P. C. (2002). *Coordination and control of globally distributed software*.

 Rotterdam: Erasmus Research Institute of Management, Erasmus University.
- GAIL. (2002). Benchmark Report. Delhi: GAIL India Limited.
- GAIL. (2014). Shutdown Report-GPU. GAIL (India) Limited.
- Gallimore, K. F., & Penlesky, J. R. (1988). A framework for developing maintenance strategies. *Production and Inventory Management Journal, 29*(1), 16-22.
- Garg, A., & Deshmukh, S. G. (2006). Maintenance management: literature review and directions. *Journal of Quality in Maintenance Engineering*, *12*(3), 205-238.
- Gits, C. W. (1994). Structuring maintenance control systems. *International Journal of Operations & Production Management*, *14*(7), 5-17.
- Glaser, B., & Strauss, A. (1967). *The discovery of grounded theory: strategies for qualitative research.* Chicago: IL, Aldine.
- Gokiene, R. (2010). Marginal break even between maintenance strategies alternatives. *International Journal of Engineering Economics*, *21*(2), 136-141.
- Grall, A. D. (2002). Continuos-time predictive-maintenance scheduling for deteriorating system. *IEEE Transactions on Reliability*, *51*, 141-150.

- Guba, E. G., & Lincoln, Y. S. (2005). *Paradigmatic controversies, contradictions, and emerging influences.* CA: SAGE Publications.
- Gummesson, E. (2000). *Qualitative Methods in Management Research, Second Edition*. London: SAGE Publications.
- Hansson, J., Backlund, F., & Lycke, L. (2003). Managing Commitment: Increasing the odds for successful implementation of TQM, TPM, or RCM. *International Journal of Quality & Reliability Management*, *20*(9), 993-1008.
- Hayes, R. H., Gary, P. P., David, M. U., & Wheelwright, S. C. (2014). *Operational, Strategy, and Technology: Pursuing the Competitive Edge.* Harvard Publications.
- Henriques, I., & Sardorsky, P. (1999). The Relationship between environment commitment and managerial perception of stakeholder importance.

 **Academy of Management Journal, 42(1), 87-99.
- Hughes, J., & Jones, S. (2003). *Reflections on the use of grounded theory in interpretive*. Naples, Italy: ECIS.
- Ilangkumaran, M., & Kumaran, S. (2012). Application of hybrid VIKOR model in selection of maintenance strategy. *International Journal of Information*Systems and Supply Chain Management, 5(2), 59-81.
- ISO-14224. (2006). Petroleum, petrochemical and natural gas industries Collection and exchange of reliability and maintenance data for equipment. ISO Standard.
- Jafari, A., Jafarian, Z. M., & Zaerpour, F. A. (2008). Using fuzzy delphi method in maintenance strategy selection problem. *Journal of Uncertain Systems*, 2(4), 289-298.
- Jain, A., Bhatti, R., & Singh, H. (2014). Total Productive Maintenance (TPM) implementation practice: A literature review and directions. *International Journal of Lean Six Sigma*, 5(3), 293-323.
- Jardine, A. K., & Tsang, H. C. (2005). *Maintenance Replacement and Reliability*. CRC Press.
- Jay, L., Jun, N., Dragan, D., Hai, Q., & Haito, L. (2006). Intelligent prognostics tools and e-maintenance. *Journal of Computers in Industry, 57*(6), 476-489.
- Jayabalan, V., & Chaudhuri, D. (1992). Sequential preventive maintenance policies: A case study, Micro electron. *Reliability Journal*, *32*(9), 1223-1229.

- Jin, Z., Li, L., & Ni, J. (2009). Option model for joint production and preventive maintenance system. *Interantional Journal of Production Economics, 119*, 347-353.
- Jinqiu, H., & Laibin, Z. (2014). Risk based opportunistic maintenance model for complex mechanical systems. *International Journal of Expert Systems with Applications*, *41*(6), 3105-3115.
- John, S. O., & Amrik, S. (1989). The education, training and careers of production managers in British industry. *International Journal of Operations & Production Management*, 9(8), 63-90.
- Joseph, M. A. (1996). *Qualitative Research Design: an Interactive Approach.*California: SAGE Publications.
- Karim, R., & Parida, A. (2010). e-Maintenance Readiness of Swedish Process

 Industry: A Case study. *International Journal of Condition Monitoring and Diagnostic Engineering management*, 1363-7681.
- Kelly, A. (1993). *Uses and limits of total productive maintenance,*. Professional Engineering.
- Kelly, A. (1997). *Maintenance Strategy Business Centred Maintenance*. Butterworth & Heinemann.
- Kelly, A. (2006). *Strategic Maintenance Planning*. Oxford.
- Ketokivi, M., & Jokinen, M. (2006). Strategy, uncertainty and the focused factory in international process manufacturing. *Journal of Operations Management*, 24, 250-270.
- Knezevic, J. (1994). Determination of Operations/Production Downtime for Group Replacement Maintenance Policy. *International Journal of Operations & Production, 14*(7), 18-26.
- Knowles, J. G., & Cole, A. L. (2008). *Handbook of arts in qualitative research.* CA: SAGE.
- Kodali, R., & Chandra, S. (2001). Analytical hierarchy process for justification of total productive maintenance. *Production Planning & Control ISSN 0953-7287,* 12(7), 695-705.
- Kutucuoglu, K. H. (2001). A framework for managing maintenance using performance measurement systems. *International Journal of Operations & Productions Management*, *21*(1/2), 173-195.

- Li, L., Ambani, S., & Ni, J. (2009). Plant level-maintenance decision support system for throughput improvement. *International Journal of Production Research*, *47*(4), 7047-7061.
- Ling, W., Jian, C., & Wang, J. (2006). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. *International Journal of Production*, *107*(1), 151-163.
- Liptrot, D., & Palarchio, G. (2000). Utilizing advanced maintenance practices and information technology to achieve maximum equipment reliability. *Journal of Quality & Reliability Management*, 17(8), 919-928.
- Liu, Y., Li, Y. F., Huang, H. Z., Zuo, M. J., & Sun, Z. (2010). Optimal preventive maintenance policy under fuzzy Bayesian reliability assessment environments. *IIE Transactions*, *42*(1), 734-745.
- Liyanage, J. P., & Kumar, U. (2003). Towards a value-based view on operations and maintenance performance management. *Journal of Quality in Maintenance Engineering*, *9*(4), 333-350.
- Locke, K. (2001). *Grounded theory in management research* . London: SAGE Publications.
- Mahdi, B., Hossein, B., & Taha, H. H. (2010). Selecting optimum maintenance strategy by fuzzy interactive linear assignment method. *Applied Mathematical Modelling*, *35*(1), 152-164.
- Marcello, B., Davide, C., & Marco, F. (2013). An integer linear programming approach to maintenance strategies selection. *International Journal of Quality & Reliability Management, 30*(9), 991-1016.
- Marchi, M., & Garetti, M. (2006). Information requirements for e-maintenance strategic planning- A bench mark study in complex production system.

 **Journal of Computers in Industry, 57, 581-594.
- Maxwell, J. (1996). *Qualitative research design: an interactive approach.* California, US: SAGE Publications.
- Maxwell, J. A., & Loomis, D. M. (2003). *Mixed method design: an alternative approach Handbook of mixed methods in social & Behavirol research.*Thousands Oaks: SAGE Publications.
- Mc-Allister, K., Armstrong, J., & Wilson, A. (1999). Asset maintenance management, a guide to developing strategy and improving performance. Surrey:

 Conference Communication.

- McKone, K. E., & Elliot, N. W. (1998). TPM: planned and autonomous maintenance bridging the gap between practice and research. *Journal of Production and Operations Management*, **7**(4), 335-349.
- Michael, V., Kwasi, A. G., & Jack, R. M. (2000). An eveluation of maintenance policies for flexible manufacturing systems: A cas study. *International journal of Operations & production Management, 20*(4), 409-426.
- Miles, M. B., & Huberman, A. M. (1994). *Qualitative Data Analysis: An Expanded Source book, 2nd Ed.* Newbury Park, CA.: SAGE Publications.
- Mobley, R. K. (2002). *An introduction to predictive maintenance*. Butterworth-Heinemann.
- Mobley, R. K. (2008). *Maintenance Engineering Hand book.* McGraw Hill.
- MoF. (2014). *Union Budget, India*. Retrieved from Indian Budget, India: http://indianbudget.nic.in
- Mokashi, A. J., Wang, J., & Vermar, A. K. (2002). A study of reliability centred maintenance in maritime operations. *Journal on Marine Policy*, *26*(5), 325-335.
- Moubray, J. (1997). *Reliability-centred Maintenance, Second edition*. New York: Industrial Press Inc.
- Muchiri, P. N., Pintelon, L., Martin, H., Anne, M., & De, M. (2010). Empirical analysis of maintenance performance measurement in Belgian industries.

 *International Journal of Production Research, 48(20), 5905-5924.
- Muchiri, P., Pintelon, L., Gelders, L., & Martin, H. (2011). Development of maintenance function perfromance measurement framework and indicators. *International journal Production Economics*, *13*(1), 295-302.
- Muller, A., Crespo, M. A., & Lung, B. (2007). On the concept of e-maintenance: review and current research. *Reliability Engineering & System Safety Elsevier*, *93*(1), 1162-1187.
- Murthy, D. N., Atrens, A., & Eccleston, J. A. (2002). Strategic maintenance management. *Journal of Quality in Maintenance Engineering*, 8(4), 287-305.
- Myers, M. (2013). *Qualitative Research in Business & Management, Second Edition*. London: SAGE Publications.
- Myers, M. D. (1997). Qualitative Research in Information Systems. *MIS Quarterly*, **22**(2), 241-242.

- Nguyen, D. Q., Brammer, C., & Bagajewicz, M. (2008). New tool for the evaluation of the scheduling of preventive maintenance for chemical process plants. *Industrial Chemical Engineering Resolution*, 24, 191-1924.
- Nima, S., Dragan, B., & Jardine, K. S. (2010). Impact of the use-based maintenance policy on the performance of cellular manufacturing systems. *International Journal of Production Research*, *48*(8), 2233-2260.
- Noemi, M. P., & William, L. (1994). Maintenance scheduling: Issues, results and research needs. *International Journal of Operations & Production Management*, *14*(8), 47-69.
- Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organisations: Research approaches and assumptions. *Journal of Information Systems Research*, 1-28.
- Palvia, P., Mao, E., Salam, A. F., & Soliman, K. S. (2003). Management information system research: what's there in a methodology. *Communication of the Association of Information system*, *11*(1), 289-309.
- Parida, A. (2007). Role of condition monitoring and performance measurement in asset productivity enhancement. *19th International Congress COMADEM*, (pp. 525-531). Porto, Portugal.
- Parida, A., & Chattopadhyay, G. (2007). Development of multi-criteria hierarchial framework for Maintenance Performance Measurement (MPM). *Journal of Quality in Maintenance Engineering*, *13*(3), 241-258.
- Parida, A., & Uday, K. (2009). Maintenance performance Measurement -methods,

 Tools and Application. *Journal of Maintenance World, 1*(1), 50-53.
- Patel, R., & Davidson, B. (2003). *The research methodology's bases- to plan, to implement and report a survey.* Lund: Student Literature.
- Patrik, J. (1999). Company-wide integration of strategic maintenance: An empirical analysis. *International Journal of Production Economics*, *61*, 155-164.
- Patrik, J., & Magnus, L. (1999). Evaluation and improvement of manufacturing performance measurements systems-the role of OEE. *International Journal of Operations & Production Management*, 19(1), 55-78.
- Patton, M. (1990). *Qualitative evaluation and research methods.* New Bury Park, CA: SAGE Publications.
- Pettigrew, A. (1997). What is processual analysis. *Scandinavian Journal Management*, *3*(4), 337-348.

- Phillip, T., & Ramin, K. (2014). Enhancing the usability of maintenance data management systems. *Journal of Quality in Maintenance Engineering*, *20*(3), 290-303.
- Pinjala, S. K. (2008). *Dynamics of Maintenance Strategy*. Belgium.
- Pinjala, S. K., Pintelon, L., & Verreecke, A. (2006). An empirical investigation on the relationship between business and maintenance strategies. *International Journal of Production Economics*, *104*(1), 214-229.
- Pintelon, L. M., & Gelders, L. F. (1992). Maintenance management decision making. *European Journal of Operational Research*, *58*(3), 301-317.
- Pintelon, L. M., & Parodi-Herz, A. (2008). *Maintenance: An Evolutionary Perspective, complex system maintenance handbook.* Springer.
- Pintelon, L., Gelders, L., & VanPuyvelde, F. (2000). *Maintnenance Management,*Second edition. Acco Belgium: Leuven.
- Pintelon, M., & Van, W. L. (1990). A Maintenance Management tool. Omega.
- Pophaley, M., & Vyas, R. K. (2010). Optimizing maintenance managment efforts by the application of TOC:A Case study. *IUP Journal of Operations Management, 9*(3), 1-14.
- Rainbow, P., & Sullivan, W. M. (1979). *Interpretive Social Science: A Reader,**Berkeley:. California: CA, Press.
- Rao, B. K. (2009). Advances in diagnostic & prognostic strategies and technologies for failure free maintenance of industrial assets. *Condition Monitoring and Diagnostics Engineering Management* (pp. 17-36). San Sebastian, Spain: COMADEM 22nd International Conference.
- Raouf, A., Ali, Z., & Duffuaa, S. O. (1993). Evaluating a computerized maintenance management system. *International Journal of Operations & Production Management*, *13*(3), 38-48.
- Richard, C. C., & Murdock, W. P. (2001). Selective maintenance for support equipment involving multiple maintenance actions. *European Journal of Operational Research*, 129(2), 252-258.
- Ritchie, J., & Lewis, J. (. (2003). *Qualitative Research Practice*. London: SAGE Publication.
- Rolando, Q., Mark, T. L., Villalobos, J. R., & Graul, M. (2009). Corrective maintenance through dynamic work allocation and Pre-emption: case study and

- Application. *International Journal of Production Research*, **47**(13), 3539-3557.
- Rosqvist, T., Laakso, K., & Reunanen, M. (2007). Value-driven maintenance planning for a production plant. *Reliability Engineering and System Safety, 9*(4), 97-110.
- Rossman, G. B., & Rallis, S. F. (1998). *Learing in the field: an introduction to quantative research.* Thousand Oaks, CA: SAGE Publications.
- Rossman, G. B., & Wilson, B. L. (1985). Numbers and words: combining quantitative and qualitative methods in a single large scale evaluation study. *Evaluation Review*, *9*(5), 627-643.
- Ryan, G. W., & Bernard, H. (2000). Data management and analysis methods. In N. K. Denzin, & Y. S. Lincoln, *Handbook of Qualitative Research* (pp. 769-802).

 Thousand Oaks, CA: SAGE Publications.
- Salonen, A. (2011). Strategic maintenance improvement: Driving forces and obstacles. *5th World Congress on Engineering Asset Management*. Brisbane.
- Salonen, A., & Deleryd, M. (2011). Cost of poor maintenance A concept for maintenance improvement. *Journal of Quality Maintenance Engineering,* 17(1), 63-73.
- Sami, E., & Ben-daya, M. (2010). Integrated maintenance production model under age-based maintenance policy & non-negligible maintenance times. *Asia pacific Journal of Operations Research*, *27*(4), 539-558.
- Saunders, M., Lewis, P., & Thorhill, A. (2007). *Research Methods for Business Students*, (4 ed.). England: Prentice Hall.
- Schramm, W. (1971). *Notes on case studies for instructional media projects, working*paper for Academy of Eductional Development. Washington, DC.
- Seth, D., & Tripathi, D. (2006). A critical study of TQM and TPM approaches on business performance of Indian manufacturing industry. *Total Quality Management Journal*, *17*(7), 811-824.
- Sherwin, D. (2000). A review of overall models for maintenance management.

 **Journal of Quality in Maintenance Engineering, 6(3), 138-164.
- Simeu-Abazi, Z., & Sassine, C. (2001). Maintenance Integration in Manufacturing Systems: From the Modelling Tool to Evaluation. *International Journal of Flexible Manufacturing Systems*, *33*(9), 267-285.

- Simoes, J. M., Gomes, C. F., & Yasin, M. M. (2011). A literture review of mainteance performance measurement: A conceptual framework and directions for future research. *Journal of Quality in Maintenance Engineering*, *17*(2), 116-137.
- Singh, H., Motwani, J., & Kumar, A. (2000). A review and analysis of the state-of-theart research on productivity measurement. *Industrial Management and Data System, 100*(5), 234-241.
- Smith, A. (1993). Reliability centred Maintenance . McGraw Hill.
- Sohrab, K. S., Hossain, S., Jamshid, N., & Mahmood, A. (2013). Operations strategy and business strategy alignment model (case of Iranian industries).

 International Journal of Operations & Production Management, 33(9), 1108-1130.
- Spens, K. M., & Kovacs, G. (2006). A content analysis of research approaches in logistics research. *International Journal of Physical Distribution & Logistics Management*, *36*(5), 374-390.
- Strauss, A. L., & Corbin, J. M. (1990). *Basics of qualitative research: grounded theory,* procedures and techniques. Newbury Park, CA: SAGE Publications.
- Swanson, L. (1997). An empirical study of the relationship between production technology and maintenance management. *International Journal of Production Economics*, *5*(3), 191-207.
- Swanson, L. (2001). Linking maintenance strategies to performance. *International Jouranl of Production Economics*, *70*, 237-244.
- Swanson, L. (2003). An information processing model of maintenance management. *International Journal of Production Economics*, 83(1), 45-64.
- Taylor, B., Kermode, S., & Roberts, K. (2007). *Research in Nursing and Health Care: Evidence for Practice 3rd Edition.* Sydney: Thomson.
- Tsang, A. H., Jardine, A. K., & Kolodny, H. (1999). Measuring maintenance performance: a holistic approach. *International Journal of Operations & Production Management*, *19*(7), 691-715.
- Tsang, E. W. (1997). Organisational learning and the learning organisation: a dichotomy between descriptive and prescriptive research. *Human Relations*, 50(1), 73-89.
- Umar, A. (2011). A framework for strategic planning in maintenance. *Journal of Quality in Maintenance Engineering*, *17*(2), 150-162.

- Veldman, J., Klingenberg, W., & Wortmann, H. (2011). Managing condition-based maintenance technology: A mulitple case study in the process industry.

 **Journal of Quality in Maintenance Engineering, 17(1), 40-62.
- Verma, A. K., & Suresh, P. G. (2007). Multi- objective initial PM Scheduling for large engineering plants. *International Journal of Reliability, Quality & Safety Engineering*, 14(3), 241-250.
- Visser, W. J., & Pretorius, M. (2003). The development of a performance measurement system for maintenance. *SA Journal of Industrial Engineering*, *14*(1), 83-98.
- Vollmann, T. E., Berry, W. L., Whybark, D. C., & Jacobs, F. R. (2005). *Manufacturing planning and control for supply chain management, 5th Edition.* New York:

 McGraw-Hill.
- Waeyenbergh, G., & Pinetelon, L. (2002). A framewrok for mainteance concept development. *International Journal of Production Economics*, 77(3), 299-313.
- Waeyenbergh, G., & Pintelon, L. (2004). Maintenance concept development: A case study. *International Journal of Production Economics*, 8(9), 394-405.
- Walsham, G. (1995). Interpretive case studies in IS research: nature and method.

 European Journal on Information System, 4(1), 74-81.
- Wang, H. (2001). A survey of maintenance policies of deteriorating system. *European Journal of Operational Research*, *139*(1), 469-489.
- Weaver, K., & Olson's, J. (2006). Understanding paradigms used for nursing research. *Journal of Advanced Nursing*, *53*(4), 459-469.
- Weber, A., & Thomas, R. (2006). *Key performance indicators, measuring and managing the maintenance function*. Ontario: Ivara Corporation.
- Weitzman, E. A. (2000). Software and Qualitative Research. In N. K. Denzin, & Y. S. Lincoln, *Handbook of Qualitative Research* (pp. 803-820). California: Thousand Oaks.
- Willis, J. W. (2007). *Foundations of qualitative research: Interpretive and critical approaches.* Thousand Oaks, CA: SAGE Publications.
- Wilmeth, R. G., & Usrey, M. W. (2000). Reliability Centred Maintenance A Case Study. *Engineering Management Journal*, *12*(4), 45-46.
- Wireman, T. (2010). *The maintenance strategies series 5 Volumes*. Reliabilityweb.com.
- Wirerman, T. (1990). World Class Maintenance Management. Industrial Press.

- Yin, R. K. (1994). *Case Study Research: Design and Methods* (2 ed.). Beverley Hills,CA: SAGE Publications.
- Yin, R. K. (2003). Case Study Research Design and Methods. SAGE Publications.
- Yung-Hisang, C., & Hou-Lei, T. (2014). Rolling Stock maintenance strategy selection, spares parts estimation and replacements interval calculation. *International Journal of Production Economics*, 128(1), 404-412.

R.S. Velmurugan

Mobile: +91-98188-66480

e-mail:- <u>rs.velmurugan@gail.co.in;</u> <u>rsvelmurugan@gmail.com</u>

C-96, GAIL VIHAR, SECTOR-23, NOIDA (UP), INDIA, PIN: 201 301

Mr. R S Velmurugan is B.E. (Electronics Engineering) from National Institute of Technology, MBA (Operations Research) from IGNOU, and M. Tech. from AAI Deemed University with over 22 years of rich industry experience. Before joining GAIL (India) Limited in June 1996, he was with Shasun Chemicals & Drugs (P) Limited for about 3 years.

Mr. Velmurugan is having experience in the area of maintenance in bulk Drug Company for about 3 years and 19 years in Petrochemicals & Gas processing plants. Presently, he is working as Chief Manager (Training) at GAIL (India) Ltd., and his present posting is at GAIL Training Institute, Noida as Faculty.

He is member of various professional bodies such as Member of Institution of Engineers & also Certified Chartered Engineer, Member of Instrumentation Society of America (ISA), and Member of Indian Society of Training & Development (ISTD).

The publications of Mr. R.S. Velmurugan are as given under:-

- Research proposal on "Study of maintenance strategies & practices of a large Indian gas utility company – A case study" was awarded as best early research proposal in "Operation Research" category at Doctoral Colloquium IIM, Ahmadabad (January, 2013).
- A paper on "Sustainability approach to strategic maintenance management in Indian gas industry A framework" was presented in ICMI, 2013 at UPES, Dehradun (February, 2013).
- A paper on "Maintain asset integrity and firm performance: A conceptual model for Indian gas industry" was presented in ICMI, 2014 at UPES, Dehradun (February, 2014).
- Maintenance strategy selection theory & practices in natural gas industry: A case study of an Indian gas utility company was presented in International Gas Research Conference (IGRC-2014) at Copenhagen, Denmark (September, 2014).
- A paper on "Maintenance strategy selection and its impact in maintenance function: A conceptual framework for manufacturing industry" has been accepted for publication in International Journal of Operations & Production Management, Emerald (October, 2014).